The Removal of Phosphate from Aqueous Solutions by Sepiolite/ZrO2 Composites: Adsorption Behavior and Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sepiolite Modification with Zirconium(IV) Propoxide
2.3. Characterization of the Samples
2.4. Adsorption Experiments
2.5. Desorption
3. Results and Discussion
3.1. Characterization of the Samples
3.2. Adsorption
3.2.1. Effect of Solution pH
3.2.2. Adsorption Isotherms
3.2.3. Phosphate Adsorption Kinetics
3.2.4. ATR-FTIR Study
3.2.5. XPS Analysis
3.2.6. Desorption
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, T.; Zheng, S.; Yang, L. Magnetic zirconium-based metal–organic frameworks for selective phosphate adsorption from water. J. Colloid Interface Sci. 2019, 552, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Mitrogiannis, D.; Psychoyou, M.; Baziotis, I.; Inglezakis, V.J.; Koukouzas, N.; Tsoukalas, N.; Palles, D.; Kamitsos, E.; Oikonomou, G.; Markou, G. Removal of phosphate from aqueous solutions by adsorption onto Ca(OH)2 treated natural clinoptilolite. Chem. Eng. J. 2017, 320, 510–522. [Google Scholar] [CrossRef]
- Xiong, W.; Tong, J.; Yang, Z.; Zeng, G.; Zhou, Y.; Wang, D.; Song, P.; Xu, R.; Zhang, C.; Cheng, M. Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: Performance and mechanism. J. Colloid Interface Sci. 2017, 493, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Goscianska, J.; Ptaszkowska-Koniarz, M.; Frankowski, M.; Franus, M.; Panek, R.; Franus, W. Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash. J. Colloid Interface Sci. 2018, 513, 72–81. [Google Scholar] [CrossRef]
- Han, C.; Lalley, J.; Iyanna, N.; Nadagouda, M.N. Removal of phosphate using calcium and magnesium-modified iron based adsorbents. Mater. Chem. Phys. 2017, 198, 115–124. [Google Scholar] [CrossRef]
- Fu, H.; Yang, Y.; Zhu, R.; Liu, J.; Usman, M.; Chen, Q.; He, H. Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated Magnetite. J. Colloid Interface Sci. 2018, 530, 704–713. [Google Scholar] [CrossRef]
- Wu, B.; Fang, L.; Fortner, J.D.; Guan, X.; Lo, I.M.C. Highly efficient and selective phosphate removal from wastewater by magnetically recoverable La(OH)3/Fe3O4 nanocomposites. Water Res. 2017, 126, 179–188. [Google Scholar] [CrossRef]
- Xu, Y.; Hong, H.; Yang, F.; Zhang, L.; Xu, J.; Dou, L.; Hao, Y.; Qian, G.; Zhou, J. Removal behaviors and mechanisms of orthophosphate and pyrophosphate by calcined dolomite with ferric chloride assistance. Chemosphere 2019, 235, 1015–1021. [Google Scholar] [CrossRef]
- Ya, W.; Zhao, H.D.L.; Liud, Q.; Tao, Q.; Zhua, Y.; Yanga, J.; Zhang, Y.M. Kinetics, isotherm, thermodynamic, and adsorption mechanism studies of La(OH)3-modified exfoliated vermiculites as highly efficient phosphate adsorbents. Chem. Eng. J. 2014, 236, 191–201. [Google Scholar]
- Liu, R.; Chi, L.; Wang, X.; Sui, Y.; Wang, Y.; Arandiyan, H. Review of metal (hydr)oxide and other adsorptive materials for phosphate removal from water. J. Environ. Chem. Eng. 2018, 6, 5269–5286. [Google Scholar] [CrossRef]
