Sustainability of High-Density Olive Orchards: Hints for Irrigation Management and Agroecological Approaches
Abstract
:1. Introduction
2. The Olive Orchard Mosaic
2.1. The Traditional Olive Orchards
2.2. The Medium-Density Olive Orchards
2.3. The High- (HD) and Super-High-Density (SHD) Olive Orchards
3. Water Management
3.1. Water Use and Irrigation Requirements
3.2. Irrigation Strategies
3.2.1. Sustained Deficit Irrigation
3.2.2. Regulated Deficit Irrigation
- From the last stages of floral development to full bloom, normally in mid-April, when water stress can affect flower fertilization.
- At the end of the first stage of fruit development, normally in June, when water stress causes reductions in fruit size.
- After the midsummer period, normally from late August to mid-September, when a marked increase in oil accumulation occurs.
3.2.3. Partial Rootzone Drying
DI Strategy | Cultivar | Location | Annual Rainfall (mm) | Orchard Type | Irrigation Treatments | Main Results | Reference |
---|---|---|---|---|---|---|---|
SDI | Arbequina | California, USA | 533 (3-year average during the experiment) | 30-month commercial orchard (1709 trees ha−1) | 7 treatments: 1–15 (28), 2–25 (33), 3–40 (55), 4–57 (75), 5–71 (93), 6–89 (117), and 7–107 (140)% ETc (1) (SDI in treatments 1 to 6 and 1 to 5 in the first and second year of the trial, respectively) | SDI treatments of 70–75% ETc did not reduce oil yields significantly; sustained season-long irrigation deficit of approximately 33–40% ETc maximized oil quality (chemical parameters, flavor, and stability). | Berenguer et al. (2004) [73] Grattan et al. (2006) [74] |
SDI | Cobrançosa | Vilariça Valley, Portugal | 520 | 10-year-old commercial orchard (278 trees ha−1) | 3 treatments: R 30% ETc (SDI) FI | With SDI treatment, the oil yield increased to more than double that of rainfed conditions; 25% oil yield reduction in SDI compared to FI. | Fernandes-Silva et al. (2010) [82] |
SDI | Frantoio | Venturina, Italy | 635 | 10-year-old experimental orchard (513 trees ha−1) | 3 treatments: FI 46–52% ETc (SDI) 2–6% ETc (SI) | The fruit yield of the SDI trees was 68% of that of FI; the fruit sets and numbers of fruits of the FI trees were similar to those of SDI trees and significantly higher than the SI trees; the oil yield of the DI treatment was 82% that of FI trees. | Caruso et al. (2013) [117] |
SDI and RDI | Picual | Cordoba, Spain | 602 | 18-year-old experimental orchard (278 trees ha−1) | 5 treatments: FI 75% ETc and no irrigation from mid-July to mid-September (RDI) 75% ETc (SDI) Adaptation to alternate bearing habit: R during years of few or no crops and FI during heavy crop years R | Responses to deficits were similar for SDI and RDI; yield responses to FI during the bearing year and R in the nonbearing year were less favorable than those observed in SDI and RDI. | Moriana et al. (2003) [81] |
SDI and RDI | Arbequina | Cordoba, Spain | 502 (3-year average during the experiment) | 12-year-old experimental orchard (408 trees ha−1) | 3 treatments: FI 25% IWR (SDI) 25% IWR and no irrigation in midsummer (RDI) | RDI and SDI caused higher reductions in fresh fruit yield than oil yield due to a higher oil concentration in deficit-irrigated trees | Iniesta et al. (2009) [100] |
SDI and RDI | Koroneiki | Nicosia, Cyprus | 428 | 17-year-old commercial orchard (278 trees ha−1) | 2 treatments: 70% ETc (SDI) 70% ETc ② → 35% ETc MS → 70% ETc ③ → 35% ETc during maturity (RDI) | No significant differences between the two irrigation treatments were found in terms of morphology, physiology, fruit yield, or oil quality; water productivity was 1.4 and 1.0 kg oil m−3 in SDI and RDI, respectively. | Siakou et al. (2021) [78] |
RDI | Arbequina | Seville, Spain | 534 | 4-year-old commercial orchard (1667 trees ha−1) | 3 treatments: FI 60% IWR ② → 10% IWR MS → 30% IWR ③ (RDI1) 80% IWR ② → 20% IWR MS → 100% IWR ③ (RDI2) | RDI1 treatment showed the best balance between water saving (72%), tree vigor, and oil yield (26% reduction) when compared to FI. | Fernández et al. (2013) [102] |
RDI | Arbequina | Toledo, Spain | 395 | 10-year-old commercial orchard (1250 trees ha−1) | 4 treatments: FI 30% IWR in July and FI in the remaining growth period (RDI1) 30% IWR in August and FI in the remaining growth period (RDI2) 50% IWR in July and August and FI in the remaining growth period (RDI3) | FI trees produced more oil and fruit with higher oil percentages than RDI trees; the oil yield with RDI1 was not significantly reduced compared with FI and the oil percentage was higher; RDI1 was the most effective strategy, with 16% less water applied relative to FI. | Gómez-del-Campo (2013) [75] |
RDI | Arbequina | Pencahue Valley, Chile | 620 | 6-year-old commercial orchard (1333 tress ha−1) | 4 treatments: FI Irrigation cut-off from fruit set until Ψstem = −3.5 MPa (RDI1) Irrigation cut-off from fruit set until Ψstem = −5.0 MPa (RDI2) irrigation cut-off from fruit set until Ψstem = −6.0 MPa (RDI3) | Fruit yield, fruit weight, and fruit diameter decreased in RDI2 and RDI3; total oil content and pulp/stone ratio were not affected by the different irrigation strategies; RDI treatments averaged 83% to 53% of applied water compared with FI. | Ahumada-Orellana et al. (2017) [104] |
PRD | Picholine marocaine | Station Saada, Morocco | 250 | 13-year-old experimental orchard (278 tress ha−1) | 4 treatments: FI (100% ETc on both sides of the trees) 50% ETc on one side, switching every irrigation (PRD1) 50% ETc on one side, switching every two-irrigation (PRD2) 100% ETc on one side, switching every irrigation (PRD3) | Slight yield reduction (15–20%) under PRD1 and PRD2 was mainly due to a decrease in fruit number; oil percentage and oil acidity in the fruits did not show any significant differences between PRD treatments and the control; water use efficiency increased (60–70%) under PRD1 and PRD2 treatments. | Wahbi et al. (2005) [114] |
PRD | Chemlali | Sfax, Tunisia | 220 | 9-year-old experimental orchard (625 trees ha−1) | 4 treatments: FI (100% ETc on both sides of the trees) 50% ETc on one side, switching every 15 days (PRD1) 50% ETc on one side, switching every 30 days (PRD2) R | PRD2 achieved a slight cumulative yield reduction (11%) compared to FI while applying half of the irrigation quantity; oil content showed an improvement with increasing deficits. | Ghrab et al. (2013) [115] |
