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Abstract: China is committed to achieving carbon neutrality before 2060. This study projected the
changes in climate and runoff in the source region of the Yellow River Basin for 2021–2060 under
lower carbon emission pathways (SSP1–2.6 and SSP2–4.5) using a statistically downscaled climate
dataset and the SWAT hydrological model. Results showed that the climate will become warmer and
wetter from 2021–2060. In comparison with the baseline period (1995–2014), in terms of the ensemble
mean, annual mean air temperature, annual precipitation, and annual runoff will increase by 1.3 ◦C
and 1.6 ◦C, by 11.1% and 11.2%, and by 12.8% and 11.9% under SSP1–2.6 and SSP2–4.5 scenarios,
respectively. Moreover, the seasonal pattern of runoff was projected to change. The proportion of
monthly runoff to the annual total will decrease by 0.6–1.0% in summer but increase by 0.1–1.0%
during the period from January to April and September to December. The multimodel ensemble
mean (MEM) of extremely high monthly flow (Q10) will increase by 3.5–13.4% in the flood season
(June to August) and water storage season (September to December). The MEM of extremely low
monthly flow (Q90) will increase by 19.4–26.2% from February to April but decrease by 5.0–8.9% in
January, May, and December. Thus, the warmer and wetter climate from 2021–2060 will likely cause
flatter seasonal distribution of runoff, lower risk of water scarcity at the annual scale and of drought
from February to April, but higher risk both of flood in the flood season and of drought in December,
January, and May. Generally, the flatter pattern of runoff would likely alleviate water scarcity in
the dry and water storage seasons to some degree, and the increase in monthly runoff in the water
storage season will benefit hydroelectric power generation and agriculture and animal husbandry
production. However, in some years, the increase in Q10 in the flood season will likely increase flood
prevention pressure, and the decrease in Q90 in May will likely obstruct grass revival.

Keywords: climate change impact; runoff projection; Yellow River; SWAT model; CMIP6 models;
carbon neutrality

1. Introduction

Water resources are of great importance to achieve the goal of carbon neutrality. Hy-
dropower can reduce fossil fuel consumption by supplying renewable energy in conjunction
with wind and solar power. Water resources are also required for the green transforma-
tion of the urban energy and industrial structure. Global warming has accelerated the
circulation of water vapor, which led to an increase in evaporation and the change in the
spatiotemporal distribution of both precipitation and runoff [1,2]. Alteration of the distribu-
tion of both precipitation and discharge has produced more frequent and stronger extreme
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hydrometeorological events [3,4], that have impacts on ecosystems [5]. The Yellow River
is the second-largest river in China in terms of length. It supports 30.3% of the national
population and possesses 2.6% of the national total water resources [6]. The source region
of the Yellow River is upstream of the Tangnaihai hydrological gauging station. It covers
15% of the entire area of the Yellow River Basin and generates 35% of basin runoff [7]. The
ecosystem in the region is fragile and sensitive to changes in climate and runoff. Recently,
in the source region, extreme hydrological events such as rainstorms and floods have
become more frequent, but annual runoff has diminished [8–12]. For example, summer
precipitation broke the historical maximum value in Guoluo State in Qinghai Province in
2020 and caused flooding along the Yellow River. To prevent and control such flooding, the
Longyangxia Reservoir operated for more than 40 days beyond the flood level. Thus, it is
of great importance to project the changes in runoff and extreme hydrological events under
global warming for both water resource security in the source region and in the entire basin
of the Yellow River and achieving the goal of carbon neutrality.

