Effects of Zeolite on Physiological Characteristics and Grain Quality in Rice under Alternate Wetting and Drying Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Management
2.3. Sampling and Measurements
2.3.1. Leaf SPAD and Root Bleeding Intensity
2.3.2. Dry Matter and Nitrogen Accumulation
2.3.3. Grain Yield and Water Use Efficiency
2.3.4. Grain Quality
3. Result
3.1. Leaf SPAD and Root Bleeding Intensity
3.2. Dry Matter Accumulation and Distribution at Maturity Stage
3.3. Nitrogen Accumulation and Distribution at Maturity Stage
3.4. Grain Yield and Water Use Efficiency
3.5. Grain Quality
4. Discussion
4.1. Effects of AWD on Rice Physiological Characteristics, Yield and Water Use Efficiency
4.2. Effects of AWD on Rice Grain Quality
4.3. Effects of Zeolite on Rice Physiological Characteristics, Yield and Water Use Efficiency
4.4. Effects of Zeolite on Rice Grain Quality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. 2022. Available online: http://faostat3.fao.org/browse/FB/CC/E (accessed on 19 December 2022).
- Du, T.S.; Kang, S.Z.; Sun, J.S.; Zhang, X.Y.; Zhang, J.H. An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China. Agric. Water Manag. 2010, 97, 66–74. [Google Scholar] [CrossRef]
- Lampayan, R.M.; Rejesus, R.M.; Singleton, G.R.; Bouman, B.A.M. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res. 2015, 170, 95–108. [Google Scholar] [CrossRef]
- Nie, T.Z.; Huang, J.Y.; Zhang, Z.X.; Chen, P.; Li, T.C.; Dai, C.L. The inhibitory effect of a water-saving irrigation regime on CH4 emission in Mollisols under straw incorporation for 5 consecutive years. Agric. Water Manag. 2023, 278, 108163. [Google Scholar] [CrossRef]
- Jayakumar, B.; Subathra, C.; Velu, V.; Ramanathan, S. Effect of integrated crop management practices on rice (Oryza sativa L.) volume and rhizosphere redox potential. J. Agron. 2005, 40, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zhou, Y.; Wang, S.; Xing, G.; Shi, W.; Xu, R.; Zhu, Z. Nitrogen balance in a highly fertilized rice–wheat double-cropping system in southern China. Soil Sci. Soc. Am. J. 2012, 76, 1068–1078. [Google Scholar] [CrossRef]
- Chapagain, T.; Yamaji, E. The effects of irrigation method, age of seedling and spacing on crop performance, productivity and water-wise rice production in Japan. Paddy Water Environ. 2010, 8, 81–90. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Gaihre, Y.K.; Biswas, J.C.; Jahan, M.S.; Singh, U.; Adhikary, S.K. Different nitrogen rates and methods of application for dry season rice cultivation with alternate wetting and drying irrigation: Fate of nitrogen and grain yield. Agric. Water Manag. 2018, 196, 144–153. [Google Scholar] [CrossRef]
- Li, Z.; Letuma, P.; Zhao, H.; Zhang, Z.; Lin, W.; Chen, H.; Lin, W. A positive response of rice rhizosphere to alternate moderate wetting and drying irrigation at grain filling stage. Agric. Water Manag. 2018, 207, 26–36. [Google Scholar] [CrossRef]