PRD | Arbequina, Arbosana, and Chetoui | Sidi Bouzid, Tunisia | 240 | 11-year-old commercial orchard (1250 trees ha−1) | 4 treatments: FI (100% ETc on both sides of the trees) 100% ETc on one side, switching every 2-weeks (PRD1) 75% ETc on one side, switching every 2-weeks (PRD2) 50% ETc on one side, switching every 2-weeks (PRD3) | Shoot length was lower under PRD irrigation treatments, mainly for Arbequina and Chetoui; reducing irrigation volumes by 25% and 50% with PRD strategy compared to the control increased oil yield and water productivity, mainly for Arbequina cultivar, without significant reductions in yield components. | Abboud et al. (2019) [116] |
4. Agroecological Practices
4.1. Non-Tillage, Cover Crops and Herbicide Reduction
4.2. Pruning Biomass Recycling
Soil Factor | Tillage | Pruning Residues | Herbicide | Cover Crops | Organic Farming | Main Results | Reference |
---|---|---|---|---|---|---|---|
Erosion | + | − | +A −P | − | +T −NT | Cover crops can reduce soil loss by more than 92% compared with tillage. The annual water runoff increased with tillage (highest runoff: tillage or full herbicide coverage; lowest runoff: cover crops and pruning residues). | Repullo−Ruibérriz de Torres et al. [139] Novara et al. [51] |
Resistance to penetration | + | − | = | − | +T –NT | With cover crops, the compaction decreased at a depth of 0.3 m. Tillage reduced compaction just at the first 0.1 m of depth. Water availability improved in the soil with cover crops. However, the infiltration rate decreased. | Sastre et al. [140] |
Water evaporation | − | − or = | −A =P | + | –T +NT | Cover crops increased the water consumption compared with tillage. | Novara et al. [51] |
Pesticide accumulation | = | = | + | = | +Cu – Other | Total Cu in olive orchard and vineyard soils is about 5–10 times the concentration found in forest soils. Organic vs. integrated pest management: the use of fewer pesticides, but more cooper fungicides, is recommended. | Viti et al. [141] Miloš and Bensa [142] |
Biodiversity | − | = | − | + | –T +NT | Tillage and herbicides decrease soil biodiversity. Tillage reduces the abundance of microarthropods. | Sánchez−Moreno et al. [124] Vignozii et al. [131] Velázquez−Martí et al. [143] Repullo et al. [136] |
Organic matter and carbon accumulation | − | + | − | + | –T +NT | Tillage negatively affected soil organic carbon pools in the interrow. Cover crops vs. bare soil: increase of 1.23–1.34 t C ha−1 year−1. Pruning residues vs. removal: increase of 1–2 t C ha−1 year−1. | |
Nitrogen accumulation | − | + | − | + | –T +NT | The N in pruned residues from a SHD orchard was 59 kg ha−1. The N contained in fruits was 7 kg t−1. | Zipori et al. [144] |
Waterlogging | + | − or = | = | − | +T −NT | The olive trees survived if soil salinity was <4 dS m−1. Wet flat land increased tree mortality due to hypoxia. Ridge plantation can prevent this. | Aragüés et al. [145] |
Diseases | + | − or = | − | − | +T −NT | Tillage vs. cover crops or herbicides: verticillium wilt increased. Drip irrigation increased verticillium wilt. | Calderón et al. [127] López−Escudero and Blanco−López [146] |
4.3. Adaptation of Cultivars
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. FAOSTAT Production Data: Crop and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 31 October 2022).
- Instituto Nacional de Estatística. Recenciamento Agrícola. Análise dos Principais Resultados: 2019; INE: Lisboa, Portugal, 2021; ISBN 978-989-25-0562-6. [Google Scholar]
- Yorulmaz, A.; Erinc, H.; Tekin, A. Changes in Olive and Olive Oil Characteristics during Maturation. J. Am. Oil Chem. Soc. 2013, 90, 647–658. [Google Scholar] [CrossRef]
- Garcia, J.M.; Seller, S.; Perez-Camino, M.C. Influence of Fruit Ripening on Olive Oil Quality. J. Agric. Food Chem. 1996, 44, 3516–3520. [Google Scholar] [CrossRef]
- Motilva, M.J.; Tovar, M.J.; Romero, M.P.; Alegre, S.; Girona, J. Influence of Regulated Deficit Irrigation Strategies Applied to Olive Trees (Arbequina cultivar) on Oil Yield and Oil Composition during the Fruit Ripening Period. J. Sci. Food Agric. 2000, 80, 2037–2043. [Google Scholar] [CrossRef]
- Dag, A.; Kerem, Z.; Yogev, N.; Zipori, I.; Lavee, S.; Ben-David, E. Influence of Time of Harvest and Maturity Index on Olive Oil Yield and Quality. Sci. Hortic.-Sci Hort-Amst. 2011, 127, 358–366. [Google Scholar] [CrossRef]
- Maaitah, M.; Al-Absi, K.; Al-Rawashdeh, A. Oil Quality and Quantity of Three Olive Cultivars as Influenced by Harvesting Date in the Middle and Southern Parts of Jordan. Int. J. Agr. Biol. 2009, 1, 266–272. [Google Scholar]
- Dag, A.; Harlev, G.; Lavee, S.; Zipori, I.; Kerem, Z. Optimizing Olive Harvest Time under Hot Climatic Conditions of Jordan Valley, Israel. Eur. J. Lipid Sci. Technol. 2014, 116, 169–176. [Google Scholar] [CrossRef]
- Lavee, S.; Wodner, M. The Effect of Yield, Harvest Time and Fruit Size on the Oil Content in Fruits of Irrigated Olive Trees (Olea europaea), Cvs. Barnea and Manzanillo. Sci. Hortic. 2004, 99, 267–277. [Google Scholar] [CrossRef]
- Polari, J.J.; Juan, J.P.; Polari, J.J.; Lauren, M.C.; Crawford, L.M.; Crawford, L.M.; Wang, S.C. Cultivar Determines Fatty Acids and Phenolics Dynamics for Olive Fruit and Oil in Super-High-Density Orchards. Agronomy 2021, 11, 313. [Google Scholar] [CrossRef]
- Carr, M. The Water Relations and Irrigation Requirements of Olive (Olea europaea L.): A Review. Exp. Agric. 2013, 49, 597–639. [Google Scholar] [CrossRef]
- Arbizu-Milagro, J.; Castillo-Ruiz, F.J.; Tascón, A.; Peña, J.M. How Could Precision Irrigation Based on Daily Trunk Growth Improve Super High-Density Olive Orchard Irrigation Efficiency? Agronomy 2022, 12, 756. [Google Scholar] [CrossRef]
- Martín-Gimeno, M.A.; Zahaf, A.; Badal, E.; Paz, S.; Bonet, L.; Pérez-Pérez, J.G. Effect of Progressive Irrigation Water Reductions on Super-High-Density Olive Orchards According to Different Scarcity Scenarios. Agric. Water Manag. 2022, 262, 107399. [Google Scholar] [CrossRef]
- Lo Bianco, R.; Proietti, P.; Regni, L.; Caruso, T. Planting Systems for Modern Olive Growing: Strengths and Weaknesses. Agriculture 2021, 11, 494. [Google Scholar] [CrossRef]
- Massenti, R.; Ioppolo, A.; Veneziani, G.; Selvaggini, R.; Servili, M.; Lo Bianco, R.; Caruso, T. Low Tree Vigor, Free Palmette Training Form, and High Planting Density Increase Olive and Oil Yield Efficiency in Dry, Sloping Areas of Mediterranean Regions. Horticulturae 2022, 8, 817. [Google Scholar] [CrossRef]
- Camposeo, S.; Vivaldi, G.A.; Russo, G.; Melucci, F.M. Intensification in Olive Growing Reduces Global Warming Potential under Both Integrated and Organic Farming. Sustainability 2022, 14, 6389. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.; Fereres, E.; Raes, D. Crop Yield Response to Water; Food and Agriculture Organization of the United Nations, Ed.; FAO irrigation and drainage paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; ISBN 978-92-5-107274-5. [Google Scholar]