A global climate model (GCM) is an important tool for predicting climate change [13].
The Coupled Model Intercomparison Project Phase 5 (CMIP5) projected a warming climate
in the source region of the Yellow River for 2020–2059 [14]. The newly released GCMs of
the Coupled Model Intercomparison Project Phase 6 (CMIP6) have been improved further.
They can better reproduce the spatial patterns of climatic elements and produce smaller
deviations of climatic simulations in comparison with those of CMIP5 [15,16]. Based on
CMIP6 GCMs, a wetter climate for 2021–2100 under common shared socioeconomic path-
way (SSP) and representative concentration pathway (SSP–RCP) scenarios (i.e., SSP1–26,
SSP2–45, SSP3–70, and SSP5–85 [17]) and increasing trend of annual runoff for 2021–2100
under SSP1–26 and SSP2–45 scenarios but decreasing trend of annual runoff for 2061–2100
under the SSP5–85 scenario were projected in the region [18]. Projected change amplitudes
and even change directions of climate and runoff in the future may be different due to
uncertainties from emission scenarios, climate forcing, and hydrological models. There-
fore, it is necessary to enrich the investigation on the changes in climate and hydrological
variables using the newly released CMIP6 GCMs for climate forcing.

The primary aim of this study was to explore the variations in climate and the re-
sponses of runoff regarding the pathway to achieving the goal of carbon neutrality using
the soil water assessment tool (SWAT) hydrological model and CMIP6 GCMs. Firstly, the
performance of the SWAT model and the reproducibility of a downscaled dataset from
CMIP6 GCMs was evaluated. Then, the changes in annual temperature and precipitation
were projected for the period 2021–2060 under two “double carbon” pathways. Following
them, the changes in annual runoff, monthly mean runoff, and extreme monthly runoff
in the source region of the Yellow River Basin were explored in sequence. The results
could support the safe operation of the Longyangxia Reservoir, rational water allocation,
and development of hydro–wind–solar energy in the Yellow River Basin with the goal of
achieving carbon neutrality.

2. Materials and Methodologies
2.1. Study Region

The Yellow River is the second largest river in terms of length in China. This study
focused on its source region (32◦12′–35◦48′ N, 95◦50′–103◦28′ E) located upstream of the
Tangnaihai hydrological gauging station. The area of the source region is approximately
13.0 × 104 km2, which accounts for 15% of the entire area of the Yellow River Basin. The
elevation varies from 2678 to 6253 m. Owing to its unique geographical location, the
Yellow River Basin serves as a regulator of the climate in China. The annual mean air
temperature, annual mean minimum air temperature, and mean maximum air temperature
varied from −3.7 to −1.1 ◦C, from −10.6 to −7.2 ◦C, and from 4.0 to 7.1 ◦C from 1961–2020,
respectively. They have risen at the rate of 0.3, 0.5, and 0.3 ◦C/10a (p < 0.001), respectively.
The annual mean precipitation varies from 357.0 to 677.6 mm in the study region, and it
has increased with an overall rate of 8.8 mm/10a (p < 0.1). Since 2000, it has increased at
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the rate of 54.8 mm/10a. Annual runoff is approximately 20.8 × 109 m3, which accounts
for approximately 35% of the total runoff in the Yellow River Basin. Floods occur mainly
from July to October, reflecting the distribution of precipitation throughout the year and
the extreme precipitation that occurs frequently during this period.

2.2. Dataset

In this study, spatial data of the Yellow River Basin, including digital elevation
model (DEM), land use, and soil type, were obtained online (http://westdc.westgis.ac.cn/)
(accessed on 5 July 2021). The resolution of the DEM was 1:250,000, and the spatial resolu-
tion of the land use data in 2005 was 1000 m. The soil data with 0.25◦ × 0.25◦ resolution were
obtained from a harmonized world soil database by the Food and Agriculture Organization
of the United Nations. These data were used in the setup of the SWAT hydrological model.
Observed daily meteorological data with 0.25◦ × 0.25◦ resolution (Figure 1) from 1961 to
2016 were obtained from the CN05.1 dataset, which was developed using climate data
observed at more than 2400 meteorological stations in China. First, the gridded climatology
was interpolated with the thin plate smoothing splines method, and the gridded anomaly
was derived with the angular distance weighing method. Then, the CN05.1 dataset was
developed by adding the gridded climatology and the anomaly. This dataset has been
used widely to assess the performance of climate models and to investigate the impact of
climate change in China [19,20]. In this study, the meteorological data of daily precipitation
and mean, maximum, and minimum air temperature from 1961 to 2014 were used to
calibrate the SWAT hydrological model, Climate simulation datasets from eight GCMS
(Table 1) for the period 1961–2014 for the historical experiment and for the period 2015–2100
under SSP1–2.6 and SSP2–4.5 were obtained from the National Climate Center [21]. They
represented statistically downscaled results with spatial disaggregation and bias correction
using an equal distance cumulative distribution function based on CMIP6 GCMs. The
results reproduced the spatial patterns of annual precipitation, annual temperature, and
extreme climatic events better than the raw simulations of the GCMs for the Yellow River
Basin [22], irrespective of comparison with a single model or with the multimodel ensemble
mean (MEM). The daily data of precipitation, maximum air temperature, and minimum
air temperature were used to force the SWAT model to project the changes in runoff and
extreme flow. This study used MEMs to represent the general projected changes in climate,
runoff, and flooding. Monthly observed runoff through the Tangnaihai hydrological station
from 1961–2020 were obtained from the Yellow River Resources Bureau. These data were
used to calibrate and verify the SWAT hydrological model.
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Table 1. General information of eight selected CMIP6 models.