- Su, Y.; Cui, H.; Li, Q.; Gao, S.; Shang, J.K. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Res. 2013, 47, 5018–5026. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Sun, X.; Yin, C.; Hu, C. Removal of phosphate by mesoporous ZrO2. J. Hazard. Mater. 2008, 151, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Liu, S.; Dong, S.; Wang, C.; Qu, T.; Li, S.; Lib, L.; Ma, Z. An in situ grown amorphous ZrO2 layer on zeolite for enhanced phosphate adsorption. RSC Adv. 2022, 12, 16751–16762. [Google Scholar] [CrossRef]
- Yang, M.; Lin, J.; Zhan, Y.; Zhang, H. Adsorption of phosphate from water on lake sediments amended with zirconium-modified zeolites in batch mode. Ecol. Eng. 2014, 71, 223–233. [Google Scholar] [CrossRef]
- Nguyen, T.A.H.; Ngo, H.H.; Guo, W.S.; Zhou, J.L.; Wang, J.; Liang, H.; Li, G. Phosphorus elimination from aqueous solution using ‘zirconium loaded okara’ as a biosorbent. Bioresour. Technol. 2014, 170, 30–37. [Google Scholar] [CrossRef]
- Nguyen, T.A.H.; Ngo, H.H.; Guo, W.S.; Pham, T.Q.; Li, F.M.; Nguyen, T.V.; Bui, X.T. Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study. Sci. Total Environ. 2015, 523, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Jiang, B.; Zhan, Y. Effect of pre-treatment of bentonite with sodium and calcium ions on phosphate adsorption onto zirconium-modified bentonite. J. Environ. Manag. 2018, 217, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Zong, E.; Wan, H.; Xu, Z.; Zheng, S.; Zhu, D. Zirconia functionalized SBA-15 as effective adsorbent for phosphate removal. Micropor. Mesopor. Mat. 2012, 155, 192–200. [Google Scholar] [CrossRef]
- Padungthon, S.; German, M.; Wiriyathamcharoen, S.; SenGupta, A.K. Polymeric anion exchanger supported hydrated Zr(IV) oxide nanoparticles: A reusable hybrid sorbent for selective trace arsenic removal. React. Funct. Polym. 2015, 93, 84–94. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, X.; Pan, B.; Zhang, W.; Hua, M.; Lv, L.; Zhang, W. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability. J. Hazard Mater. 2015, 284, 35–42. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, P.; Wang, J.; Zhang, L.; Huang, R. Phosphate adsorption from aqueous solutions by Zirconium (IV) loaded cross-linked chitosan particles. J. Taiwan Inst. Chem. E 2015, 59, 311–319. [Google Scholar] [CrossRef]
- Marjanović, V.; Lazarević, S.; Janković-Častvan, I.; Jokić, B.; Janaćković, Đ.; Petrović, R. Adsorption of chromium (VI) from aqueous solutions onto amine-functionalized natural and acid-activated sepiolites. Appl. Clay Sci. 2013, 80–81, 202–210. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, T.; Wu, D. Facile synthesis of hydrous zirconia-impregnated chitosan beads as a filter medium for efficient removal of phosphate from water. Cellulose 2022, 29, 8749–8768. [Google Scholar] [CrossRef]