- Chen, S.Q.; Xue, J.F.; Pan, G.J.; Wang, Q.Y. Relationship between RVA profile characteristics and other quality traits in grain positions of japonica rice. J. Nucl. Agric. Sci. 2015, 29, 244–251. [Google Scholar]
- Zhang, J.S.; Cheng, S.Z.; Liu, D.H.; You, C.; Zhou, G.S.; Jin, D.M. Effects of drought stress in mid- late stage on grain yield and quality of cultivated rice (Oryza sativa L). Hubei Agric. Sci. 2007, 46, 3. [Google Scholar]
- Huang, D.F.; Xi, L.L.; Wang, Z.Q.; Liu, L.J.; Yang, J.C. Effects of Irrigation Patterns during Grain Filling on Grain Quality and Concentration and Distribution of Cadmium in Different Organs of Rice. Acta Agron. Sin. 2008, 34, 456–464. [Google Scholar] [CrossRef]
- Lv, Y.D.; Zheng, G.P.; Guo, X.H.; Yin, D.W.; Ma, D.R.; Xu, Z.J.; Chen, W.F. Effects of lower limit of soil water potential on grain quality of rice in cold region. Chin. J. Rice Sci. 2011, 25, 515–522. [Google Scholar]
- Wang, Y.; Cui, J.; Wang, X.B.; Zhao, M.; Zhu, C.J.; Shi, L.L.; Zhang, X. Effect of fertilization method on soil available nutrients and taste of Japanese and Chinese rice. Chin. J. Eco-Agric. 2010, 18, 286–289. [Google Scholar] [CrossRef]
- Chen, M.Y.; Li, X.F.; Cheng, J.Q.; Ren, H.R.; Liang, J.; Zhang, H.C.; Huo, Z.Y. Effects of total straw returning and nitrogen application regime on grain yield and quality in mechanical transplanting Japonica rice with good taste quality. Acta Agron. Sin. 2017, 43, 1802–1816. [Google Scholar] [CrossRef]
- Noori, M.; Zendehdel, M.; Ahmadi, A. Using natural zeolite for improvement of soil salinity and crop yield. Toxicol. Environ. Chem. Rev. 2006, 88, 77–84. [Google Scholar] [CrossRef]
- Khan, A.Z.; Nigar, S.; Khalil, S.K.; Wahab, S.; Rab, A.; Khattak, M.K.; Henmi, T. Influence of synthetic zeolite application on seed development profile of soybean grown on allophanic soil. Pak. J. Bot. 2013, 45, 1063–1068. [Google Scholar]
- Malekian, R.; Abedi-Koupai, J.; Eslamian, S.S. Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. J. Hazard. Mater. 2011, 185, 970–976. [Google Scholar] [CrossRef]
- Khodaei Joghan, A.; Ghalavand, A.; Aghaalikhani, M.; Gholamhoseini, M.; Dolatabadian, A. How organic and chemical nitrogen fertilizers, zeolite, and combinations influence wheat yield and grain mineral content. J. Crop Improv. 2012, 26, 116–129. [Google Scholar] [CrossRef]
- Chen, T.T.; Wilson, L.T.; Liang, Q.; Xia, G.M.; Chen, W.; Chi, D.C. Influences of irrigation, nitrogen and zeolite management on the physicochemical properties of rice. Arch. Agron. Soil Sci. 2017, 63, 1210–1226. [Google Scholar] [CrossRef]
- Hazrati, S.; Tahmasebi-Sarvestani, Z.; Mokhtassi-Bidgoli, A.; Modarres-Sanavy, S.A.M.; Mohammadi, H.; Nicola, S. Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L. Agric. Water Manag. 2017, 181, 66–72. [Google Scholar] [CrossRef]
- Najafinezhad, H.; Tahmasebi Sarvestani, Z.; Modarres Sanavy, S.A.M.; Naghavi, H. Evaluation of yield and some physiological changes in corn and sorghum under irrigation regimes and application of barley residue, zeolite and superabsorbent polymer. Arch. Agron. Soil Sci. 2015, 61, 891–906. [Google Scholar] [CrossRef]