ID Name Affiliated Country and Research Unit Atmos. Lat/Lon Grid (◦)

1 ACCESS–ESM–1–5
(ACESS)

Commonwealth Scientific and Industrial
Research Organisation (Australia) 1.2◦ × 1.8◦

2 BCC–CSM2–MR (BCC) Beijing Climate Center, China Meteorological
Administration (China) 1.1◦ × 1.1◦

3 CCCma–CanESM5
(CCCma)

Canadian Centre for Climate Modelling and
Analysis (Canada) 2.8◦ × 2.8◦

4 CNRM–ESM2–1
(CNRM)

Centre National de Recherches Météorologiques,
Centre Européen de Recherche et de Formation

Avancée en Calcul Scientifique (France)
1.4◦ × 1.4◦

5 HadGEM3–GC31–LL
(HadGEM) Met Office Hadley Centre (United Kingdom) 1.3◦ × 1.9◦

6 IPSL–CM6A–LR
(IPSL) Institut Pierre Simon Laplace (France) 1.3◦ × 2.5◦

7 MIROC6
(MIROC)

Japan Agency for Marine–Earth Science and
Technology, Atmosphere and Ocean Research
Institute (The University of Tokyo), National

Institute for Environmental Studies, and RIKEN
Center for Computational Science (Japan)

1.4◦ × 1.4◦

8 MPI–ESM1–2–HR
(MPI–ESM) Max Planck Institute for Meteorology (Germany) 0.9◦ × 0.9◦

2.3. Hydrological Model

In this study, the SWAT hydrological model was used to simulate runoff in the source
region of the Yellow River. The SWAT model is a physically based, semi-distributed
hydrological model developed by the United States Department of Agriculture Agricultural
Research Service [23]. Based on a digital elevation model, a watershed can be divided into
several subbasins, which can be further divided into hydrological response units based on
land use, soil type, and slope. The water balance is calculated for each hydrological response
unit, and the Soil Convention Service (SCS) runoff curve and the Penman–Monteith method
are used to simulate the surface runoff and evapotranspiration processes. The SWAT
model has been used to replicate processes such as surface runoff, groundwater, soil
temperature, soil moisture, generation and transport of sand, nutrient loss, and other
agricultural management processes [24–29].

The SWAT Calibration Uncertainty Program (SWAT–CUP) is a predefined program
that links the procedures of SUFI–2, PSO, MCMC, GLUE, and Parasol to the SWAT model.
This enables sensitivity analysis, calibration, validation, and uncertainty analysis of the
SWAT model. In this study, SUFI–2 was used to identify sensitive parameters and to
calibrate the SWAT model. We adopted the metrics of the coefficient of determination (R2),
Nash–Sutcliffe efficiency index (Ens), and percentage bias (PBIAS) for the evaluation of
model performance.

