Investigating the Change Pattern in Adsorption Properties of Soil Media for Non-Polar Organic Contaminants under the Impact of Freezing and Thawing
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Measurement of Sample Indicators
2.3.1. Adsorption Kinetics Parameters
2.3.2. Physical and Chemical Properties of Media
2.4. Data Analysis
3. Results and Discussion
3.1. Patterns of Air and Soil Temperature Changes during the Freeze–Thaw Period
3.2. Changes in Sorption Capacity of Non-Polar Organic Contaminants in Soils during Freeze–Thaw Conditions
3.3. Analysis of Factors Influencing Sorption Capacity of Soils for Non-Polar Organic Contaminants during the Freeze–Thaw Period
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Varjani, S.J.; Upasani, V.N. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant. Bioresour. Technol. 2016, 221, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Aislabie, J.; Saul, D.J.; Foght, J.M. Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 2006, 10, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Pu, X.C.; Cutright, T.J. Sorption–desorption behavior of PCP on soil organic matter and clay minerals. Chemosphere 2006, 64, 972–983. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Woo, H.; Kim, S.H.; Yun, S.T.; Chung, J.; Lee, S. Complex behavior of petroleum hydrocarbons in vadose zone: A holistic analysis using unsaturated soil columns. Chemosphere 2023, 326, 138417. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.C.; Zheng, B.H.; Li, X.; Zhao, X.R.; Dionysiou, D.D.; Liu, Y. Influencing factors and health risk assessment of polycyclic aromatic hydrocarbons in groundwater in China. J. Hazard. Mater. 2021, 402, 123419. [Google Scholar] [CrossRef]
- Wang, M.; Ding, M.; Yuan, Y. Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants. Bioengineering 2023, 10, 347. [Google Scholar] [CrossRef]
- Ertli, T.; Marton, A.; Földényi, R. Effect of pH and the role of organic matter in the adsorption of isoproturon on soils. Chemosphere 2004, 57, 771–779. [Google Scholar] [CrossRef]
- Cornelissen, G.; Rigterink, H.; Ferdinandy, M.M.A.; Van Noort, P.C.M. Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation. Environ. Sci. Technol. 1998, 32, 966–970. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, D.; Yin, J.; Zhou, X.; Li, Y.; Chi, P.; Han, Y.; Ansari, U.; Cheng, Y. Sediment instability caused by gas production from hydrate-bearing sediment in Northern South China Sea by horizontal wellbore: Evolution and mechanism. Nat. Resour. Res. 2023, 32, 1595–1620. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, C.; Yang, Y.; Ansari, U.; Han, Y.; Li, X.; Cheng, Y. Preliminary experimental investigation on long-term fracture conductivity for evaluating the feasibility and efficiency of fracturing operation in offshore hydrate-bearing sediments. Ocean Eng. 2023, 281, 114949. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X.; Jiang, B.; Zhuo, H.; Chen, W.; Chen, Y.; Li, X. Low-loading Pt nanoparticles combined with the atomically dispersed FeN4 sites supported by FeSA-NC for improved activity and stability towards oxygen reduction reaction/hydrogen evolution reaction in acid and alkaline media. J. Colloid Interface Sci. 2023, 635, 514–523. [Google Scholar] [CrossRef]
- Luthy, R.G.; Aiken, G.R.; Brusseau, M.L.; Cunningham, S.D.; Gschwend, P.M.; Pignatello, J.J.; Reinhard, M.; Traina, S.J.; Weber, W.J. Sequestration of hydrophobic organic contaminants by geosorbents. Environ. Sci. Technol. 1997, 31, 3341–3347. [Google Scholar] [CrossRef]
- Pil-Gon, K.I.M.; Tarafdar, A.; Jung-Hwan, K. Effect of soil pH on the sorption capacity of soil organic matter for polycyclic aromatic hydrocarbons in unsaturated soils. Pedosphere 2023, 33, 365–371. [Google Scholar]
- Lamoureux, E.M.; Brownawell, B.J. Chemical and biological availability of sediment-sorbed hydrophobic organic contaminants. Environ. Toxicol. Chem. 1999, 18, 1733–1741. [Google Scholar] [CrossRef]