- Ozbahce, A.; Tari, A.F.; Gönülal, E.; Simsekli, N.; Padem, H. The effect of zeolite applications on yield components and nutrient uptake of common bean under water stress. Arch. Agron. Soil Sci. 2015, 61, 615–626. [Google Scholar] [CrossRef]
- Sun, Y.D.; He, Z.L.; Wu, Q.; Zheng, J.L.; Li, Y.H.; Wang, Y.Z.; Chen, T.T.; Chi, D.C. Zeolite amendment enhances rice production, nitrogen accumulation and translocation in wetting and drying irrigation paddy field. Agric. Water Manag. 2020, 235, 106–126. [Google Scholar] [CrossRef]
- Xu, G.W.; Wang, H.Z.; Zhai, Z.H.; Sun, M.; Li, Y.J. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice. Trans. Chin. Soc. Agric. Eng. 2015, 31, 132–141. [Google Scholar]
- Wang, L.; Xue, C.; Pan, X.; Chen, F.; Liu, Y. Application of controlled-release urea enhances grain yield and nitrogen use efficiency in irrigated rice in the Yangtze River Basin, China. Front. Plant Sci. 2018, 9, 999. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, G.; Chauhan, B.S. Performance of dry directseeded rice in response to genotype and seeding rate. Agron. J. 2016, 108, 257. [Google Scholar] [CrossRef]
- Pal, R.; Mahajan, G.; Sardana, V.; Chauhan, B.S. Impact of sowing date on yield, dry matter and nitrogen accumulation, and nitrogen translocation in dry-seeded rice in North-West India. Field Crops Res. 2017, 206, 138–148. [Google Scholar] [CrossRef]
- Wu, W.; Nie, L.X.; Liao, Y.C.; Shah, F.; Cui, K.H.; Wang, Q.; Lian, Y.; Huang, J.L. Toward yield improvement of early-season rice, Other options under double rice-cropping system in central China. Eur. J. Agron. 2013, 45, 75–86. [Google Scholar] [CrossRef]
- Dong, N.M.; Brandt, K.K.; Sorensen, J.; Hung, N.N.; Chu, V.H.; Tan, P.S.; Dalsgaard, T. Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the mekong delta, vietnam. Soil Biol. Biochem. 2012, 47, 166–174. [Google Scholar] [CrossRef]
- Ye, Y.S.; Liang, X.Q.; Chen, Y.X.; Liu, J.; Gu, J.T.; Guo, R.; Li, L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Res. 2013, 144, 212–224. [Google Scholar] [CrossRef]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Peng, S.Z.; Hao, S.R.; Liu, Q.; Liu, Y.; Xu, N.H. Study on the mechanisms of yield-raising and quality-improving for paddy rice under water-saving irrigation. J. Irrig. Drain. 2000, 3, 3–7. [Google Scholar]
- Ke, C.Y. Effect of Different Water Treatment on Rice Growth, Yield and Quality. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2010. [Google Scholar]
- Liu, L.J.; Li, H.W.; Zhao, B.H.; Wang, Z.Q.; Yang, J.C. Effects of alternate drying-wetting irrigation during grain filling on grain quality and its physiological mechanisms in rice. Chin. J. Rice Sci. 2012, 26, 77–84. [Google Scholar]
- Hu, Y.F. Study on the effect of water-saving irrigation on the yield and quality of rice in cold regions. J. Agric. Sci. 2017, 14, 38–39. [Google Scholar]
- Wang, C.A.; Wang, B.L.; Zhang, W.X.; Zh, L.; Zhao, X.Z.; Gao, L.W. Effects of water stress of soil on rice yield and quality. Acta Agron. Sin. 2006, 32, 131–137. [Google Scholar]