- Connor, D. Adaptation of Olive (Olea europaea L.) to Water-Limited Environments. Aust. J. Agric. Res.-Aust. J. Agr. Res. 2005, 56, 1181–1189. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.P.; Zhai, H.-O.; Pörtner, D.; Roberts, J.; Skea, P.R.; Shukla, A.; Pirani, W.; Moufouma-Okia, C.; Péan, R.; Pidcock, S.; et al. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; 616p. [Google Scholar] [CrossRef]
- Branquinho, S.; Rolim, J.; Teixeira, J.L. Climate Change Adaptation Measures in the Irrigation of a Super-Intensive Olive Orchard in the South of Portugal. Agronomy 2021, 11, 1658. [Google Scholar] [CrossRef]
- Falkenmark, M.; Finlayson, M.; Gordon, L.; Bennett, E.; Chiuta, T.M.; Coates, D.; Ghosh, N.; Gopalakrishnan, M.; De Groot, R.S.; Jacks, G.; et al. Agriculture, water, and ecosystems: Avoiding the costs of going too far. In Water for Food Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Taylor & Francis: London, UK, 2007; pp. 233–277. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking Soils to Ecosystem Services—A Global Review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Silveira, A.; Ferrão, J.; Muñoz-Rojas, J.; Pinto Correia, T.; Guimarães, M.H.; Schmidt, L. The Sustainability of Agricultural Intensification in the Early 21st Century: Insights from the Olive Oil Production in Alentejo (Southern Portugal). In Changing Societies: Legacies and Challenges. Vol. iii. The Diverse Worlds of Sustainabilit; Delicado, A., Domingos, N., de Sousa, L., Eds.; Imprensa de Ciências Sociais: Lisbon, Portugal, 2018; pp. 247–275. [Google Scholar]
- Guerrero-Casado, J.; Carpio, A.J.; Tortosa, F.S.; Villanueva, A.J. Environmental Challenges of Intensive Woody Crops: The Case of Super High-Density Olive Groves. Sci. Total Environ. 2021, 798, 149212. [Google Scholar] [CrossRef]
- Soriano, M.-A.; Álvarez, S.; Landa, B.B.; Gómez, J.A. Soil Properties in Organic Olive Orchards Following Different Weed Management in a Rolling Landscape of Andalusia, Spain. Renew. Agric. Food Syst. 2014, 29, 83–91. [Google Scholar] [CrossRef]
- Beaufoy, G. Reflections from an External Evaluator on the Future of Olive Production Systems on Sloping Land. J. Environ. Manag. 2008, 89, 140–142. [Google Scholar] [CrossRef]
- Duarte, F.; Jones, N.; Fleskens, L. Traditional Olive Orchards on Sloping Land: Sustainability or Abandonment? J. Environ. Manag. 2008, 89, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.-E. Understanding Olive Adaptation to Abiotic Stresses as a Tool to Increase Crop Performance. Environ. Exp. Bot. 2014, 103, 158–179. [Google Scholar] [CrossRef] [Green Version]
- Haworth, M.; Marino, G.; Brunetti, C.; Killi, D.; De Carlo, A.; Centritto, M. The Impact of Heat Stress and Water Deficit on the Photosynthetic and Stomatal Physiology of Olive (Olea europaea L.)—A Case Study of the 2017 Heat Wave. Plants 2018, 7, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brito, C.; Dinis, L.-T.; Moutinho-Pereira, J.; Correia, C.M. Drought Stress Effects and Olive Tree Acclimation under a Changing Climate. Plants 2019, 8, 232. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, G.; Montes-Borrego, M.; Gramaje, D.; Benítez, E.; Gómez, J.A.; Landa, B.B. Cover Crops as Bio-Tools to Keep Soil Biodiversity and Quality in Slopping Olive Orchards. In Proceedings of the 20th EGU General Assembly, Procceedings from the Conference, Viena, Austria, 4–13 April 2018; p. 9957. [Google Scholar]
- Guzmán, G.; Boumahdi, A.; Gómez, J.A. Expansion of Olive Orchards and Their Impact on the Cultivation and Landscape through a Case Study in the Countryside of Cordoba (Spain). Land Use Policy 2022, 116, 106065. [Google Scholar] [CrossRef]
- Gomez Calero, J.A.; Campos, M.; Guzman, G.; Castillo-Llanque, F.; Giráldez, J.V. Use of Heterogeneous Cover Crops in Olive Orchards to Soil Erosion Control and Enhancement of Biodiversity. In The Earth Living Skin: Life and Climate Changes; Castellaneta Marina, Italy, 2014; Available online: http://hdl.handle.net/10261/159778 (accessed on 3 July 2023).
- Peres, F.; Talhinhas, P.; Afonso, H.; Alegre, H.; Oliveira, H.; Ferreira-Dias, S. Olive Oils from Fruits Infected with Different Anthracnose Pathogens Show Sensory Defects Earlier Than Chemical Degradation. Agronomy 2021, 11, 1041. [Google Scholar] [CrossRef]
- Mele, M.A.; Islam, M.Z.; Kang, H.M.; Giuffrè, A.M. Pre-and Post-Harvest Factors and Their Impact on Oil Composition and Quality of Olive Fruit. Emir. J. Food Agric. 2018, 592, 592–603. [Google Scholar] [CrossRef] [Green Version]
- Gomez, J.A.; Amato, M.; Celano, G.; Koubouris, G.C. Organic Olive Orchards on Sloping Land: More than a Specialty Niche Production System? J. Environ. Manag. 2008, 89, 99–109. [Google Scholar] [CrossRef]
- Morgado, R. From Traditional to Super-Intensive: Drivers and Biodiversity Impacts of Olive Farming Intensification. Ph.D. Thesis, UL, Lisbon, Portugal, 2022. Available online: https://www.repository.utl.pt/handle/10400.5/27582 (accessed on 3 July 2023).
- Mairech, H.; López-Bernal, Á.; Moriondo, M.; Dibari, C.; Regni, L.; Proietti, P.; Villalobos, F.J.; Testi, L. Is New Olive Farming Sustainable? A Spatial Comparison of Productive and Environmental Performances between Traditional and New Olive Orchards with the Model OliveCan. Agric. Syst. 2020, 181, 102816. [Google Scholar] [CrossRef]
- Di Giacomo, G.; Romano, P. Evolution of the Olive Oil Industry along the Entire Production Chain and Related Waste Management. Energies 2022, 15, 465. [Google Scholar] [CrossRef]
- Aziz, M.; Khan, M.; Anjum, N.; Sultan, M.; Shamshiri, R.R.; Ibrahim, S.M.; Balasundram, S.K.; Aleem, M. Scientific Irrigation Scheduling for Sustainable Production in Olive Groves. Agriculture 2022, 12, 564. [Google Scholar] [CrossRef]
- Paço, T.; Paredes, P.; Pereira, L.; Silvestre, J.; Santos, F. Crop Coefficients and Transpiration of a Super Intensive Arbequina Olive Orchard Using the Dual K c Approach and the K Cb Computation with the Fraction of Ground Cover and Height. Water 2019, 11, 383. [Google Scholar] [CrossRef] [Green Version]
- Paço, T.A.; Pôças, I.; Cunha, M.; Silvestre, J.C.; Santos, F.L.; Paredes, P.; Pereira, L.S. Evapotranspiration and Crop Coefficients for a Super Intensive Olive Orchard. An Application of SIMDualKc and METRIC Models Using Ground and Satellite Observations. J. Hydrol. 2014, 519, 2067–2080. [Google Scholar] [CrossRef] [Green Version]
- Niinemets, Ü.; Keenan, T. Photosynthetic Responses to Stress in Mediterranean Evergreens: Mechanisms and Models. Environ. Exp. Bot. 2014, 103, 24–41. [Google Scholar] [CrossRef]
- IPMA—Séries Longas. Available online: https://www.ipma.pt/pt/oclima/series.longas/?loc=Beja&type=raw (accessed on 21 February 2023).