The metric of R2 was used to assess the temporal correlation between the simulations
and the observations. The R2 value can range from 0 to 1 and as the value of R2 becomes
closer to 1, the model becomes more accurate. The metric of Ens was used to assess the
predictive power of the hydrological model. The Ens value can range from −∞ to 1. The
prediction is worse than the observed mean if Ens less than 0. The prediction is as accurate
as the observed mean if the value is 0, and as the value of Ens becomes closer to 1, the model
becomes more accurate. PBIAS was used to measure the average tendency of the simulation
to be larger or smaller than the observation relative to the observation throughout the period
assessed. The optimal value is 0, with low-magnitude values indicating accurate model
simulation. Positive (negative) values indicate the overestimation (underestimation) bias of
the model. Generally, if Ens is greater than 0.50, R2 is greater than 0.6, and PBIAS is within
±25% for the calibration period (1961–1989) and the validation period (1990–2015), the
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hydrological model is judged to be satisfactory and may be used to simulate runoff in the
study area [30,31]. The formulas for the calculation of Ens, R2, and PBIAS are as follows:

Ens = 1− ∑n
i=1(Qobs,i −Qsim,i)

2

∑n
i=1

(
Qobs,i −Qobs

)2 (1)

R2 =

[
∑n

i=1
(
Qobs,i −Qobs

)(
Qsim,i −Qsim

)]2

∑n
i=1

(
Qobs,i −Qobs

)2
∑n

i=1
(
Qsim,i −Qsim

)2 (2)

PBIAS = 100× ∑n
i=1 Qsim,i −∑n

i=1 Qobs,i

∑n
i=1 Qobs,i

(3)

where Qobs and Qsim are the observed and the simulated monthly runoff, respectively,
Qobs and Qsim are the mean of observed and simulated monthly runoff series, respec-
tively, i is month, and n is the length of monthly runoff series during the calibration or
validation period.

2.4. Reproducibility Assessment of Climate Dataset

The seasonal patterns of temperature and precipitation simulation by the downscaled
dataset were compared with the observations for every month in terms of the MEM of the
eight GCMs from 1961 to 2014, which included all the years of the downscaled dataset.

2.5. Runoff Projection

China is committed to the goal of achieving carbon neutrality by 2060. Here, climate
change compared to the base period (1995–2014) was projected based on the downscaled
climate from the eight CMIP6 GCMS for 2021–2060 under the SSP1–2.6 and SSP2–4.5
scenarios. Then, the changes in runoff were projected for the same period, the first half
of the period (2021–2040), and the second half of the period (2041–2060) under the two
scenarios. The projected metrics included annual mean temperature, annual precipitation,
annual runoff, the percentage of monthly runoff to annual runoff, extreme monthly low
flow (Q90), and extreme monthly high flow (Q10) [32,33]. The proportion of monthly runoff
in the annual runoff is the percentage of monthly runoff to the annual total runoff. Q90
and Q10 represent the monthly flow exceeding 90% and 10% during the entire period
investigated, respectively. The seasonal patterns of mean and extreme monthly runoff were
further analyzed for the flood season (June to August), water storage season (September
to November), and dry season (December to May), which are delimited according to
the regulations for water resource management and reservoir regulation in the Yellow
River Basin.

Droughts are the result of precipitation shortage over a long period, while floods are
the result of excessive precipitation. When hydrological droughts happen, low monthly
streamflow is usually observed, but when floods happen high monthly streamflow is
usually observed. The changes in Q90 and Q10 were used to represent the changes in the
risk of drought and flooding.

3. Results
3.1. Calibration and Validation of the SWAT Model

As listed in Table 2, Ens was 0.76, R2 was 0.86, and PBIAS was smaller than 10% for the
periods of calibration and validation (Table 2). Thus, it was judged that the performance
of the SWAT model is satisfactory in simulating monthly runoff through the Tangnaihai
hydrological station according to the criteria adopted for the evaluation of the hydrological
model. The seasonal pattern of the simulated runoff matches that of the observations during
the two periods well, whereas the extremely high monthly flows were underestimated
(Figure 2). To reduce the bias impact of the extremes to some degree, the changes in runoff
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relative to the base period were explored using the calibrated SWAT model forced by the
downscaled climate datasets of the eight CMIP6 GCMs.