- Zhan, Y.; Zhang, H.; Lin, J.; Zhang, Z.; Gao, J. Role of zeolite’s exchangeable cations in phosphate adsorption onto zirconium-modified zeolite. J. Mol. Liq. 2017, 243, 624–637. [Google Scholar] [CrossRef]
- Shao, Y.; Li, J.; Fang, X.; Yang, Z.; Qu, Y.; Yang, M.; Tan, W.; Li, G.; Wang, H. Chemical modification of bamboo activated carbon surface and its adsorption property of simultaneous removal of phosphate and nitrate. Chemosphere 2022, 287, 132118. [Google Scholar] [CrossRef]
- Shan, S.; Tang, H.; Zhao, Y.; Wang, W.; Cui, F. Highly porous zirconium-crosslinked graphene oxide/alginate aerogel beads for enhanced phosphate removal. Chem. Eng. J. 2019, 359, 779–789. [Google Scholar] [CrossRef]
- Zong, E.; Wei, D.; Wan, H.; Zheng, S.; Xu, Z.; Zhu, D. Adsorptive removal of phosphate ions from aqueous solution using zirconia-functionalized graphite oxide. Chem. Eng. J. 2013, 221, 193–203. [Google Scholar] [CrossRef]
- Marjanović, V.; Lazarević, S.; Janković-Častvan, I.; Potkonjak, B.; Janaćković, Đ.; Petrović, R. Chromium (VI) removal from aqueous solutions using mercaptosilane functionalized sepiolites. Chem. Eng. J. 2011, 166, 198–206. [Google Scholar] [CrossRef]
- Lazarević, S.; Janković-Častvan, I.; Jovanović, D.; Milonjić, S.; Janaćković, Đ.; Petrović, R. Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural andacid-activated sepiolites. Appl. Clay Sci. 2007, 37, 47–57. [Google Scholar] [CrossRef]
- Rouquerol, F.; Rouquerol, J.; Sing, K. Adsorption by Powders and Porous Solids; Academic Press: Cambridge, MA, USA, 1975. [Google Scholar]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Lippens, B.C.; De Boer, J.H. Studies on pore systems in catalysts V. The t method. J. Catal. 1965, 4, 319–323. [Google Scholar] [CrossRef]
- Waseem, M.; Mustafa, S.; Naeem, A.; Koper, G.J.M.; Shah, K.H. Cd2+sorption characteristics of iron coated silica. Desalinatio 2011, 277, 221–226. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Concerning adsorption in solutions. Z. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Lagergren, S. About the theory of so-called adsorption of soluble substances. K. Sven. Vetensk. Handl. 1989, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Weber, W.J., Jr.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. ASCE 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Stankovic, J.B.; Milonjic, S.K.; Zec, S.P. The influence of chemical and thermal treatment on the point of zero charge of hydrous zirconium oxide. J. Serb. Chem. Soc. 2013, 78, 987–995. [Google Scholar] [CrossRef]
- Wang, R.; Ong, E.L.D.; Peerun, I.M.; Jeng, D.S. Influence of Surface Roughness and Particle Characteristics on Soil–Structure Interactions: A State-of-the-Art Review. Geosciences 2022, 12, 145. [Google Scholar] [CrossRef]
- Song, L.; Li, J.; Zhou, H.; Lin, Y.; Ding, H.; Huang, Y.; Zhang, P.; Lai, X.; Liu, G.; Fan, Y. Zirconia nano-powders with controllable polymorphs synthesized by a wet chemical method and their phosphate adsorption characteristics & mechanism. Ceram. Int. 2022, 48, 6591–6599. [Google Scholar]