- Tombesi, A.; Tombesi, S.; Saavedra, M.M.S.; Fernández-Escobar, R.; d’Andri, R.; Lavini, A.; Ali Triki, M.; Rhouma, A.; Ksantini, A. Production Techniques in Olive Growing, 1st ed.; International Olive Council: Madrid, Spain, 2007; ISBN 978-84-931663-6-6. [Google Scholar]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Fisiologia e Desenvolvimento Vegetal; 6a Edição; ArteMed Editora Lda: Porto Alegre, Brazil, 2017; ISBN 978-85-8271-367-9. [Google Scholar]
- Diário da Republica 2 Série, 25. Available online: https://files.dre.pt/2s/2018/02/025000000/0413204170.pdf (accessed on 19 February 2023).
- Carpio, A.J.; Castro, J.; Tortosa, F.S. Arthropod Biodiversity in Olive Groves under Two Soil Management Systems: Presence versus Absence of Herbaceous Cover Crop. Agric. For. Entomol. 2019, 21, 58–68. [Google Scholar] [CrossRef]
- Alcalá Herrera, R.; Ruano, F.; Gálvez Ramírez, C.; Frischie, S.; Campos, M. Attraction of Green Lacewings (Neuroptera: Chrysopidae) to Native Plants Used as Ground Cover in Woody Mediterranean Agroecosystems. Biol. Control 2019, 139, 104066. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, S.; Pina, S.; Herrera, J.M.; Silva, B.; Sousa, P.; Porto, M.; Melguizo-Ruiz, N.; Jiménez-Navarro, G.; Ferreira, S.; Moreira, F.; et al. Canopy Arthropod Declines along a Gradient of Olive Farming Intensification. Sci. Rep. 2022, 12, 17273. [Google Scholar] [CrossRef]
- Novara, A.; Cerda, A.; Barone, E.; Gristina, L. Cover Crop Management and Water Conservation in Vineyard and Olive Orchards. Soil Tillage Res. 2021, 208, 104896. [Google Scholar] [CrossRef]
- Sánchez-Fernández, J.; Vílchez-Vivanco, J.A.; Navarro, F.B.; Castro-RodrÍguez, J. Farming System and Soil Management Affect Butterfly Diversity in Sloping Olive Groves. Insect Conserv. Divers. 2020, 13, 456–469. [Google Scholar] [CrossRef]
- Rey, P.J.; Manzaneda, A.J.; Valera, F.; Alcántara, J.M.; Tarifa, R.; Isla, J.; Molina-Pardo, J.L.; Calvo, G.; Salido, T.; Gutiérrez, J.E.; et al. Landscape-Moderated Biodiversity Effects of Ground Herb Cover in Olive Groves: Implications for Regional Biodiversity Conservation. Agric. Ecosyst. Environ. 2019, 277, 61–73. [Google Scholar] [CrossRef]
- Cano, Á.G.; Alejandro, H. Semi-Natural Habitats and Natural Enemies in Olive Orchards: Abundance, Function, Trophic Interactions, and Global Climate Change. Ph.D. Thesis, Universidad de Granada, Granada, Spain, 2021. Available online: http://hdl.handle.net/10481/70690 (accessed on 29 June 2023).
- Álvarez, B.; Couanon, W.; Olivares, J.; Nigro, F. EIP-AGRI Focus Group “Pests and Diseases of the Olive Tree” Biocontrol Agents and Cropping Practices to Control Olive Diseases; EIP-AGRI; European Commission: Brussels, Belgium, 2019. [Google Scholar] [CrossRef]
- Montes Osuna, N.; Mercado-Blanco, J. Verticillium Wilt of Olive and Its Control: What Did We Learn during the Last Decade? Plants 2020, 9, 735. [Google Scholar] [CrossRef] [PubMed]
- Glyphosate: Commission Responds to European Citizens’ Initiative and Announces More Transparency in Scientific Assessments. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_17_5191 (accessed on 29 May 2023).
- Andriukaitis, V. Pesticides in the European Union—Authorization and Use. Available online: https://ec.europa.eu/commission/presscorner/api/files/attachment/855260/Pesticides_factsheet.pdf (accessed on 29 May 2023).
- Caruso, G.; Palai, G.; Tozzini, L.; Gucci, R. Using Visible and Thermal Images by an Unmanned Aerial Vehicle to Monitor the Plant Water Status, Canopy Growth and Yield of Olive Trees (Cvs. Frantoio and Leccino) under Different Irrigation Regimes. Agronomy 2022, 12, 1904. [Google Scholar] [CrossRef]
- Taguas, E.V.; Marín-Moreno, V.; Díez, C.M.; Mateos, L.; Barranco, D.; Mesas-Carrascosa, F.-J.; Pérez, R.; García-Ferrer, A.; Quero, J.L. Opportunities of Super High-Density Olive Orchard to Improve Soil Quality: Management Guidelines for Application of Pruning Residues. J. Environ. Manag. 2021, 293, 112785. [Google Scholar] [CrossRef] [PubMed]
- Pastor, M.; García-Vila, M.; Soriano, A.; Vega, V.; Fereres, E. Productivity of Olive Orchards in Response to Tree Density. J. Hortic. Sci. Biotechnol. 2007, 82, 555–562. [Google Scholar] [CrossRef]
- Gomez-del-Campo, M.; Connor, D.J.; Trentacoste, E.R. Long-Term Effect of Intra-Row Spacing on Growth and Productivity of Super-High Density Hedgerow Olive Orchards (Cv. Arbequina). Front. Plant Sci. 2017, 8, 1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díez, C.M.; Moral, J.; Cabello, D.; Morello, P.; Rallo, L.; Barranco, D. Cultivar and Tree Density As Key Factors in the Long-Term Performance of Super High-Density Olive Orchards. Front. Plant Sci. 2016, 7, 1226. [Google Scholar] [CrossRef] [Green Version]
- Morgado, R.; Santana, J.; Porto, M.; Sánchez-Oliver, J.S.; Reino, L.; Herrera, J.M.; Rego, F.; Beja, P.; Moreira, F. A Mediterranean Silent Spring? The Effects of Olive Farming Intensification on Breeding Bird Communities. Agric. Ecosyst. Environ. 2020, 288, 106694. [Google Scholar] [CrossRef]
- Jiang, X.; He, L. Investigation of Effective Irrigation Strategies for High-Density Apple Orchards in Pennsylvania. Agronomy 2021, 11, 732. [Google Scholar] [CrossRef]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements; Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1977. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 92-5-104219-5. [Google Scholar]
- Pereira, L.S.; Alves, I. Crop Water Requirements. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Oxford, UK, 2005; pp. 322–334. ISBN 978-0-12-348530-4. [Google Scholar]
- Pastor, M.; Orgaz, F. Riego deficitario del olivar: Los programas de recorte de riego en olivar. Agricultura 1994, 746, 768–776. [Google Scholar]
- Fereres, E.; Castel, J.R. Drip Irrigation Management; Publication Leaflet; Division of Agricultural Sciences, University of California: Richmond, CA, USA, 1981. [Google Scholar]