Table 2. Evaluation of the SWAT model in terms of monthly runoff through the Tangnaihai hydrolog-
ical station in the Yellow River Basin.

Station Period R2 Ens PBIAS (%)

Tangnaihai

Calibration
(1961–1989) 0.86 0.76 6.2

Verification
(1990–2015) 0.86 0.76 6.3
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3.2. Reproducibility Assessment of Climate Dataset

The MEMs of the eight CMIP6 GCMs were compared with the observations to assess
the simulation performance of the downscaled dataset. The observations showed that
the average annual air temperature in the source region of the Yellow River Basin from
1961–2014 was approximately −2.6 ◦C and that it rose at the rate of 0.35 ◦C/10a (p < 0.05).
The average annual precipitation was 540.7 mm, and it increased at the rate of 8.8 mm/10a
(p < 0.01). The warming and wetting trend in the source region of the Yellow River Basin
is obvious. The MEMs of the downscaled data reproduced the warmer and wetter trends
from 1961–2014 but simulated a cold bias of −0.2 ◦C and a wet bias of 3%. Additionally, the
downscaled dataset reproduced the seasonal pattern of both temperature and precipitation
(Figure 3). Similar to the observations, the simulated monthly temperature was high and
the simulated precipitation was abundant in the rainy season (May to September) but the
temperature was lower and the largest amount of precipitation was smaller in other months.
The peak temperature and the largest amount of precipitation observed in July were also
well reproduced. Thus, it was considered that the ensemble mean of the downscaled dataset
is suitable for simulating both precipitation and temperature in the study region and for
projecting runoff change by forcing the SWAT hydrological model for the study area.

3.3. Changes in Climatic Variables

Figure 4 illustrates the warming and wetting trends from 2021–2060 under the SSP1–2.6
and SSP2–4.5 scenarios in the source region of the Yellow River (Figure 4). The MEM annual
air temperature was projected to rise at the rate of 0.2 and 0.3 ◦C/10a under the SSP1–2.6
and SSP2–4.5 scenarios, respectively. The multiyear mean annual air temperature was
expected to rise by 1.1 and 1.2 ◦C for the first half of the period, by 1.5 and 1.9 ◦C for
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the second half of the period, and by 1.3 and 1.6 ◦C for 2021–2060 under the SSP1–2.6
and SSP2–4.5 scenarios, respectively (Figure 5a). Spatially, the MEM annual temperature
was projected to rise faster in the southeast of the study region than in the northwest
(Figure 6a,b). However, the magnitude of the mean rise will be different among the eight
GCMs for 2021–2060. The annual temperature was projected to rise fastest by the CCCma
model under the SSP1–2.6 scenario but to rise slowest by the BCC and MPI–ESM models
under the SSP1–2.6 scenario and by the MPI–ESM model under the SSP2–4.5 scenario. The
largest and smallest magnitude of the projected rise in annual air temperature will be 2.2
and 0.8 ◦C, respectively.
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Figure 6. The spatial distribution of change in ensemble annual (a,b) air temperature (unit: ◦C) and
(c,d) precipitation (unit: %) in the source region of the Yellow River Basin from 2021–2060 under
two scenarios.

Annual precipitation was projected to increase at the rate of 6.0 and 12.0 mm/10a
from 2021–2060 under the SSP1–2.6 scenario and the SSP2–4.5 scenario, respectively. The
multiyear mean annual precipitation was projected to increase by 9.9% (SSP1–2.6 scenario)
and 9.2% (SSP2–4.5 scenario) for the first half of the period (2021–2040), by 12.5% (SSP1–2.6
scenario) and 13.3% (SSP2–4.5 scenario) for the second half of the period (2041–2060), and
by 11.1% and 11.2% for 2021–2060 under the SSP1–2.6 scenario and the SSP2–4.5 scenario,
respectively (Figure 5b). Spatially, the MEM of the annual precipitation will increase by
less than 15.0% in central and southeastern parts of the study area, while it will decrease by
more than 15.0% in the northwest from 2021–2060 (Figure 6c,d). Moreover, uncertainties in
the changes in precipitation associated with the GCMs and the SSP–RCP scenarios were
projected (Figure 4b). Under the two scenarios, the multiyear mean annual precipitation
will increase fastest by the CCCma and CNRM models, i.e., at a rate of 18.4–25.5%, but it
was projected to increase by less than 15.0% by the other GCMs.

