Identifying the Driving Forces of Alpine Wetland Dynamic Changes in the Yellow River Source National Park from 2000 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Field Survey Data
2.2.2. Remote Sensing Data
2.2.3. Meteorological Data
2.2.4. Other Data
2.3. Methods
2.3.1. Wetland Classification System
2.3.2. Sample Transfer Method
2.3.3. Importance of Features
2.3.4. Random Forest Classification and Accuracy Assessment
2.3.5. Classification Features
2.3.6. Mann–Kendall Analysis
2.3.7. Trend Analysis
3. Results
3.1. Accuracy Evaluation
3.2. Importance of Classification Features
3.3. Dynamic Changes Pattern
3.4. Dynamic Changes Characteristics of Driving Factors
3.4.1. Dynamic Changes of Meteorological Factors
3.4.2. Dynamic Changes Characteristics of Soil Moisture
3.4.3. Dynamic Changes Characteristics of Population Density
3.4.4. Dominant Factor Identification
4. Discussion
4.1. Identification and Classification of the YRSNP Alpine Wetland from 2000 to 2020 Using Remote Sensing
4.2. Spatial-Temporal Change of Alpine Wetland and Meteorological Factors in the YRSNP from 2000 to 2020
4.3. Analysis of Driving Factors of the YRSNP Alpine Wetland Dynamic Changes from 2000 to 2020
4.4. Limitations and Uncertainties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, H.; Liu, B.; Wang, G.; Zhang, T.; Yang, Y.; Lu, Y.; Xu, Y.; Huang, M.; Yang, Y.; Zhang, L. Grass-livestock balance based grassland ecological carrying capability and sustainable strategy in the Yellow River Source National Park, Tibet Plateau, China. J. Mt. Sci. 2021, 18, 2201–2211. [Google Scholar] [CrossRef]
- Li, W.; Xue, P.; Liu, C.; Yan, H.; Zhu, G.; Cao, Y. Monitoring and Landscape Dynamic Analysis of Alpine Wetland Area Based on Multiple Algorithms: A Case Study of Zoige Plateau. Sensors 2020, 20, 7315. [Google Scholar] [CrossRef]
- Yao, T.; Bolch, T.; Chen, D.; Gao, J.; Immerzeel, W.; Piao, S.; Su, F.; Thompson, L.; Wada, Y.; Wang, L.; et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. 2022, 3, 618–632. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, Z.; Pokhrel, Y.; Farinotti, D.; Singh, V.P.; Xu, C.; Wu, W.; Wang, G. Oceanic climate changes threaten the sustainability of Asia’s water tower. Nature 2023, 615, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lv, W.; Xue, K.; Wang, S.; Zhang, L.; Hu, R.; Zeng, H.; Xu, X.; Li, Y.; Jiang, L.; et al. Grassland changes and adaptive management on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 668–683. [Google Scholar] [CrossRef]
- HJ 1169-2021; Technical Specification for Investigation and Assessment of National Ecological Status—Field Observation of Wetland Ecosystem. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2021.
- DeLancey, E.R.; Simms, J.F.; Mahdianpari, M.; Brisco, B.; Mahoney, C.; Kariyeva, J. Comparing Deep Learning and Shallow Learning for Large-Scale Wetland Classification in Alberta, Canada. Remote Sens. 2020, 12, 2. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Abd-Elrahman, A.; Jon, M.; Wilhelm, V.L. Comparing Fully Convolutional Networks, Random Forest, Support Vector Machine, and Patch-based Deep Convolutional Neural Networks for Objectbased Wetland Mapping using Images from small Unmanned Aircraft System. GISci. Remote Sens. 2018, 55, 243–264. [Google Scholar] [CrossRef]
- Judah, A.; Hu, B. The Integration of Multi-source Remotely-Sensed Data in Support of the Classification of Wetlands. Remote Sens. 2019, 11, 1537. [Google Scholar] [CrossRef] [Green Version]