- Beede, R.H.; Goldhamer, D.A. Olive Irrigation Management. In Olive Production Manual; Sibbett, G.S., Ferguson, L., Eds.; University of California Publication; UCANR Publications: Oakland, CA, USA, 2005; pp. 61–69. ISBN 978-1-879906-15-0. [Google Scholar]
- Lightle, D.; Connel, J. Drought Tip: Drought Strategies for Table and Oil Olive Production; ANR Public: Delhi, India, 2018; Volume 5. [Google Scholar]
- Berenguer, M.J.; Grattan, S.; Connell, J.H.; Polito, V.S.; Vossen, P. Irrigation Management to Optimize Olive Growth, Production and Sensorial Oil Quality. Acta Hortic. 2004, 664, 79–85. [Google Scholar] [CrossRef]
- Grattan, S.; Berenguer, M.J.; Connell, J.H.; Polito, V.S.; Vossen, P. Olive Oil Production as Influenced by Different Quantities of Applied Water. Agric. Water Manag. 2006, 85, 133–140. [Google Scholar] [CrossRef]
- Gómez-del-Campo, M. Summer Deficit-Irrigation Strategies in a Hedgerow Olive Orchard Cv. ‘Arbequina’: Effect on Fruit Characteristics and Yield. Irrig. Sci. 2013, 31, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Freihat, N.M.; Shannag, H.K.; Alkelani, M.A. Effects of Supplementary Irrigation on Performance of ‘Nabali’ and ‘Grossa de Spain’ Olives under Semi-Arid Conditions in Jordan. Sci. Hortic. 2021, 275, 109696. [Google Scholar] [CrossRef]
- Palese, A.M.; Nuzzo, V.; Favati, F.; Pietrafesa, A.; Celano, G.; Xiloyannis, C. Effects of Water Deficit on the Vegetative Response, Yield and Oil Quality of Olive Trees (Olea europaea L., Cv Coratina) Grown under Intensive Cultivation. Sci. Hortic. 2010, 125, 222–229. [Google Scholar] [CrossRef]
- Siakou, M.; Bruggeman, A.; Eliades, M.; Zoumides, C.; Djuma, H.; Kyriacou, M.C.; Emmanouilidou, M.G.; Spyros, A.; Manolopoulou, E.; Moriana, A. Effects of Deficit Irrigation on ‘Koroneiki’ Olive Tree Growth, Physiology and Olive Oil Quality at Different Harvest Dates. Agric. Water Manag. 2021, 258, 107200. [Google Scholar] [CrossRef]
- Zeleke, K.; Mailer, R.; Eberbach, P.; Wünsche, J. Oil Content and Fruit Quality of Nine Olive (Olea europaea L.) Varieties Affected by Irrigation and Harvest Times. Null 2012, 40, 241–252. [Google Scholar] [CrossRef]
- Trentacoste, E.R.; Connor, D.J.; Gómez-del-Campo, M. Response of Oil Production and Quality to Hedgerow Design in Super-High-Density Olive Cv. Arbequina Orchards. Agronomy 2021, 11, 1632. [Google Scholar] [CrossRef]
- Moriana, A.; Orgaz, F.; Pastor, M.; Fereres, E. Yield Responses of a Mature Olive Orchard to Water Deficits. J. Am. Soc. Hortic. Sci. Jashs 2003, 128, 425–431. [Google Scholar] [CrossRef]
- Fernandes-Silva, A.A.; Ferreira, T.C.; Correia, C.M.; Malheiro, A.C.; Villalobos, F.J. Influence of Different Irrigation Regimes on Crop Yield and Water Use Efficiency of Olive. Plant Soil 2010, 333, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.E.; Diaz-Espejo, A.; Romero, R.; Hernandez-Santana, V.; García, J.M.; Padilla-Díaz, C.M.; Cuevas, M.V. Chapter 9—Precision Irrigation in Olive (Olea europaea L.) Tree Orchards. In Water Scarcity and Sustainable Agriculture in Semiarid Environment; García Tejero, I.F., Durán Zuazo, V.H., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 179–217. ISBN 978-0-12-813164-0. [Google Scholar]
- Debaeke, P.; Aboudrare, A. Adaptation of Crop Management to Water-Limited Environments. Eur. J. Agron. 2004, 21, 433–446. [Google Scholar] [CrossRef]
- Loveys, B.R.; Dry, P.R.; Stoll, M.; Mccarthy, M. Using Plant Physiology to Improve the Water Efficiency of Horticultural Crops. Acta Hortic. 2000, 537, 187–197. [Google Scholar] [CrossRef]
- Mccarthy, M.; Loveys, B.R.; Dry, P.R.; Stoll, M. Regulated Deficit Irrigation and Partial Rootzone Drying as Irrigation Management Techniques for Grapevines. Deficit Irrig. Pract. 2000, 22, 79–87. [Google Scholar]
- Flexas, J.; Galmés, J.; Gallé, A.; Gulías, J.; Pou, A.; Ribas-Carbo, M.; Tomàs, M.; Medrano, H. Improving Water Use Efficiency in Grapevines: Potential Physiological Targets for Biotechnological Improvement. Aust. J. Grape Wine Res. 2010, 16, 106–121. [Google Scholar] [CrossRef]
- Cifre, J.; Bota, J.; Escalona, J.M.; Medrano, H.; Flexas, J. Physiological Tools for Irrigation Scheduling in Grapevine (Vitis vinifera L.): An Open Gate to Improve Water-Use Efficiency? Agric. Ecosyst. Environ. 2005, 106, 159–170. [Google Scholar] [CrossRef]
- Tomaz, A.; Coleto Martinez, J.M.; Arruda Pacheco, C. Yield and Quality Responses of ‘Aragonez’ Grapevines under Deficit Irrigation and Different Soil Management Practices in a Mediterranean Climate. Ciência Téc. Vitiv. 2015, 30, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Tomaz, A.; Pacheco, C.A.; Coleto Martinez, J.M. Influence of Cover Cropping on Water Uptake Dynamics in an Irrigated Mediterranean Vineyard. Irrig. Drain. 2017, 66, 387–395. [Google Scholar] [CrossRef]
- Tomaz, A.; Coleto Martínez, J.; Arruda Pacheco, C. Effects of Cover Crops and Irrigation on ‘Tempranillo’ Grapevine and Berry Physiology: An Experiment under the Mediterranean Conditions of Southern Portugal. OENO One 2021, 55, 191–208. [Google Scholar] [CrossRef]
- Oweis, T. Supplemental Irrigation: A Highly Efficient Water-Use Practice; International Center for Agricultural Research in the Dry Areas (ICARDA): Aleppo, Syria, 1997; ISBN 92-9127-070-9. [Google Scholar]
- Attalla, A.; Abdel-Sattar, M.; Mahrous, A.; Abdel-Azeez, A. Olive Trees Productivity in Response to Supplemental Irrigation under North-Western Coastal Conditions in Egypt. Am. Eurasian J. Agric. Environ. Sci. 2011, 11, 609–615. [Google Scholar]
- Draie, R.; Alhaj-Rabie, W.; Al-Mahmoud, A. Effect of Supplementary Spring and Summer Irrigation on the Growth and Productivity of the Olive Tree (Sourani Variety) in the Region of Al-Rouj Plain. Int. Res. J. Innov. Eng. Technol. 2020, 4, 45–55. [Google Scholar]
- Lodolini, E.M.; Polverigiani, S.; Ali, S.; Mutawea, M.; Qutub, M.; Pierini, F.; Neri, D. Effect of Complementary Irrigation on Yield Components and Alternate Bearing of a Traditional Olive Orchard in Semi-Arid Conditions. Span. J. Agric. Res 2016, 14, e1203. [Google Scholar] [CrossRef] [Green Version]