- Ehlers, G.A.C.; Forrester, S.T.; Scherr, K.E.; Loibner, A.P.; Janik, L.J. Influence of the nature of soil organic matter on the sorption behaviour of pentadecane as determined by PLS analysis of mid-infrared DRIFT and solid-state 13C NMR spectra. Environ. Pollut. 2010, 158, 285–291. [Google Scholar] [CrossRef]
- Chiou, C.T.; Porter, P.E.; Schmedding, D.W. Partition equilibriums of nonionic organic compounds between soil organic matter and water. Environ. Sci. Technol. 1983, 17, 227–231. [Google Scholar] [CrossRef]
- Weber Jr, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Park, J.; Kwon, O.S.; Di Sarno, L. Influence of seasonal soil temperature variation and global warming on the seismic response of frozen soils in permafrost regions. Earthq. Eng. Struct. Dyn. 2021, 50, 3855–3871. [Google Scholar] [CrossRef]
- Tokuda, D.; Kim, H.; Yamazaki, D.; Oki, T. Development of a global river water temperature model considering fluvial dynamics and seasonal freeze-thaw cycle. Water Resour. Res. 2019, 55, 1366–1383. [Google Scholar] [CrossRef]
- Dang, X.L.; Zhang, Y.L.; Yu, N.; Zhang, Y.L. Cadmium adsorption-desorption of brown soil with freeze–thaw cycles in northeast China. Int. J. Environ. Pollut. 2012, 49, 89–99. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.M.; Mao, N.; Zhou, Y.Q.; Guo, P. The adsorption behavior of Pb2+ and Cd2+ in the treated black soils with different freeze-thaw frequencies. Water Air Soil Pollut. 2017, 228, 193. [Google Scholar] [CrossRef]
- Yang, Z.P.; Zhang, K.S.; Li, X.Y.; Ren, S.P.; Li, P. The effects of long-term freezing–thawing on the strength properties and the chemical stability of compound solidified/stabilized lead-contaminated soil. Environ. Sci. Pollut. Res. 2023, 30, 38185–38201. [Google Scholar] [CrossRef]
- Zhao, Q.; Xing, B.S.; Tai, P.D.; Yang, K.; Li, H.; Zhang, L.Z.; Lin, G.; Li, P.J. Effect of freeze–thawing cycles on aging behavior of phenanthrene, pyrene and their mixture in soil. Sci. Total Environ. 2013, 452, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Li, P.J.; Stagnitti, F.; Ye, J.; Dong, D.B.; Zhang, Y.Q.; Li, P. Effects of aging and freeze-thawing on extractability of pyrene in soil. Chemosphere 2009, 76, 447–452. [Google Scholar] [CrossRef]
- Zhao, Q.; Weise, L.; Li, P.J.; Yang, K.; Zhang, Y.Q.; Dong, D.B.; Li, P.; Li, X.J. Ageing behavior of phenanthrene and pyrene in soils: A study using sodium dodecylbenzenesulfonate extraction. J. Hazard. Mater. 2010, 183, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Erdoğan, B.C.; Ülkü, S. Cr (VI) sorption by using clinoptilolite and bacteria loaded clinoptilolite rich mineral. Microporous Mesoporous Mater. 2012, 152, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, S.; Zhu, K.; Xu, L.; Hu, J.; Wang, J. Adsorption of Co2+ and Sr2+ in aqueous solution by a novel fibrous chitosan biosorbent. Sci. Total Environ. 2022, 825, 153998. [Google Scholar] [CrossRef]
- Yonker, R.E.; McGuinness, J.L. A Short Method of Obtaining Mean Weight Diameter Values of Aggregate Analysis of Soil. Soil Sci. 1957, 83, 291–294. [Google Scholar]
- Mohan, D.; Singh, K.P.; Singh, V.K. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. J. Hazard. Mater. 2006, 135, 280–295. [Google Scholar] [CrossRef]
- Wang, J.L.; Guo, X. Rethinking of the intraparticle diffusion adsorption kinetics model: Interpretation, solving methods and applications. Chemosphere 2022, 309, 136732. [Google Scholar] [CrossRef]
- Saleh, T.A.; Siddiqui, M.N.; Al-Arfaj, A.A. Kinetic and intraparticle diffusion studies of carbon nanotubes-titania for desulfurization of fuels. Pet. Sci. Technol. 2016, 34, 1468–1474. [Google Scholar] [CrossRef]
- Söenmezay, A.; Öncel, M.S.; Bektas, N. Adsorption of lead and cadmium ions from aqueous solutions using manganoxide minerals. Trans. Nonferr. Metal. Soc. China 2012, 22, 3131–3139. [Google Scholar] [CrossRef]
- Edwards, L.M. The effect of alternate freezing and thawing on aggregate stability and aggregate size distribution of some Prince Edward Island soils. J. Soil Sci. 1991, 42, 193–204. [Google Scholar] [CrossRef]