- Champagne, E.T.; Bett-Garber, K.L.; Grimm, C.C.; McClung, A.M. Effects of organic fertility management on physicochemical properties and sensory quality of diverse rice cultivars. Cereal Chem. 2007, 84, 320–327. [Google Scholar] [CrossRef]
- Cai, Y.X.; Zhu, Q.S.; Wang, Z.Q.; Yang, J.C.; Zhen, L.; Qian, W.C. Effects of soil moisture on rice quality during grain-filling period. Acta Agron. Sin. 2002, 17, 1201–1206. [Google Scholar]
- Gholamhoseini, M.; Ghalavand, A.; Khodaei-Joghan, A.; Dolatabadian, A.; Zakikhani, H.; Farmanbar, E. Zeolite-amended cattle manure effects on sunflower yield, seed quality, water use efficiency and nutrient leaching. Soil Tillage Res. 2013, 126, 193–202. [Google Scholar] [CrossRef]
- Sepaskhah, A.R.; Barzegar, M. Yield, water and nitrogen-use response of rice to zeolite and nitrogen fertilization in a semi-arid environment. Agric. Water Manag. 2010, 98, 38–44. [Google Scholar] [CrossRef]
- Wu, Q.; Xia, G.M.; Chen, T.T.; Chi, D.C.; Jin, Y.; Sun, D.H. Impacts of nitrogen and zeolite managements on yield and physicochemical properties of rice grain. Int. J. Agric. Biol. Eng. 2016, 9, 93–100. [Google Scholar]
- Ippolito, J.A.; Tarkalson, D.D.; Lehrsch, G.A. Zeolite soil application method affects inorganic nitrogen, moisture, and corn growth. Soil Sci. 2011, 176, 136–142. [Google Scholar] [CrossRef]
- Ghanbari, M.; Ariafar, S. The effects of water deficit and zeolite application on growth traits and oil yield of medicinal peppermint (Mentha piperita L.). Int. J. Med. Aromat. Plants 2013, 3, 32–39. [Google Scholar]
- Ghanbari, M.; Ariafar, S. The study of different levels of zeolite application on quantitative and qualitative parameters in basil (Ocimum basilicum L.) under drought conditions. Int. J. Agric. Res. Rev. 2013, 3, 844–853. [Google Scholar]
- Guo, E.J.; Yang, X.G.; Wang, X.Y.; Zhang, T.Y.; Huang, W.H.; Liu, Z.Q. Spatial-temporal distribution of double cropping rice’s yield gap in Hunan province. Sci. Agric. Sin. 2017, 50, 399–412. [Google Scholar]
- Cong, X.H.; Shi, F.Z.; Ruan, X.M.; Luo, Y.X.; Ma, T.C.; Luo, Z.X. Effects of nitrogen fertilizer application rate on nitrogen use efficiency and grain yield and quality of different rice varietie. Chin. J. Appl. Ecol. 2017, 28, 1219–1226. [Google Scholar]
- Jiang, H.F.; Guo, X.H.; Hu, Y.; Li, M.; Lv, Y.D.; Xu, S.L.; Xu, L.Q.; Wang, J.Y. Effects of nitrogen fertilization managements on rice quality under Soda-Saline-Alkali soil. Southwest China J. Agric. Sci. 2019, 32, 1223–1229. [Google Scholar]
- Chen, T.T.; Xia, G.M.; Wu, Q.; Zheng, J.L.; Jin, Y.; Sun, D.H.; Wang, S.C.; Chi, D.C. The Influence of Zeolite Amendment on Yield Performance, Quality Characteristics, and Nitrogen Use Efficiency of Paddy Rice. Crop Sci. 2018, 57, 2777. [Google Scholar] [CrossRef]
- Zheng, J.L.; Chen, T.T.; Wu, Q.; Yu, J.M.; Chen, W.; Chen, Y.L.; Siddique, K.H.M.; Meng, W.A.; Chi, D.C.; Xia, G.M. Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress. Agric. Water Manag. 2018, 206, 241–251. [Google Scholar] [CrossRef]