- Zong, E.; Liu, X.; Jiang, J.; Fu, S.; Chu, F. Preparation and characterization of zirconia-loaded lingo cellulosic butanol residue as a biosorbent for phosphate removal from aqueous solution. Appl. Surf. Sci. 2016, 387, 419–430. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, Z.; Zhan, Y. Effect of humic acid preloading on phosphate adsorption onto zirconium-modified zeolite. Environ. Sci. Pollut. Res. 2017, 24, 12195–12211. [Google Scholar] [CrossRef] [PubMed]
- Kosmulski, M. The Significance of the Points of Zero Charge of Zirconium (Hydr)Oxide Reported in the Literature. J. Dispers. Sci. Technol. 2002, 23, 529–538. [Google Scholar] [CrossRef]
- Pettersson, A.; Marino, G.; Pursiheimo, A.; Rosenholm, J.B. Electrosteric Stabilization of Al2O3, ZrO2, and 3-Y-ZrO2 Suspensions: Effect of Dissociation and Type of Polyelectrolyte. J. Colloid Interface Sci. 2000, 228, 73–81. [Google Scholar] [CrossRef]
- Lin, J.; He, S.; Wang, X.; Zhang, H.; Zhana, Y. Removal of phosphate from aqueous solution by a novel Mg(OH)2/ZrO2 composite: Adsorption behavior and mechanism. Colloids Surf. 2019, 561, 301–314. [Google Scholar] [CrossRef]
- Lee, W.H.; Kim, J.O. Mechanisms and novel performance of ZrO2/Fe3O4 composite for phosphate recovery from wastewater. Chem. Eng. J. 2023, 453, 139817. [Google Scholar] [CrossRef]
- Lin, X.; Xie, Y.; Lu, H.; Xin, Y.; Altaf, R.; Zhu, S.; Liu, D. Facile preparation of dual La-Zr modified magnetite adsorbents for efficient and selective phosphorus recovery. Chem. Eng. J. 2021, 413, 127530. [Google Scholar] [CrossRef]
- Zhou, K.; Wua, B.; Su, L.; Xin, W.; Chai, X. Enhanced phosphate removal using nanostructured hydrated ferric zirconium binary oxide confined in a polymeric anion exchanger. Chem. Eng. J. 2018, 345, 640–647. [Google Scholar] [CrossRef]
Sample | O | Mg | Si | Fe | Zr |
---|---|---|---|---|---|
Sep–ZrI | 74.8 ± 0.96 | 7.75 ± 0.33 | 13.2 ± 0.76 | 0.40 ± 0.06 | 3.83 ± 0.07 |
Sep–ZrII | 77.5 ± 2.39 | 6.52 ± 0.76 | 11.1 ± 1.13 | 0.37 ± 0.07 | 4.57 ± 0.70 |
Sample | SBET, m2/g | Vtotal, m3/g | Vmeso, cm3/g | Vmicro, cm3/g | Dmean, nm | Dmax, nm |
---|---|---|---|---|---|---|
Sep | 311.4 | 0.351 | 0.265 | 0.126 | 6.63 | 4.00 |
Sep–ZrI | 337.3 | 0.340 | 0.236 | 0.135 | 6.48 | 4.00 |
Sep–ZrII | 352.2 | 0.398 | 0.306 | 0.135 | 6.47 | 4.00 |
Sample | pHi | Langmuir Isotherm | Freundlich Isotherm | ||||
---|---|---|---|---|---|---|---|
qm mg/g | KL dm3/mg | R2 | 1/n | Kf (mg/g)(dm3/mg)1/n | R2 | ||
Sep–ZrI | 4.0 | 11.85 | 14.45 | 0.935 | 0.160 | 9.01 | 0.996 |
8.0 | 8.47 | 1.81 | 0.905 | 0.221 | 4.85 | 0.957 | |
Sep–ZrII | 4.0 | 12.55 | 2.32 | 0.982 | 0.212 | 7.93 | 0.988 |
8.0 | 7.52 | 8.41 | 0.897 | 0.137 | 5.56 | 0.932 |
Adsorbent | Capacity | pH | Reference |
---|---|---|---|
Zirconia-functionalized graphite oxide | 16.45 mg PO43−/g | 6 | [27] |
ZrO2/Fe3O4 composite | 59.9 mg PO43−/g | 4 | [47] |
Amorphous ZrO2 | 99.01 mg PO43−/g | 6.2 | [11] |
Zirconium-modified bentonite | 8.90 mg PO43−/g | 7 | [17] |