- Guan, S.; Dou, S.; Chen, G.; Wang, G.; Zhuang, J. Isotopic characterization of sequestration and transformation of plant residue carbon in relation to soil aggregation dynamics. Appl. Soil Ecol. 2015, 96, 18–24. [Google Scholar] [CrossRef]
- van Bochove, E.; Prévost, D.; Pelletier, F. Effects of freeze–thaw and soil structure on nitrous oxide produced in a clay soil. Soil Sci. Soc. Am. J. 2000, 64, 1638–1643. [Google Scholar] [CrossRef]
- Yang, F.; Wang, M.; Wang, Z.Y. Sorption behavior of 17 phthalic acid esters on three soils: Effects of pH and dissolved organic matter, sorption coefficient measurement and QSPR study. Chemosphere 2013, 93, 82–89. [Google Scholar] [CrossRef]
- Li, B.H.; Qian, Y.; Bi, E.P.; Chen, H.H.; Schmidt, T.C. Sorption behavior of phthalic acid esters on reference soils evaluated by soil column chromatography. Clean 2010, 38, 425–429. [Google Scholar] [CrossRef]
- Wang, X.L.; Guo, X.Y.; Yang, Y.; Tao, S.; Xing, B.S. Sorption mechanisms of phenanthrene, lindane, and atrazine with various humic acid fractions from a single soil sample. Environ. Sci. Technol. 2011, 45, 2124–2130. [Google Scholar] [CrossRef]
- Kołtowski, M.; Hilber, I.; Bucheli, T.D.; Oleszczuk, P. Effect of activated carbon and biochars on the bioavailability of polycyclic aromatic hydrocarbons in different industrially contaminated soils. Environ. Sci. Pollut. Res. 2016, 23, 11058–11068. [Google Scholar] [CrossRef]
Pseudo-First Order | Pseudo-Second Order | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Outdoor Experimental Group | Indoor Control Group | Outdoor Experimental Group | Indoor Control Group | ||||||||||||||||
Time | qe,exp | qe,cal | k2 | R2 | Time | qe,exp | qe,cal | k2 | R2 | Time | qe,exp | qe,cal | k2 | R2 | Time | qe,exp | qe,cal | k2 | R2 |
initial | 993.30 | 63.35 | 2.50 × 10−3 | 0.39982 | initial | 993.30 | 63.35 | 2.50 × 10−3 | 0.39982 | initial | 993.30 | 1000.00 | 1.85 × 10−4 | 0.99997 | initial | 993.30 | 1000.00 | 1.85 × 10−4 | 0.99990 |
K1 | 973.10 | 144.66 | 1.02 × 10−5 | 0.23509 | D1 | 976.90 | 146.08 | 9.42 × 10−6 | 0.13102 | K1 | 973.10 | 961.54 | 5.85 × 10−5 | 0.99883 | D1 | 976.90 | 990.10 | 1.63 × 10−4 | 0.99990 |
K2 | 996.10 | 178.62 | 3.20 × 10−3 | 0.82961 | D2 | 990.00 | 139.88 | 2.70 × 10−3 | 0.76586 | K2 | 996.10 | 1000.00 | 1.25 × 10−4 | 0.99998 | D2 | 990.00 | 961.54 | 7.69 × 10−5 | 0.99980 |
K3 | 992.50 | 221.89 | 3.70 × 10−3 | 0.85827 | D3 | 995.30 | 143.41 | 3.30 × 10−3 | 0.78954 | K3 | 992.50 | 1000.00 | 7.58 × 10−5 | 0.99989 | D3 | 995.30 | 1000.00 | 1.40 × 10−4 | 0.99990 |
K4 | 966.00 | 269.26 | 4.40 × 10−3 | 0.85287 | D4 | 990.00 | 140.20 | 2.50 × 10−3 | 0.54376 | K4 | 966.00 | 970.87 | 9.71 × 10−5 | 0.99997 | D4 | 990.00 | 990.10 | 1.07 × 10−4 | 0.99990 |
K5 | 920.00 | 267.33 | 2.90 × 10−3 | 0.81663 | D5 | 931.00 | 459.07 | 2.50 × 10−3 | 0.84052 | K5 | 920.00 | 925.93 | 9.36 × 10−5 | 0.99965 | D5 | 931.00 | 943.40 | 2.29 × 10−4 | 0.99640 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Zhong, R.; Lyu, H. Investigating the Change Pattern in Adsorption Properties of Soil Media for Non-Polar Organic Contaminants under the Impact of Freezing and Thawing. Water 2023, 15, 2515. https://doi.org/10.3390/w15142515
Huang J, Zhong R, Lyu H. Investigating the Change Pattern in Adsorption Properties of Soil Media for Non-Polar Organic Contaminants under the Impact of Freezing and Thawing. Water. 2023; 15(14):2515. https://doi.org/10.3390/w15142515
Chicago/Turabian StyleHuang, Jingjing, Rong Zhong, and Hang Lyu. 2023. "Investigating the Change Pattern in Adsorption Properties of Soil Media for Non-Polar Organic Contaminants under the Impact of Freezing and Thawing" Water 15, no. 14: 2515. https://doi.org/10.3390/w15142515
APA StyleHuang, J., Zhong, R., & Lyu, H. (2023). Investigating the Change Pattern in Adsorption Properties of Soil Media for Non-Polar Organic Contaminants under the Impact of Freezing and Thawing. Water, 15(14), 2515. https://doi.org/10.3390/w15142515