- Fereres, E.; Soriano, M.A. Deficit Irrigation for Reducing Agricultural Water Use. J. Exp. Bot. 2006, 58, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Galindo, A.; Collado-González, J.; Griñán, I.; Corell, M.; Centeno, A.; Martín-Palomo, M.J.; Girón, I.F.; Rodríguez, P.; Cruz, Z.N.; Memmi, H.; et al. Deficit Irrigation and Emerging Fruit Crops as a Strategy to Save Water in Mediterranean Semiarid Agrosystems. Agric. Water Manag. 2018, 202, 311–324. [Google Scholar] [CrossRef]
- Goldhamer, D.A.; Dunai, J.; Ferguson, L.F. Irrigation Requirements of Olive Trees and Responses to Sustained Deficit Irrigation. Acta Hortic. Int. Soc. Hortic. Sci. (ISHS) 1994, 356, 172–175. [Google Scholar] [CrossRef]
- Santos, F.L. Olive Water Use, Crop Coefficient, Yield, and Water Productivity under Two Deficit Irrigation Strategies. Agronomy 2018, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- Iniesta, F.; Testi, L.; Orgaz, F.; Villalobos, F.J. The Effects of Regulated and Continuous Deficit Irrigation on the Water Use, Growth and Yield of Olive Trees. Eur. J. Agron. 2009, 30, 258–265. [Google Scholar] [CrossRef]
- Dry, P.R.; Loveys, B.R.; Mccarthy, M.G.; Stoll, M. Strategic Irrigation Management in Australian Vineyards. OENO One 2001, 35, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.E.; Perez-Martin, A.; Torres-Ruiz, J.M.; Cuevas, M.V.; Rodriguez-Dominguez, C.M.; Elsayed-Farag, S.; Morales-Sillero, A.; García, J.M.; Hernandez-Santana, V.; Diaz-Espejo, A. A Regulated Deficit Irrigation Strategy for Hedgerow Olive Orchards with High Plant Density. Plant Soil 2013, 372, 279–295. [Google Scholar] [CrossRef] [Green Version]
- Vossen, P.M.; Berenguer, M.J.; Grattan, S.R.; Connell, J.H.; Polito, V.S. The Influence of Different Levels of Irrigation on the Chemical and Sensory Properties of Olive Oil. Acta Hortic. Int. Soc. Hortic. Sci. (ISHS) 2008, 791, 439–444. [Google Scholar] [CrossRef]
- Ahumada-Orellana, L.E.; Ortega-Farías, S.; Searles, P.S.; Retamales, J.B. Yield and Water Productivity Responses to Irrigation Cut-off Strategies after Fruit Set Using Stem Water Potential Thresholds in a Super-High Density Olive Orchard. Front. Plant Sci. 2017, 8, 1280. [Google Scholar] [CrossRef] [Green Version]
- Marino, G.; Caruso, T.; Ferguson, L.; Marra, F.P. Gas Exchanges and Stem Water Potential Define Stress Thresholds for Efficient Irrigation Management in Olive (Olea europea L.). Water 2018, 10, 342. [Google Scholar] [CrossRef] [Green Version]
- Ben-Gal, A.; Ron, Y.; Yermiyahu, U.; Zipori, I.; Naoum, S.; Dag, A. Evaluation of Regulated Deficit Irrigation Strategies for Oil Olives: A Case Study for Two Modern Israeli Cultivars. Agric. Water Manag. 2021, 245, 106577. [Google Scholar] [CrossRef]
- Fernández, J.E.; Díaz-Espejo, A.; Infante, J.M.; Durán, P.; Palomo, M.J.; Chamorro, V.; Girón, I.F.; Villagarcía, L. Water Relations and Gas Exchange in Olive Trees under Regulated Deficit Irrigation and Partial Rootzone Drying. Plant Soil 2006, 284, 273–291. [Google Scholar] [CrossRef]
- Davies, W.J.; Wilkinson, S.; Loveys, B. Stomatal Control by Chemical Signalling and the Exploitation of This Mechanism to Increase Water Use Efficiency in Agriculture. New Phytol. 2002, 153, 449–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, M.; Fuentes, S.; Barlow, E. Partial Rootzone Drying and Deficit Irrigation Increase Stomatal Sensitivity to Vapour Pressure Deficit in Anisohydric Grapevines. Funct. Plant Biol. 2010, 37, 128–138. [Google Scholar] [CrossRef]
- Dodd, I.C.; Theobald, J.C.; Bacon, M.A.; Davies, W.J. Alternation of Wet and Dry Sides during Partial Rootzone Drying Irrigation Alters Root-to-Shoot Signalling of Abscisic Acid. Funct. Plant Biol. 2006, 33, 1081–1089. [Google Scholar] [CrossRef]
- Jovanovic, Z.; Stikic, R. Partial Root-Zone Drying Technique: From Water Saving to the Improvement of a Fruit Quality. Front. Sustain. Food Syst. 2018, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Chaves, M.M.; Pereira, J.S.; Maroco, J.; Rodrigues, M.L.; Ricardo, C.P.P.; Osório, M.L.; Carvalho, I.; Faria, T.; Pinheiro, C. How Plants Cope with Water Stress in the Field? Photosynthesis and Growth. Ann. Bot. 2002, 89, 907–916. [Google Scholar] [CrossRef] [Green Version]
- Adu, M.O.; Yawson, D.O.; Armah, F.A.; Asare, P.A.; Frimpong, K.A. Meta-Analysis of Crop Yields of Full, Deficit, and Partial Root-Zone Drying Irrigation. Agric. Water Manag. 2018, 197, 79–90. [Google Scholar] [CrossRef]
- Wahbi, S.; Wakrim, R.; Aganchich, B.; Tahi, H.; Serraj, R. Effects of Partial Rootzone Drying (PRD) on Adult Olive Tree (Olea europaea) in Field Conditions under Arid Climate: I. Physiological and Agronomic Responses. Agric. Ecosyst. Environ. 2005, 106, 289–301. [Google Scholar] [CrossRef]
- Ghrab, M.; Gargouri, K.; Bentaher, H.; Chartzoulakis, K.; Ayadi, M.; Mimoun, M.B.; Masmoudi, M.M.; Mechlia, N.B.; Psarras, G. Water Relations and Yield of Olive Tree (Cv. Chemlali) in Response to Partial Root-Zone Drying (PRD) Irrigation Technique and Salinity under Arid Climate. Agric. Water Manag. 2013, 123, 1–11. [Google Scholar] [CrossRef]
- Abboud, S.; Dbara, S.; Abidi, W.; Braham, M. Differential Agro-Physiological Responses Induced by Partial Root-Zone Drying Irrigation in Olive Cultivars Grown in Semi-Arid Conditions. Environ. Exp. Bot. 2019, 167, 103863. [Google Scholar] [CrossRef]
- Caruso, G.; Rapoport, H.F.; Gucci, R. Long-Term Evaluation of Yield Components of Young Olive Trees during the Onset of Fruit Production under Different Irrigation Regimes. Irrig. Sci. 2013, 31, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Rundel, P.W.; Montenegro Rizzardini, G.; Jaksic, F.M. Landscape Disturbance and Biodiversity in Mediterranean-Type Ecosystems; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-08416-4. [Google Scholar]