- Banks, S.; White, L.; Behnamian, A.; Chen, Z.; Montpetit, B.; Brisco, B.; Pasher, J.; Duffe, J. Wetland Classification with Multi-Angle/Temporal SAR Using Random Forests. Remote Sens. 2019, 11, 670. [Google Scholar] [CrossRef] [Green Version]
- Simioni, J.P.D.; Guasselli, L.A.; de Oliveira, G.G.; Ruiz, L.F.C.; de Oliveira, G. A comparison of data mining techniques and multi-sensor analysis for inland marshes delineation. Wetl. Ecol. Manag. 2020, 28, 577–594. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, S.; Zang, S. Lake Wetland Classification Based on an SVM-CNN Composite Classifier and High-resolution Images Using Wudalianchi as an Example. J. Coast. Res. 2019, 93(sp1), 153. [Google Scholar] [CrossRef]
- Corcoran, J.; Knight, J.; Gallant, A. Influence of Multi-Source and Multi-Temporal Remotely Sensed and Ancillary Data on the Accuracy of Random Forest Classification of Wetlands in Northern Minnesota. Remote Sens. 2013, 5, 3212–3238. [Google Scholar] [CrossRef] [Green Version]
- Baker, C.; Lawrence, R.; Montagne, C.; Patten, D. Mapping Wetlands and Riparian Areas Using Landsat ETM+ Imagery and Decision-Tree-Based Models. Wetlands 2006, 26, 465–474. [Google Scholar] [CrossRef]
- Gosselin, G.; Touzi, R.; Cavayas, F. Polarimetric Radarsat-2 wetland classification using the Touzi decomposition: Case of the Lac Saint-Pierre Ramsar wetland. Can. J. Remote Sens. 2014, 39, 491–506. [Google Scholar] [CrossRef]
- Soltani, K.; Amiri, A.; Zeynoddin, M.; Ebtehaj, I.; Gharabaghi, B.; Bonakdari, H. Forecasting monthly fluctuations of lake surface areas using remote sensing techniques and novel machine learning methods. Theor. Appl. Climatol. 2021, 143, 713–735. [Google Scholar] [CrossRef]
- Cai, Y.; Li, X.; Zhang, M.; Lin, H. Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data. Int. J. Appl. Earth Obs. 2020, 92, 102164. [Google Scholar] [CrossRef]
- Fu, B.; Zuo, P.; Liu, M.; Lan, G.; He, H.; Lao, Z.; Zhang, Y.; Fan, D.; Gao, E. Classifying vegetation communities karst wetland synergistic use of image fusion and object-based machine learning algorithm with Jilin-1 and UAV multispectral images. Ecol. Indic. 2022, 140, 108989. [Google Scholar] [CrossRef]
- Mahdavi, S.; Salehi, B.; Granger, J.; Amani, M.; Brisco, B.; Huang, W. Remote sensing for wetland classification: A comprehensive review. GISci. Remote Sens. 2018, 55, 623–658. [Google Scholar] [CrossRef]
- Zhou, H.; Xiao, F.; Zhou, B.; Mao, X.; Ji, H.; Ma, J.; Wang, W.; Song, W.; Ma, C.; Yandi, S.; et al. Present situation, problems and protection strategies of wetland resources in Qinghai Province. Qinghai Sci. Technol. 2021, 28, 21–26. [Google Scholar]
- Ma, T.; She, Y.; Zhao, L.; Hu, B.; Feng, X.; Zhao, J.; Zhao, Z. Alpine Wetland Evolution and Their Response to Climate Change in the Yellow-River-Source National Park from 2000 to 2020. Water 2022, 14, 2351. [Google Scholar] [CrossRef]
- Lu, M.; Zou, Y.; Xun, Q.; Yu, Z.; Jiang, M.; Sheng, L.; Lu, X.; Wang, D. Anthropogenic disturbances caused declines in the wetland area and carbon pool in China during the last four decades. Glob. Chang. Biol. 2021, 27, 3837–3845. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Chang, J. Examining human disturbances and inundation dynamics in China’s marsh wetlands by using time series remote sensing data. Sci. Total Environ. 2023, 863, 160961. [Google Scholar] [CrossRef] [PubMed]