3.4. Variation of Annual Runoff

Figure 7 shows the variations in multiyear mean and decadal mean annual runoff for
2021–2060 under the two lower scenarios. The MEM multiyear mean annual runoff for
2021–2060 was expected to increase by 12.8% and 11.9% under the SSP1–2.6 scenario and
the SSP2–4.5 scenario, respectively (Figure 7a). It was projected to increase by most GCMs,
especially the CCCma, CNRM, and HadGEM models, but it was projected to decrease by
the IPSL model (Figure 7b). The decadal mean was projected to fluctuate from the 2020s
to the 2050s. It was projected to decrease by the IPSL and BCC models from the 2020s to
the 2050s under both scenarios and by the IPSL model from 2051–2060 under the SSP2–4.5
scenario, whereas it was projected to increase by the ACESS, CCCma, CNRM, HadGEM,
MPI–ESM, and MIROC models under both scenarios. The MEM decadal mean runoff was
projected to increase by 15.2% and 14.1% in the 2040s and the 2050s, respectively, under
the SSP1–2.6 scenario, whereas it was projected to increase by only 10.1–11.5% in other
decades. In each decade from the 2020s to the 2050s, it was projected to increase by 9.9%,
10.9%, 11.9%, and 12.9%, respectively, under the scenario of SSP2–4.5. Overall, against the
background of global warming, simulated runoff shows a varying trend of increase under
the two SSP scenarios, and the degree of increase in runoff was expected to be greater under
the low SSP scenario than under the high SSP scenario.
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Figure 7. Expected changes in ensemble mean (a) annual runoff for 2021–2060 and (b) decadal mean
annual runoff relative to 1995–2014 in the source region of Yellow River under the two scenarios.

3.5. Variation in Monthly Runoff

Figure 8 shows the changes in monthly runoff for 2021–2060 and for the first and
second half of the period under the SSP1–2.6 and SSP2–4.5 scenarios. The MEM monthly
runoff was projected to be larger than the baseline runoff in all months in both halves of the
period. The MEM monthly runoff was expected to increase faster in the second half of the
period than in the first half of the period, i.e., an increase of 14.6% and 11.0%, respectively.
Large uncertainties are also evident among the 12 months and the eight GCMs. The MEM
runoff was projected to increase by 46.4–93.8% in March and April, but by only 3.9–15.2%
during the period from May to September. Moreover, runoff was projected to decrease by
1.7–15.5% by the ACESS, BCC, IPSL, and MPI–ESM models during the period from May to
July but projected to increase by the other models.
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Figure 8. Projected changes (unit: %) in monthly runoff in the source region of the Yellow River Basin
for 2021–2060 relative to 1995–2014 under (a) the SSP1–2.6 scenario and (b) the SSP2–4.5 scenario.

Figure 9 shows the changes in proportional monthly runoff of the annual total for
2021–2060 and for the first half and second half of the period under the SSP1–2.6 and
SSP2–4.5 scenarios. Matching the changes in monthly runoff, the proportion of runoff was
projected to increase by 0.1–1.0% from January to May and from September to December
for both periods under both scenarios but was projected to decrease by 0.9–1.1% and by
0.7–1.2% from June to August for most GCMS under the SSP1–2.6 scenario and the SSP2–4.5
scenario, respectively.
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Figure 9. Projected changes (unit: %) in the percentage of monthly runoff to annual runoff for the
source region of the Yellow River Basin for 2021–2060 relative to 1995–2014 under (a) the SSP1–2.6
scenario and (b) the SSP2–4.5 scenario.