- Freibauer, A.; Rounsevell, M.D.A.; Smith, P.; Verhagen, J. Carbon Sequestration in the Agricultural Soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- Chiti, T.; Gardin, L.; Perugini, L.; Quaratino, R.; Vaccari, F.P.; Miglietta, F.; Valentini, R. Soil Organic Carbon Stock Assessment for the Different Cropland Land Uses in Italy. Biol. Fertil. Soils 2012, 48, 9–17. [Google Scholar] [CrossRef]
- Rodríguez Martín, J.A.; Álvaro-Fuentes, J.; Gonzalo, J.; Gil, C.; Ramos-Miras, J.J.; Grau Corbí, J.M.; Boluda, R. Assessment of the Soil Organic Carbon Stock in Spain. Geoderma 2016, 264, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Pleguezuelo, C.R.R.; Zuazo, V.H.D.; Martínez, J.R.F.; Peinado, F.J.M.; Martín, F.M.; Tejero, I.F.G. Organic Olive Farming in Andalusia, Spain. A Review. Agron. Sustain. Dev. 2018, 38, 20. [Google Scholar] [CrossRef] [Green Version]
- Petersson, T.; Perugini, L.; Chiriacò, M.V. D2 Report: Quality and Quantity of Data Available for Each Identified Crop/Livestock Carbon Farming Practice; European Commission Life 20 PRE IT/017; European Commission: Bruxells, Belgium, 2022. [Google Scholar]
- Sánchez-Moreno, S.; Castro, J.; Alonso-Prados, E.; Alonso-Prados, J.L.; García-Baudín, J.M.; Talavera, M.; Durán-Zuazo, V.H. Tillage and Herbicide Decrease Soil Biodiversity in Olive Orchards. Agron. Sustain. Dev. 2015, 35, 691–700. [Google Scholar] [CrossRef] [Green Version]
- Parras-Alcántara, L.; Lozano-García, B. Conventional Tillage versus Organic Farming in Relation to Soil Organic Carbon Stock in Olive Groves in Mediterranean Rangelands (Southern Spain). Solid Earth 2014, 5, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Márquez-García, F.; González-Sánchez, E.J.; Castro-García, S.; Ordóñez-Fernández, R. Improvement of Soil Carbon Sink by Cover Crops in Olive Orchards under Semiarid Conditions. Influence of the Type of Soil and Weed. Span. J. Agric. Res. 2013, 11, 335. [Google Scholar] [CrossRef]
- Calderón, R.; Navas-Cortés, J.A.; Zarco-Tejada, P.J. Early Detection and Quantification of Verticillium Wilt in Olive Using Hyperspectral and Thermal Imagery over Large Areas. Remote Sens. 2015, 7, 5584–5610. [Google Scholar] [CrossRef] [Green Version]
- Morente, M.; Cornara, D.; Plaza, M.; Durán, J.M.; Capiscol, C.; Trillo, R.; Ruiz, M.; Ruz, C.; Sanjuan, S.; Pereira, J.A.; et al. Distribution and Relative Abundance of Insect Vectors of Xylella Fastidiosa in Olive Groves of the Iberian Peninsula. Insects 2018, 9, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morelli, M.; García-Madero, J.M.; Jos, Á.; Saldarelli, P.; Dongiovanni, C.; Kovacova, M.; Saponari, M.; Baños Arjona, A.; Hackl, E.; Webb, S.; et al. Xylella Fastidiosa in Olive: A Review of Control Attempts and Current Management. Microorganisms 2021, 9, 1771. [Google Scholar] [CrossRef] [PubMed]
- Simoni, S.; Caruso, G.; Vignozzi, N.; Gucci, R.; Valboa, G.; Pellegrini, S.; Palai, G.; Goggioli, D.; Gagnarli, E. Effect of Long-Term Soil Management Practices on Tree Growth, Yield and Soil Biodiversity in a High-Density Olive Agro-Ecosystem. Agronomy 2021, 11, 1036. [Google Scholar] [CrossRef]
- Vignozzi, N.; Agnelli, A.E.; Brandi, G.; Gagnarli, E.; Goggioli, D.; Lagomarsino, A.; Pellegrini, S.; Simoncini, S.; Simoni, S.; Valboa, G.; et al. Soil Ecosystem Functions in a High-Density Olive Orchard Managed by Different Soil Conservation Practices. Appl. Soil Ecol. 2019, 134, 64–76. [Google Scholar] [CrossRef]
- Marañón-Jiménez, S.; Serrano-Ortíz, P.; Peñuelas, J.; Meijide, A.; Chamizo, S.; López-Ballesteros, A.; Vicente-Vicente, J.L.; Fernández-Ondoño, E. Effects of Herbaceous Covers and Mineral Fertilizers on the Nutrient Stocks and Fluxes in a Mediterranean Olive Grove. Eur. J. Agron. 2022, 140, 126597. [Google Scholar] [CrossRef]
- Calha, I. Avoadinha-peluda—Conyza bonariensis resistente ao glifosato. In Boletim Técnico; Instituto Nacional de Investigação Agrária: Oeiras, Portugal, 2011; UIPP-BT/09; pp. 1–2. [Google Scholar]
- Sansom, M.; Saborido, A.A.; Dubois, M. Control of Conyza Spp. with Glyphosate-a Review of the Situation in Europe. Plant Prot. Sci. 2013, 49, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Assirelli, A.; Ciaccia, C.; Giorgi, V.; Zucchini, M.; Neri, D.; Lodolini, E.M. An Alternative Tool for Intra-Row Weed Control in a High-Density Olive Orchard. Agronomy 2022, 12, 605. [Google Scholar] [CrossRef]
- Repullo, M.; Carbonell- Bojollo, R.; Hidalgo, J.; Rodríguez-Lizana, A.; Ordóñez-Fernández, R. Using Olive Pruning Residues to Cover Soil and Improve Fertility. Soil Tillage Res. 2012, 124, 36–46. [Google Scholar] [CrossRef]
- Moreno-García, M.; Repullo-Ruibérriz de Torres, M.A.; Carbonell-Bojollo, R.M.; Ordóñez-Fernández, R. Management of Pruning Residues for Soil Protection in Olive Orchards. Land Degrad. Dev. 2018, 29, 2975–2984. [Google Scholar] [CrossRef]
- Flamand, I. Olive Farmers’ Compliance to Soil-Erosion control Policies in the Protected Designation of Origin Estepa; Wageningen University: Wageningen, The Netherlands, 2020. [Google Scholar]
- Repullo-Ruibérriz de Torres, M.A.; Ordóñez-Fernández, R.; Giráldez, J.V.; Márquez-García, J.; Laguna, A.; Carbonell-Bojollo, R. Efficiency of Four Different Seeded Plants and Native Vegetation as Cover Crops in the Control of Soil and Carbon Losses by Water Erosion in Olive Orchards. Land Degrad. Dev. 2018, 29, 2278–2290. [Google Scholar] [CrossRef]
- Sastre, B.; Marques, M.J.; García-Díaz, A.; Bienes, R. Three Years of Management with Cover Crops Protecting Sloping Olive Groves Soils, Carbon and Water Effects on Gypsiferous Soil. Catena 2018, 171, 115–124. [Google Scholar] [CrossRef]
- Viti, C.; Quaranta, D.; De Philippis, R.; Corti, G.; Agnelli, A.; Cuniglio, R.; Giovannetti, L. Characterizing Cultivable Soil Microbial Communities from Copper Fungicide-Amended Olive Orchard and Vineyard Soils. World J. Microbiol. Biotechnol. 2008, 24, 309–318. [Google Scholar] [CrossRef]