- Yang, J. Studies on eco-environmental change in source regions of the Yangtze and Yellow Rivers of China: Present and future. Sci. Cold Arid. Reg. 2019, 11, 173–183. [Google Scholar]
- Yan, W.; Wang, Y.; Chaudhary, P.; Ju, P.; Zhu, Q.; Kang, X.; Chen, H.; He, Y. Effects of climate change and human activities on net primary production of wetlands on the Zoige Plateau from 1990 to 2015. Glob. Ecol. Conserv. 2022, 35, e2052. [Google Scholar] [CrossRef]
- Bian, H.L.; Li, W.; Li, Y.Z.; Ren, B.; Niu, Y.D.; Zeng, Z.Q. Driving forces of changes in China’s wetland area from the first (1999–2001) to second (2009–2011) National Inventory of Wetland Resources. Glob. Ecol. Conserv. 2020, 21, e00867. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Xue, B.; Zhang, M.; Tan, Z. Dynamic landscapes and the driving forces in the Yellow River Delta wetland region in the past four decades. Sci. Total Environ. 2021, 787, 147644. [Google Scholar] [CrossRef]
- Li, M.; Ma, Z. Sensible and Latent Heat Flux Variability and Response to Dry–Wet Soil Moisture Zones Across China. Bound.-Layer Meteorol. 2015, 154, 157–170. [Google Scholar] [CrossRef]
- Fan, S.; Qin, J.; Sun, H.; Jia, Z.; Chen, Y. Alpine soil microbial community structure and diversity are largely influenced by moisture content in the Zoige wetland. Int. J. Environ. Sci. 2022, 19, 4369–4378. [Google Scholar] [CrossRef]
- Zheng, J.; Dong, D.; Dong, X.; Liu, J. China Wetland Resources Qinghai Volume; China Forestry Publishing House: Beijing, China, 2015. [Google Scholar]
- Lang, Q.; Niu, Z.; Hong, X.; Yang, X. Remote Sensing Monitoring and Change Analysis of Wetlands in the Tibetan Plateau. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 230–237. [Google Scholar]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Jia, L.; Zhao, T. A 21-year dataset (2000–2020) of gap-free global daily surface soil moisture at 1-km grid resolution. Sci. Data 2023, 10, 139. [Google Scholar] [CrossRef]
- Huang, H.; Wang, J.; Liu, C.; Liang, L.; Li, C.; Gong, P. The migration of training samples towards dynamic global land cover mapping. ISPRS J. Photogramm. 2020, 161, 27–36. [Google Scholar] [CrossRef]
- Yan, X.; Niu, Z. Reliability Evaluation and Migration of Wetland Samples. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8089–8099. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Kotaridis, I.; Lazaridou, M. Remote sensing image segmentation advances: A meta-analysis. ISPRS J. Photogramm. 2021, 173, 309–322. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Foody, G.M. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sens. Environ. 2020, 239, 111630. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, U. Monthly Analysis of Wetlands Dynamics Using Remote Sensing Data. ISPRS Int. J. Geo-Inf. 2018, 7, 411. [Google Scholar] [CrossRef] [Green Version]
- Huo, X.; Niu, Z.; Zhang, B.; Liu, L.; Li, X. Research on Remote Sensing Feature Selection for Alpine Wetland Classification. Natl. Remote Sens. Bull. 2022, 27, 1045–1060. [Google Scholar] [CrossRef]
- Chen, T.; Bao, A.; Jiapaer, G.; Guo, H.; Zheng, G.; Jiang, L.; Chang, C.; Tuerhanjiang, L. Disentangling the relative impacts of climate change and human activities on arid and semiarid grasslands in Central Asia during 1982–2015. Sci. Total Environ. 2019, 653, 1311–1325. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Q.; Zhang, Z.; Tong, L.; Wang, Z.; Li, J. Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Sci. Total Environ. 2019, 690, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.L.; Ding, Q.N.; Meng, B.P.; Lv, Y.Y.; Liu, C.; Zhang, X.Y.; Sun, Y.; Li, M.; Yi, S.H. The Relative Contributions of Climate and Grazing on the Dynamics of Grassland NPP and PUE on the Qinghai-Tibet Plateau. Remote Sens. 2021, 13, 3424. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 324, 1379–1389. [Google Scholar] [CrossRef]