Zirconium(IV)-loaded cross-linked chitosan particles | 71.68 mg PO43−/g | 3 | [21] |
La–Zr-modified magnetite | 49.1 mg PO43−/g | 2 | [48] |
Magnetic zirconium-based metal–organic frameworks | 12.82 mg P/g | 6.5 | [1] |
Zirconium-modified zeolite | 10.2 mg P/g | 7 | [14] |
Zirconium(IV)-loaded lignocellulosic butanol residue | 8.75 mg P/g | 6 | [42] |
Sep–ZrI | 13.5 mg P/g (41.4 mg PO43−/g) | 4 | This study |
Sep–ZrI | 9.8 mg P/g (30.0 mg PO43−/g) | 8 | This study |
Sep–ZrII | 13.2 mg P/g (40.45 mg PO43−/g) | 4 | This study |
Sep–ZrII | 9.4 mg P/g (28.8 mg PO43−/g) | 8 | This study |
Model | |||||||||
---|---|---|---|---|---|---|---|---|---|
Adsorbent/pH | Pseudo-First-Order | Pseudo-Second-Order | Intraparticle | ||||||
qt = ki t1/2 + C | |||||||||
k1 (1/min) | qe (mg/g) | R2 | k2 (g/mg·min) | qe (mg/g) | R2 | ki (mg/g·min1/2) | C (mg/g) | R2 | |
Sep–ZrI c0 = 5.0 mg P/dm3, pH 4 | 0.0017 | 1.97 | 0.992 | 0.0030 | 5.52 | 0.996 | 0.0598 | 3.22 | 0.988 |
Sep–ZrI c0 = 20.0 mg P/dm3, pH 4 | 0.0026 | 2.80 | 0.752 | 0.0029 | 12.51 | 0.999 | 0.2842 | 6.60 | 0.989 |
Sep–ZrI c0 = 5.0 mg P/dm3, pH 8 | 0.0029 | 1.95 | 0.962 | 0.0036 | 4.85 | 1.00 | 0.0648 | 2.68 | 0.950 |
Sep–ZrI c0 = 20.0 mg P/dm3, pH 8 | 0.0009 | 1.20 | 0.447 | 0.0036 | 8.55 | 0.988 | 0.1368 | 5.99 | 0.939 |
Sep–ZrII c0 = 5.0 mg P/dm3, pH 4 | 0.0014 | 1.10 | 0.651 | 0.0067 | 4.97 | 0.997 | 0.0807 | 3.05 | 0.975 |
Sep–ZrII c0 = 20.0 mg P/dm3, pH 4 | 0.0034 | 3.90 | 0.621 | 0.0020 | 12.09 | 0.999 | 0.2858 | 5.54 | 0.952 |
Sep–ZrII c0 = 5.0 mg P/dm3, pH 8 | 0.0031 | 1.09 | 0.630 | 0.0071 | 4.58 | 1.00 | 0.0743 | 2.63 | 0.930 |
Sep–ZrII c0 = 20.0 mg P/dm3, pH 8 | 0.0017 | 1.75 | 0.842 | 0.0054 | 7.87 | 0.999 | 0.0880 | 5.46 | 0.910 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milovanović, Ž.; Lazarević, S.; Janković-Častvan, I.; Radovanović, Ž.; Cvetković, S.; Janaćković, Đ.; Petrović, R. The Removal of Phosphate from Aqueous Solutions by Sepiolite/ZrO2 Composites: Adsorption Behavior and Mechanism. Water 2023, 15, 2376. https://doi.org/10.3390/w15132376
Milovanović Ž, Lazarević S, Janković-Častvan I, Radovanović Ž, Cvetković S, Janaćković Đ, Petrović R. The Removal of Phosphate from Aqueous Solutions by Sepiolite/ZrO2 Composites: Adsorption Behavior and Mechanism. Water. 2023; 15(13):2376. https://doi.org/10.3390/w15132376
Chicago/Turabian StyleMilovanović, Željka, Slavica Lazarević, Ivona Janković-Častvan, Željko Radovanović, Slobodan Cvetković, Đorđe Janaćković, and Rada Petrović. 2023. "The Removal of Phosphate from Aqueous Solutions by Sepiolite/ZrO2 Composites: Adsorption Behavior and Mechanism" Water 15, no. 13: 2376. https://doi.org/10.3390/w15132376
APA StyleMilovanović, Ž., Lazarević, S., Janković-Častvan, I., Radovanović, Ž., Cvetković, S., Janaćković, Đ., & Petrović, R. (2023). The Removal of Phosphate from Aqueous Solutions by Sepiolite/ZrO2 Composites: Adsorption Behavior and Mechanism. Water, 15(13), 2376. https://doi.org/10.3390/w15132376