- Miloš, B.; Bensa, A. The Copper Content in Soil of Olive Orchards from Dalmatia, Croatia. Eurasian Soil Sci. 2021, 54, 865–874. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; Fernández-González, E.; López-Cortés, I.; Salazar-Hernández, D.M. Quantification of the Residual Biomass Obtained from Pruning of Trees in Mediterranean Olive Groves. Biomass Bioenergy 2011, 35, 3208–3217. [Google Scholar] [CrossRef]
- Zipori, I.; Erel, R.; Yermiyahu, U.; Ben-Gal, A.; Dag, A. Sustainable Management of Olive Orchard Nutrition: A Review. Agriculture 2020, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Aragüés, R.; Puy, J.; Isidoro, D. Vegetative Growth Response of Young Olive Trees (Olea europaea L., Cv. Arbequina) to Soil Salinity and Waterlogging. Plant Soil 2004, 258, 69–80. [Google Scholar] [CrossRef] [Green Version]
- López-Escudero, F.J.; Blanco-López, M.A. Effects of Drip Irrigation on Population of Verticillium Dahliae in Olive Orchards. J. Phytopathol. 2005, 153, 238–239. [Google Scholar] [CrossRef]
- Marino, G.; Macaluso, L.; Grilo, F.; Marra, F.P.; Caruso, T. Toward the Valorization of Olive (Olea europaea Var. Europaea L.) Biodiversity: Horticultural Performance of Seven Sicilian Cultivars in a Hedgerow Planting System. Sci. Hortic. 2019, 256, 108583. [Google Scholar] [CrossRef]
- Camposeo, S.; Vivaldi, G.A.; Montemurro, C.; Fanelli, V.; Cunill Canal, M. Lecciana, a New Low-Vigour Olive Cultivar Suitable for Super High Density Orchards and for Nutraceutical EVOO Production. Agronomy 2021, 11, 2154. [Google Scholar] [CrossRef]
- Rallo, L.; Barranco, D.; Castro-García, S.; Connor, D.J.; Gómez Del Campo, M.; Rallo, P. High-Density Olive Plantations. In Horticultural Reviews Volume 41; Janick, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 303–384. ISBN 978-1-118-70741-8. [Google Scholar]
- Torres-Sánchez, J.; de la Rosa, R.; León, L.; Jiménez-Brenes, F.M.; Kharrat, A.; López-Granados, F. Quantification of Dwarfing Effect of Different Rootstocks in ‘Picual’ Olive Cultivar Using UAV-Photogrammetry. Precis. Agric 2022, 23, 178–193. [Google Scholar] [CrossRef]
- Morgado, R.; Ribeiro, P.F.; Santos, J.L.; Rego, F.; Beja, P.; Moreira, F. Drivers of Irrigated Olive Grove Expansion in Mediterranean Landscapes and Associated Biodiversity Impacts. Landsc. Urban Plan. 2022, 225, 104429. [Google Scholar] [CrossRef]
- Pérez-Ruiz, M.; Rallo, P.; Jiménez, M.R.; Garrido-Izard, M.; Suárez, M.P.; Casanova, L.; Valero, C.; Martínez-Guanter, J.; Morales-Sillero, A. Evaluation of Over-The-Row Harvester Damage in a Super-High-Density Olive Orchard Using On-Board Sensing Techniques. Sensors 2018, 18, 1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Guanter, J.; Garrido-Izard, M.; Agüera, J.; Valero, C.; Pérez-Ruiz, M. Over-the-Row Harvester Damage Evaluation in Super-High-Density Olive Orchard by on-Board Sensing Techniques. Adv. Anim. Biosci. 2017, 8, 487–491. [Google Scholar] [CrossRef]
Orchard Type | Spacing Inter-row × Row (m) | Tree Density (trees ha−1) | Productivity (t ha−1) | Soil Conservation | Tree Architecture | Pruning | Irrigation and Soil Management | Harvest | Common Cultivars |
---|---|---|---|---|---|---|---|---|---|
Traditional (TD) | 8–15 × 6–15 | 50–200 | 0.5–3 | Slopes: 0 to 30%. Strong erosion. | Trichotomic vase canopy. Strong alternate bearing. | Every 4 years. Chain saw. Pruning residue is burned. | Non-irrigated. Soil tillage, inter-row grain crops. Herbicides. | Hand branch shakers, with or without floor nets. | Galega, Verdeal, Cordovil. |
Medium-density (MD) | 7–8 × 3.5–6 | 201–400 | 3–6 | Slopes: 0 to 15%. Some erosion. | Trichotomic vase canopy. Alternate bearing. | Every 2 years. Chain saw. Pruning residue is burned. | Non-irrigated or low-irrigated. Soil tillage, herbicides, or spontaneous weed cover, some used for animal pasture. | Trunk shaker, floor nets. Wrap around the tree collector. | Galega, Verdeal, Cordovil, Cobrançosa, Picual, Frantoio |
High-density (HD) | 4–7 × 1.7–3.5 | 401–1500 | 6–12 | Slopes: 0 to 10%. Low erosion. | Dichotomic vase or hedge row. Some alternate bearing in orchards over 20 years old. | Every 1–2 years. Manual shears, electric or air compressed. Tractor disc trimmers. Pruning residue is shredded on site. | Drip irrigation—250–500 mm year−1. Spontaneous or sowed cover crops. Herbicide in the tree rows or no herbicide. | Trunk shaker and wrap around the tree collector, or over-the-row. | Cobrançosa, Picual, Arbequina, Frantoio. |
Super-high-density (SHD) | 3.5–4 × 1–1.7 | 1501–2500 | 12–22 | Arbequina, Arbosana, Koroneiki. |
Species | Sow Seed Quantity (kg ha−1) | Nitrogen Fixed (kg ha−1 year−1) |
---|---|---|
Alfalfa (Medicago sativa) | 10–25 | 114–223 |
Broad bean (Vicia faba) | 150–200 | 160–216 |
Common vetch (Vicia sp.) | 40–60 | 90–155 |
Crimson clover (Trifolium incarnatum) | 10–20 | 20–64 |
Eggs and Bacon (Lotus corniculatus) | 4–6 | 49–112 |
Lentil (Lens culinaris) | 60–80 | 15–85 |
Pea (Pisum sativum) | 70–140 | 37–185 |
Red clover (Trifolium pratense) | 4–10 | 68–113 |
Sub clover (Trifolium subterraneum) | 10–20 | 48–183 |
White clover (Trifolium repens) | 8–12 | 165–188 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobreiro, J.; Patanita, M.I.; Patanita, M.; Tomaz, A. Sustainability of High-Density Olive Orchards: Hints for Irrigation Management and Agroecological Approaches. Water 2023, 15, 2486. https://doi.org/10.3390/w15132486
Sobreiro J, Patanita MI, Patanita M, Tomaz A. Sustainability of High-Density Olive Orchards: Hints for Irrigation Management and Agroecological Approaches. Water. 2023; 15(13):2486. https://doi.org/10.3390/w15132486
Chicago/Turabian StyleSobreiro, Justino, Maria Isabel Patanita, Manuel Patanita, and Alexandra Tomaz. 2023. "Sustainability of High-Density Olive Orchards: Hints for Irrigation Management and Agroecological Approaches" Water 15, no. 13: 2486. https://doi.org/10.3390/w15132486
APA StyleSobreiro, J., Patanita, M. I., Patanita, M., & Tomaz, A. (2023). Sustainability of High-Density Olive Orchards: Hints for Irrigation Management and Agroecological Approaches. Water, 15(13), 2486. https://doi.org/10.3390/w15132486