- Zhang, B.; Niu, Z.; Zhang, D.; Huo, X. Dynamic Changes and Driving Forces of Alpine Wetlands on the Qinghai–Tibetan Plateau Based on Long-Term Time Series Satellite Data: A Case Study in the Gansu Maqu Wetlands. Remote Sens. 2022, 14, 4147. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, B.; Shi, F.; Chen, Q.; Su, S. Study on Information Extraction Method of Alpine Wetland in Qinghai-Xizang Plateau based on Remote Sensing Data of GF-1 Satellite——Taking Maduo County for Example. Plateau Meteorol. 2020, 39, 1309–1317. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Feher, L.C.; Osland, M.J.; McKee, K.L.; Whelan, K.R.T.; Coronado-Molina, C.; Sklar, F.H.; Krauss, K.W.; Howard, R.J.; Cahoon, D.R.; Lynch, J.C.; et al. Soil Elevation Change in Mangrove Forests and Marshes of the Greater Everglades: A Regional Synthesis of Surface Elevation Table-Marker Horizon (SET-MH) Data. Estuaries Coasts 2022. [Google Scholar] [CrossRef]
- Gao, W.; Shen, F.; Tan, K.; Zhang, W.; Liu, Q.; Lam, N.S.N.; Ge, J. Monitoring terrain elevation of intertidal wetlands by utilising the spatial-temporal fusion of multi-source satellite data: A case study in the Yangtze (Changjiang) Estuary. Geomorphology 2021, 383, 107683. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, X.; Zhang, X.; Wang, J.; Wang, X. Response of spatio-temporal variation of land surface phenology to alpine wetland landscape evolution from 1990 to 2020. Acta Ecol. Sin. 2023, 21. [Google Scholar]
- Li, X.L.; Gao, J.; Brierley, G.; Qiao, Y.M.; Zhang, J.; Yang, Y.W. Rangeland Degradation on the Qinghai-Tibet Plateau: Implications for Rehabilitation. Land Degrad. Dev. 2013, 24, 72–80. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, J.; Cheng, X. Advances in impact of climate change and human activities on wetlands on the Tibetan Plateau. Acta Ecol. Sin. 2023, 43, 2180–2193. [Google Scholar]
- Shen, X.; Zhang, J.; Lu, X. Spatio-temporal change of marshes NDVI and its response to climate change in the Qinghai-Tibet Plateau. Acta Ecol. Sin. 2020, 40, 6259–6268. [Google Scholar]
- Li, Y.; Hou, Z.; Zhang, L.; Song, C.; Piao, S.; Lin, J.; Peng, S.; Fang, K.; Yang, J.; Qu, Y.; et al. Rapid expansion of wetlands on the Central Tibetan Plateau by global warming and El Nino. Sci. Bull. 2023, 5, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yan, F.; Lu, Q. Spatiotemporal Variation of Vegetation on the Qinghai–Tibet Plateau and the Influence of Climatic Factors and Human Activities on Vegetation Trend (2000–2019). Remote Sens. 2020, 12, 3150. [Google Scholar] [CrossRef]
- Jin, Z.; You, Q.; Wu, F.; Sun, B.; Cai, Z. Changes of climate and climate extremes in the Three-Rivers Headwaters’ Region over the Tibetan Plateau during the past 60 years. Trans. Atmos. Sci. 2020, 43, 1042–1055. [Google Scholar]
- Sun, Q.; Liu, W.; Gao, Y.; Li, J.; Yang, C. Spatiotemporal Variation and Climate Influence Factors of Vegetation Ecological Quality in the Sanjiangyuan National Park. Sustainability 2020, 12, 6634. [Google Scholar] [CrossRef]