Soil Properties | Chemical Composition of Zeolite (%) | ||||
---|---|---|---|---|---|
Bulk density | 1.39 g m−3 | SiO2 | 67.09 | FeO | 0.07 |
pH | 6.76 | Al2O3 | 12.44 | MnO | 0.03 |
Total N, | 2833 kg ha−1 | CaO | 6.51 | P2O5 | 0.03 |
NH4+-N, | 8.0 kg ha−1 | MgO | 1.22 | Loss on ignition | 10.1% |
NO3−-N | 9.2 kg ha−1 | K2O | 1.2 | CEC | 142 cmolc kg−1 |
Available P | 53 mg kg−1 | Fe2O3 | 0.78 | SSA | 670 m2 g−1. |
Exchangeable K | 165 mg kg−1 | Na2O | 0.26 | ||
CEC | 15 cmolc kg−1 | TiO2 | 0.09 |
Main Effect | Leaf SPAD Value | Root Bleeding Intensity (g·h−1) | ||||||
---|---|---|---|---|---|---|---|---|
Tillering Stage | Joint-Booting Stage | Panicle- Initiation Stage | Grain- Filling Stage | Tillering Stage | Joint-Booting Stage | Panicle- Initiation Stage | Grain- Filling Stage | |
ICF | 45.3 a | 42.1 a | 43.9 a | 44.0 a | 6.24 a | 7.01 a | 6.13 a | 5.90 a |
IAWD | 45.5 a | 41.3 a | 43.1 a | 41.8 b | 5.11 a | 6.68 a | 4.73 b | 4.52 b |
Z0 | 44.8 a | 40.1 c | 42.6 b | 42.5 a | 5.49 a | 6.37 b | 5.04 b | 4.74 b |
Z5 | 45.6 a | 42.0 b | 43.6 ab | 42.9 a | 5.70 a | 6.88 ab | 5.53 a | 5.29 a |
Z10 | 45.9 a | 43.0 a | 44.3 a | 43.2 a | 5.85 a | 7.31 a | 5.71 a | 5.59 a |
ANOVA | ||||||||
I | ns | ns | ns | * | ns | ns | ** | ** |
Z | ns | ** | ** | ns | ns | ** | ** | ** |
I*Z | ns | ns | ns | ns | ns | ns | ns | ns |
Main Effect | Dry Matter Accumulation (kg·ha−1) | Dry Matter Distribution (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Root | Stem-Leaf | Panicle | Aboveground | Whole Plant | Root | Stem-Leaf | Panicle | Root–Shoot Ratio | |
ICF | 6.10 a | 30.3 a | 38.2 a | 68.5 a | 74.6 a | 8.17 b | 40.5 a | 51.3 a | 0.089 b |
IAWD | 6.48 a | 28.2 b | 36.9 a | 65.1 a | 71.6 a | 9.07 a | 39.2 a | 51.7 a | 0.099 a |
Z0 | 5.79 b | 25.5 b | 34.9 b | 60.4 b | 66.2 b | 8.77 a | 38.5 b | 52.7 a | 0.096 a |
Z5 | 6.33 ab | 30.0 a | 38.3 a | 68.3 a | 74.6 a | 8.49 a | 40.2 a | 51.3 b | 0.093 a |
Z10 | 6.74 a | 32.1 a | 39.6 a | 71.7 a | 78.4 a | 8.60 a | 41.0 a | 50.4 b | 0.094 a |
ANOVA | |||||||||
I | ns | * | ns | ns | ns | ** | ns | ns | ** |
Z | ** | ** | ** | ** | ** | ns | ** | ** | ns |
I*Z | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Main Effect | N Accumulation (kg·ha−1) | N Distribution (%) | ||||||
---|---|---|---|---|---|---|---|---|
Root | Stem-Leaf | Panicle | Aboveground | Whole Plant | Root | Stem-Leaf | Panicle | |
ICF | 8.84 b | 28.0 a | 78.4 a | 106.4 a | 115.3 a | 7.66 b | 24.2 a | 68.1 a |
IAWD | 9.69 a | 24.7 b | 76.1 a | 100.6 b | 110.3 a | 8.63 a | 22.3 b | 69.1 a |
Z0 | 8.36 c | 22.7 c | 71.5 b | 94.1 b | 102.5 b | 8.07 a | 22.1 b | 69.8 a |
Z5 | 9.39 b | 27.0 b | 78.7 a | 105.6 a | 115.0 a | 8.06 a | 23.5 a | 68.5 a |
Z10 | 10.05 a | 29.3 a | 81.6 a | 110.9 a | 121.0 a | 8.31 a | 24.2 a | 67.5 a |
ANOVA | ||||||||
I | * | * | ns | * | ns | ** | * | ns |
Z | ** | ** | ** | ** | ** | ns | ** | ns |
I*Z | ns | ns | ns | ns | ns | ns | ns | ns |
Yield | RST | ADM | AN | JBS | PIS | GFS | JBR | PIR | GFR | |