In conclusion, the seasonal distribution of runoff was projected to be flatter in the
source region of the Yellow River from 2021–2060, which would likely alleviate water
scarcity in the dry and water storage seasons to some degree.

3.6. Variation in Extreme Runoff

Figure 10 shows the changes in extreme monthly high flow and low flow for 2021–2060
under the two scenarios. Extremely high monthly flow was expected to increase by
3.5–12.7% in the flood season and by 13.3–13.4% in the water storage season under both
scenarios, whereas the extreme high flow in the dry season decreased by 2.3–23.1% un-
der the two scenarios. Extremely low flow was projected to increase by 19.4–26.2% from
February–April but to decrease by 5.0–8.9% in January, May, and December. This suggests
that global warming will increase the flood risk in the flood and water storage seasons and
increase the drought risk in January, May, and December, while a reduced drought risk will
still exist in the dry season.
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4. Discussion
4.1. Hydrological Responses to Climate Change

The projection of water inflow and extreme hydrological events is important for the
water resource security in the source region of the Yellow River Basin and even for the entire
basin. A trend of a warmer and wetter climate and an increasing trend of annual runoff
were projected in the study area for 2021–2060 under the SSP1–2.6 and SSP2–4.5 scenarios.
The warming trend found in this study coincides with the warming for 2020–2059 relative
to 1976–2015 under the scenarios of RCP 2.6, 4.5, and 8.5 based on eight CMIP5 GCMs. The
wetter trend for this region, also found in this study, coincides with the trend found in this
region under RCP 2.6, 4.5, and 8.5 based on CMIP5 GCMs [14] and the findings based on
12 CMIP6 GCMs under the SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5 scenarios [17]. The
trend of increase in annual runoff found in this study is in accordance with some previous
studies [18,34] but in contrast to the trend of decrease reported in another research [14]. In
the study area, monthly runoff was projected to increase in most months, and to increase
by a greater magnitude in March and April than in other months. This could be attributed
to the expectation of more precipitation and more meltwater under the condition of global
warming [35], because glaciers and frozen soil cover parts of the study area. It is even
indicated that thawing permafrost will inevitably release large volumes of water that
could recharge surface and underground runoff in the dry season, and that advancement
of the snowmelt period will change the schedule of runoff recharge in spring [36–39].
Conversely, rising temperatures will cause the increase in evapotranspiration that will
consequently reduce runoff. The mechanism of melting of glaciers and frozen soil and
the attribution of runoff change could be important topics for further study. Additionally,
continued implementation of ecological protection projects will substantially increase the
vegetation coverage in the study region, which could effectively change the runoff and
have a long-term impact. The future changes in runoff caused by these factors should be
further investigated and considered in regional developments in the source region of the
Yellow River Basin.

4.2. Uncertainties of Projections

The degree of variation in the projected temperature and precipitation differed among
the eight GCMs and between the two scenarios. Larger uncertainties in both the magnitude
and the direction of change in runoff were projected because of the nonlinear responses of
runoff to climate change. Interestingly, the opposite change in summer was projected in a
previous study [40], which reported that runoff was expected to diminish from 2011–2050
relative to 1971–2010 under the RCP 2.6, 4.5, and 8.5 scenarios based on the VIC hydrological
model and CMIP5 GCMs. Additionally, the study also projected more severe droughts from
February–April but less severe droughts in January, May, and December. This conclusion
is somewhat different from that of a previous study [41], which indicated that reductions
in the duration and intensity of meteorological drought were expected in the source area
of the Yellow River using an ensemble of CMIP5 GCMs and the Palmer drought severity
index. Differences in the structure of GCMs, ensemble members of multiple GCMs, base
periods, data used for model initial conditions, and downscaling methods can produce
different results.