- Xu, S.; Yu, Z.; Yang, C.; Ji, X.; Zhang, K. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agric. For. Meteorol. 2018, 263, 118–129. [Google Scholar] [CrossRef]
- Wei, J.; Wang, W.; Shao, Q.; Rong, Y.; Xing, W.; Liu, C. Influence of mature El Niño-Southern Oscillation phase on seasonal precipitation and streamflow in the Yangtze River Basin, China. Int. J. Climatol. 2020, 40, 3885–3905. [Google Scholar] [CrossRef]
- Dong, Y.; Zhai, J.; Zhao, Y.; Li, H.; Qingming, W.; Shan, J.; Huanyu, C.; Ding, Z. Teleconnection patterns of precipitation in the Three-River Headwaters region, China. Environ. Res. Lett. 2020, 15, 104050. [Google Scholar] [CrossRef]
- Xi, Y.; Miao, C.; Wu, J.; Duan, Q.; Lei, X.; Li, H. Spatiotemporal Changes in Extreme Temperature and Precipitation Events in the Three-Rivers Headwater Region, China. J. Geophys. Res. Atmos. 2018, 123, 5827–5844. [Google Scholar] [CrossRef]
- Qu, Y.; Zhu, Z.; Montzka, C.; Chai, L.; Liu, S.; Ge, Y.; Liu, J.; Lu, Z.; He, X.; Zheng, J. Inter-comparison of several soil moisture downscaling methods over the Qinghai-Tibet Plateau, China. J. Hydrol. 2021, 592, 125616. [Google Scholar] [CrossRef]
- Wang, J.; Xu, D. Artificial Neural Network-Based Microwave Satellite Soil Moisture Reconstruction over the Qinghai-Tibet Plateau, China. Remote Sens. 2022, 13, 5156. [Google Scholar] [CrossRef]
- Ganjurjav, H.; Gao, Q.; Gornish, E.S.; Schwartz, M.W.; Liang, Y.; Cao, X.; Zhang, W.; Zhang, Y.; Li, W.; Wan, Y.; et al. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai–Tibetan Plateau. Agric. For. Meteorol. 2016, 223, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Peng, F.; You, Q.; Xu, M.; Guo, J.; Wang, Y.; Xue, X. Effects of Warming and Clipping on Ecosystem Carbon Fluxes across Two Hydrologically Contrasting Years in an Alpine Meadow of the Qinghai-Tibet Plateau. PLoS ONE 2014, 9, e109319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.; Li, X.; Liu, L.; Christensen, T.R.; Jiang, Z.; Ma, Y.; Wu, X.; Yao, H.; López-Blanco, E. Radiation, soil water content, and temperature effects on carbon cycling in an alpine swamp meadow of the northeastern Qinghai–Tibetan Plateau. Biogeosciences 2022, 19, 861–875. [Google Scholar] [CrossRef]
Remote Sensing Image | Dataset | Main Band Information |
---|---|---|
Landsat 5 TM | USGS Landsat 5 Level 2, Collection 2, Tier 1 | B1 Blue 0.45–0.52 μm 30 m B2 Green 0.52–0.60 μm 30 m B3 Red 0.63–0.69 μm 30 m B4 NIR 0.76–0.90 μm 30 m B5 SWIR1 1.55–1.75 μm 30 m B6 LWIR 10.40–12.50 μm 120 m/60 m B7 SWIR2 2.08–2.35 μm 30 m |
Landsat 7 ETM+ | USGS Landsat 7 Level 2, Collection 2, Tier 1 | |
Landsat 8 OLI | USGS Landsat 8 Level 2, Collection 2, Tier 1 | B2 Blue 0.45–0.52 μm 30 m B3 Green 0.53–0.60 μm 30 m B4 Red 0.63–0.68 μm 30 m B5 NIR 0.85–0.89 μm 30 m B6 SWIR1 1.56–1.67 μm 30 m B7 SWIR2 2.10–2.30 μm 30 m |
Wetland Category | Landsat Remote Sensing Image | Description |
---|---|---|
River wetland | Natural linear waterbody with flowing water in the wetland area | |
Lake wetland | Natural polygon waterbody with standing water in the wetland area | |
Marsh wetland | Naturally formed, the center is mostly patchy, and low vegetation covers the surrounding area | |
Marsh meadow | Natural wetland and surrounded by large areas of tall grass |
Primary Classification Feature | Secondary Classification Feature | Tertiary Classification Feature | Formula | |
---|---|---|---|---|
Landsat 5 7 | Landsat 8 | |||
Spectral feature | Band | Blue, Green, Red, NIR, SWIR1, SWIR2 | Blue (B1), Green (B2), Red (B3), NIR (B4), SWIR1 (B5), SWIR2 (B7) | Blue (B2), Green (B3), Red (B4), NIR (B5), SWIR1 (B6), SWIR2 (B7) |