---|---|---|---|---|---|---|---|---|---|---|
Yied | 1 | |||||||||
RST | −0.56 * | 1 | ||||||||
ADM | 0.88 ** | −0.39 | 1 | |||||||
AN | 0.89 ** | −0.46 * | 0.99 ** | 1 | ||||||
JBS | 0.90 ** | −0.44 | 0.86 ** | 0.86 ** | 1 | |||||
PIS | 0.65 ** | −0.4 | 0.68 ** | 0.71 ** | 0.77 ** | 1 | ||||
GFS | 0.53 * | −0.83 ** | 0.52 * | 0.55 * | 0.53 * | 0.53 * | 1 | |||
JBR | 0.69 ** | −0.35 | 0.81 ** | 0.82 ** | 0.63 ** | 0.53 * | 0.48 * | 1 | ||
PIR | 0.65 ** | −0.80 ** | 0.57 * | 0.61 ** | 0.57 * | 0.53 * | 0.88 ** | 0.59 ** | 1 | |
GFR | 0.66 ** | −0.76 ** | 0.59 ** | 0.63 ** | 0.63 ** | 0.67 ** | 0.85 ** | 0.53 * | 0.95 ** | 1 |
Main Factor | Brown Rice Rate (%) | Milled Rice Rate (%) | Head Rice Rate (%) | Chalky Rice Rate (%) | Chalkiness Degree (%) | Protein Concentration (%) | Amylose Concentration (%) | Eating Score |
---|---|---|---|---|---|---|---|---|
ICF | 84.3 a | 78.3 a | 73.1 a | 6.41 a | 1.43 a | 6.62 a | 25.2 a | 69.4 b |
IAWD | 84.0 a | 76.4 a | 69.7 b | 6.09 b | 1.34 a | 6.95 a | 26.3 a | 70.8 a |
Z0 | 84.2 a | 76.8 a | 70.5 a | 5.82 b | 1.20 c | 6.52 b | 25.8 a | 70.4 a |
Z5 | 84.1 a | 76.6 a | 71.8 a | 6.28 ab | 1.38 b | 6.77 ab | 25.8 a | 70.3 a |
Z10 | 84.2 a | 78.8 a | 71.8 a | 6.65 a | 1.59 a | 7.00 a | 25.6 a | 69.7 a |
ANOVA | ||||||||
I | ||||||||
Z | ns | ns | ns | ** | ** | * | ns | ns |
I*Z | ns | ns | ns | ns | ns | ns | ns | ns |
Main Factos | Peak Viscosity (cP) | Through Viscosity (cP) | Breakdown (cP) | Final Viscosity (cP) | Setback (cP) | Peak Time (min) | Pasting Temp (°C) |
---|---|---|---|---|---|---|---|
ICF | 3159 a | 2390 a | 748 b | 3518 a | 1173 a | 6.63 a | 71.2 a |
IAWD | 3218 a | 2454 a | 792 a | 3557 a | 1103 b | 6.63 a | 71.2 a |
Z0 | 3208 a | 2416 a | 793 a | 3537 a | 1164 a | 6.62 a | 71.3 a |
Z5 | 3160 a | 2407 a | 759 b | 3520 a | 1136 ab | 6.65 a | 71.1 a |
Z10 | 3208 a | 2444 a | 759 b | 3555 a | 1114 b | 6.62 a | 71.2 a |
ANOVA | |||||||
I | ns | ns | * | ns | * | ns | ns |
Z | ns | ns | ** | ns | * | ns | ns |
I*Z | ns | ns | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Xie, J.; Hou, H.; Li, M.; Wang, Y.; Wang, X. Effects of Zeolite on Physiological Characteristics and Grain Quality in Rice under Alternate Wetting and Drying Irrigation. Water 2023, 15, 2406. https://doi.org/10.3390/w15132406
Sun Y, Xie J, Hou H, Li M, Wang Y, Wang X. Effects of Zeolite on Physiological Characteristics and Grain Quality in Rice under Alternate Wetting and Drying Irrigation. Water. 2023; 15(13):2406. https://doi.org/10.3390/w15132406
Chicago/Turabian StyleSun, Yidi, Jigan Xie, Huijing Hou, Min Li, Yitong Wang, and Xuetao Wang. 2023. "Effects of Zeolite on Physiological Characteristics and Grain Quality in Rice under Alternate Wetting and Drying Irrigation" Water 15, no. 13: 2406. https://doi.org/10.3390/w15132406
APA StyleSun, Y., Xie, J., Hou, H., Li, M., Wang, Y., & Wang, X. (2023). Effects of Zeolite on Physiological Characteristics and Grain Quality in Rice under Alternate Wetting and Drying Irrigation. Water, 15(13), 2406. https://doi.org/10.3390/w15132406