It is indicated that the uncertainties in the projections of runoff originate from each link
in the simulation chain, including the selected SSP–RCP scenarios, GCMs, downscaling
methods, hydrological models, and model parameterization [42–44]. In this study, the un-
certainties related to the structure of GCMs and the emission scenarios were investigated by
considering eight GCMs and two SSP–RCP scenarios. Furthermore, the MEMs of the eight
selected GCMs were calculated to reduce the uncertainties of the projected variables, and
recent research has demonstrated that different weighting sets of multiple models might
improve the simulation performance, which is a subject that should be further explored [45].
Additionally, the SWAT model can simulate seasonal patterns of runoff. Therefore, projec-
tions based on the SWAT model have the potential for providing water resource managers
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and policymakers with valuable information. However, it remains important to explore
the uncertainties associated with the downscaling method, hydrological structure, and
parameters used in the simulations. Uncertainty attribution is an interesting topic that
has been explored in a previous study [46] and is worth discussing further concerning
different regions.

However, high flows were underestimated by the SWAT model in this study. This
suggests that there is space to improve the parametrization of SWAT in the study area.
Previous research also showed that high monthly flows through the Tangnaihai station
were either underestimated or overestimated to some degree in different years by the
SWAT model [47,48], while floods through the station were underestimated by the SWAT
model [46]. Although bias and uncertainties exist, SWAT model is still a popular tool
to investigate the hydrological response to climate change as well as land cover change
historically or in the future, (e.g., [25,27,33,45,48]).

5. Conclusions

Water resource availability and hydrological disaster risk, which are the key issues
in the source region of the Yellow River Basin, have already been and will continue to be
affected by climate change. This study projected the impact of climate change on runoff in
the source region of the Yellow River Basin with the goal of achieving carbon neutrality.

The climate is projected to become warmer and wetter from 2021–2060 under both
the SSP1–2.6 scenario and the SSP2–4.5 scenario. The MEM of annual air temperature
is projected to rise by 1.3–1.6 ◦C, and annual precipitation is projected to increase by
11.1–11.2%. However, the magnitude of the projected increase varies among the eight
CMIP6 GCMs and between the two scenarios considered in this study. The largest increase
in annual temperature is projected to be 2.2 and 2.6 ◦C by the CCCma model under the
SSP1–2.6 scenario and the SSP2–4.5 scenario, respectively, and the smallest increase is
projected to be 0.8 ◦C by the BCC and MPI–ESM models under the SSP1–2.6 scenario
and by the MPI–ESM model under the SSP2–4.5 scenario. The largest increase in annual
precipitation is projected to be 25.5% by the CNRM model. However, the increase in annual
precipitation is projected to be less than 15.0% for most models.

The amount of annual runoff is expected to increase and the seasonal pattern of runoff
is projected to change. The MEM of annual runoff is expected to increase by 12.6% and
11.8% under the SP1–2.6 scenario and SSP2–4.5 scenario, respectively. However, notable
decadal fluctuation is projected. The largest increasing magnitudes will be up to 14.1–15.2%
in the 2040s and the 2050s. Under the background of annual runoff increase, the seasonal
pattern is projected to change slightly. The proportion of runoff is generally projected to
decrease in the flood season and increase in the dry season, especially under the SSP1–2.6
scenario. Such changes would alleviate water stress in the source region of the Yellow River
to some degree.

The projections also indicate a higher risk of flooding in the flood and water storage
seasons but a higher risk of drought in January, May, and December. Extremely high
monthly flow is projected to increase by 3.5–13.4% in the flood and water storage seasons,
and extreme low flow is projected to increase by 19.4–26.2% from February–April but
to decrease in January, May, and November. However, water resource managers should
be cautious when using the projected changes in flooding based on Q10 because of the
underestimation of extremely high monthly flow.

In conclusion, the source region of the Yellow River Basin will experience a warmer
and wetter climate in the coming 40 years. Water availability will increase in all months.
There will be a higher risk of flooding in the flood season but a lower risk of drought
from February to April. Generally, the flatter pattern of runoff would likely alleviate water
scarcity in the dry and the water storage seasons to some degree, and the increase in
monthly runoff in water storage season will benefit hydroelectric power generation and
agriculture and animal husbandry production. However, in some years, the increase in
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Q10 in the flood season will likely increase flood prevention pressure, and the decrease in
Q90 in May will likely obstruct grass revival.
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