Spectral index | Water index | MNDWI | ||
NDWI | ||||
NDWI_B | ||||
RNDWI | ||||
EWI | ||||
SWI | ||||
AWEI | ||||
UGWI | ||||
Vegetation index | NDVI | |||
VIgreen | ||||
RVI | ||||
RDVI | ||||
MSR | ||||
MCARI | ||||
Red edge index | CIre | |||
Build-up index | NDBI | |||
Bare land index | BSI | |||
Snow index | NDSI | |||
Topographic feature | Elevation | |||
Slope | ||||
Aspect |
Year | User Accuracy | Overall Accuracy | Kappa | |||||
---|---|---|---|---|---|---|---|---|
River Wetland | Lake Wetland | Marsh Wetland | Marsh Meadow | Grassland | Others | |||
2000 | 0.8024 | 0.9687 | 0.6923 | 0.7567 | 0.8132 | 0.9230 | 0.8427 | 0.7951 |
2001 | 0.8513 | 0.9821 | 0.5714 | 0.8055 | 0.7398 | 0.9459 | 0.8309 | 0.7799 |
2002 | 0.7938 | 0.8936 | 0.7647 | 0.7000 | 0.8000 | 0.9673 | 0.8311 | 0.7818 |
2003 | 0.8314 | 0.9791 | 0.6500 | 0.8717 | 0.7572 | 0.9540 | 0.8377 | 0.7915 |
2004 | 0.8666 | 0.9814 | 0.7272 | 0.7878 | 0.7777 | 0.8965 | 0.8409 | 0.7907 |
2005 | 0.8674 | 0.9375 | 0.9000 | 0.7428 | 0.8000 | 0.9500 | 0.8594 | 0.8192 |
2006 | 0.8805 | 0.9076 | 0.8333 | 0.7560 | 0.7924 | 0.9462 | 0.8535 | 0.8110 |
2007 | 0.8461 | 0.9800 | 0.6306 | 0.7560 | 0.7732 | 0.9566 | 0.8426 | 0.7954 |
2008 | 0.8536 | 0.9999 | 0.8333 | 0.7878 | 0.8553 | 0.9565 | 0.8878 | 0.8538 |
2009 | 0.8409 | 0.9999 | 0.8181 | 0.7407 | 0.7793 | 0.9277 | 0.8523 | 0.8106 |
2010 | 0.8764 | 0.9999 | 0.7500 | 0.7272 | 0.8079 | 0.9101 | 0.8659 | 0.8279 |
2011 | 0.9066 | 0.9999 | 0.7692 | 0.6410 | 0.8344 | 0.9340 | 0.8689 | 0.8311 |
2012 | 0.9062 | 0.9655 | 0.6666 | 0.6086 | 0.7160 | 0.9750 | 0.8295 | 0.7777 |
2013 | 0.9012 | 0.9649 | 0.7333 | 0.8461 | 0.7973 | 0.9635 | 0.8738 | 0.8393 |
2014 | 0.8875 | 0.9830 | 0.7500 | 0.7931 | 0.7583 | 0.9518 | 0.8578 | 0.8175 |
2015 | 0.8593 | 0.9999 | 0.6428 | 0.8400 | 0.7417 | 0.9489 | 0.8412 | 0.7926 |
2016 | 0.8536 | 0.9800 | 0.8571 | 0.6304 | 0.7758 | 0.9999 | 0.8379 | 0.7882 |
2017 | 0.8333 | 0.9642 | 0.8571 | 0.7407 | 0.7939 | 0.9615 | 0.8543 | 0.8082 |
2018 | 0.9090 | 0.9365 | 0.9166 | 0.6410 | 0.7435 | 0.9382 | 0.8341 | 0.7881 |
2019 | 0.9047 | 0.9791 | 0.6400 | 0.6808 | 0.8040 | 0.9021 | 0.8400 | 0.7964 |
2020 | 0.8645 | 0.9682 | 0.7391 | 0.7209 | 0.8074 | 0.9459 | 0.8521 | 0.8118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.; Zhao, L.; She, Y.; Hu, B.; Feng, X.; Gongbao, J.; Zhang, W.; Zhao, Z. Identifying the Driving Forces of Alpine Wetland Dynamic Changes in the Yellow River Source National Park from 2000 to 2020. Water 2023, 15, 2557. https://doi.org/10.3390/w15142557
Ma T, Zhao L, She Y, Hu B, Feng X, Gongbao J, Zhang W, Zhao Z. Identifying the Driving Forces of Alpine Wetland Dynamic Changes in the Yellow River Source National Park from 2000 to 2020. Water. 2023; 15(14):2557. https://doi.org/10.3390/w15142557
Chicago/Turabian StyleMa, Tao, Li Zhao, Yandi She, Bixia Hu, Xueke Feng, Jiancuo Gongbao, Wei Zhang, and Zhizhong Zhao. 2023. "Identifying the Driving Forces of Alpine Wetland Dynamic Changes in the Yellow River Source National Park from 2000 to 2020" Water 15, no. 14: 2557. https://doi.org/10.3390/w15142557
APA StyleMa, T., Zhao, L., She, Y., Hu, B., Feng, X., Gongbao, J., Zhang, W., & Zhao, Z. (2023). Identifying the Driving Forces of Alpine Wetland Dynamic Changes in the Yellow River Source National Park from 2000 to 2020. Water, 15(14), 2557. https://doi.org/10.3390/w15142557