Characteristics and Connectivity Analysis of Hidden Karst in Jurong Pumped Storage Power Station Area, China
Abstract
:1. Introduction
2. Case Study
2.1. Project Overview
2.2. Topographic Features
2.3. Lithology
2.4. Geological Structure
2.5. Groundwater Types
3. Methods
3.1. Specific Solubility and Specific Corrosion
3.2. Analytical Method for Chemical Composition of Groundwater
3.3. Television Imaging Method in Borehole
3.4. Groundwater Tracing Test
3.5. Water Pressure Test
4. Results
4.1. Karst Development Period
4.2. Karst Solubility
4.3. Fault and Karst
4.4. Elevation Characteristics of Karst Development
4.5. Characteristics of Karst Groundwater
4.6. Double-Layer Water Level and Karst
4.7. Characteristics of Karst Leakage and Ecological Impact
4.8. Tracer Tests and Karst
4.8.1. Tracer Tests in Underground Powerhouse
4.8.2. Tracer Test in Underground Powerhouse and Its Surroundings
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nazik, L.; Poyraz, M.; Karabıyıkoğlu, M. Karstic landscapes and landforms in Turkey. In Landscapes and Landforms of Turkey; Springer: Cham, Switzerland, 2019; pp. 181–196. [Google Scholar]
- Gutierrez, F.; Cooper, A.H.; Johnson, K.S. Identification, prediction, and mitigation of sinkhole hazards in evaporite karst areas. Environ. Geol. 2008, 53, 1007–1022. [Google Scholar] [CrossRef] [Green Version]
- He, K.Q.; Yu, G.M.; Lu, Y.R. Palaeo-karst collapse pillars in northern China and their damage to the geological environments. Environ. Geol. 2009, 58, 1029–1040. [Google Scholar] [CrossRef]
- Zhao, Y.D.; Shi, Y.; Wu, F.H.; Sun, R.; Feng, H. Characterization of the sinkhole failure mechanism induced by concealed cave: A case study. Eng. Fail. Anal. 2021, 119, 105017. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.Z.; Liu, Q.M.; Yuan, A.Y.; He, S.F.; Bai, Y.S. Mechanism Analysis of Delayed Water Inrush from Karst Collapse Column during Roadway Excavation Based on Seepage Transition Theory: A Case Study in PanEr Coal Mine. Energies 2022, 15, 4987. [Google Scholar] [CrossRef]
- Uromeihy, A. The Lar Dam; an example of infrastructural development in a geologically active karstic region. J. Asian Earth Sci. 2000, 18, 25–31. [Google Scholar] [CrossRef]
- Mozafari, M.; Milanovic, P.; Jamei, J. Water leakage problems at the Tangab Dam Reservoir (SW Iran), case study of the complexities of dams on karst. Bull. Eng. Geol. Environ. 2021, 80, 7989–8007. [Google Scholar] [CrossRef]
- Pankow, J.F.; Johnson, R.L.; Hewetson, J.P.; Cherry, J.A. An evaluation of contaminant migration patterns at two waste disposal sites on fractured porous media in terms of the equivalent porous medium (EPM) model. J. Contam. Hydrol. 1986, 1, 65–76. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Mace, R.E.; Barrett, M.E.; Smith, B. Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J. Hydrol. 2003, 276, 137–158. [Google Scholar] [CrossRef]
- Atkinson, T.C. Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). J. Hydrol. 1977, 35, 93–110. [Google Scholar] [CrossRef]
- Robineau, T.; Tognelli, A.; Goblet, P.; Renard, F.; Schaper, L. A double medium approach to simulate groundwater level variations in a fissured karst aquifer. J. Hydrol. 2018, 565, 861–875. [Google Scholar] [CrossRef]
- Valdes-Abellan, J.; Pardo, M.A.; Jodar-Abellan, A.; Pla, C.; Fernandez-Mejuto, M. Climate change impact on karstic aquifer hydrodynamics in southern Europe semi-arid region using the KAGIS model. Sci. Total Environ. 2020, 723, 138110. [Google Scholar] [CrossRef] [PubMed]
- Ollivier, C.; Mazzilli, N.; Olioso, A.; Chalikakis, K.; Carriere, S.D.; Danquigny, C.; Emblanch, C. Karst recharge-discharge semi distributed model to assess spatial variability of flows. Sci. Total Environ. 2020, 703, 134368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.T.; Xu, G.Q.; Zhan, H.B.; Zheng, J.B.; Wang, M.H.; Liu, M.C.; Pan, S.Q.; Wang, N. Formation mechanisms of paleokarst and karst collapse columns of the Middle Cambrian-Lower Ordovician carbonates in Huainan coalfield, Northern China. J. Hydrol. 2021, 601, 126634. [Google Scholar] [CrossRef]
- Zhang, H.T.; Xu, G.Q.; Zhan, H.B.; Li, X.; He, J.H. Simulation of multi-period paleotectonic stress fields and distribution prediction of natural Ordovician fractures in the Huainan coalfield, Northern China. J. Hydrol. 2022, 612, 128291. [Google Scholar] [CrossRef]
- Bai, Y.E.; Liu, Q.; Gu, Z.F.; Lu, Y.R.; Sheng, Z.P. The dissolution mechanism and karst development of carbonate rocks in karst rocky desertification area of Zhenfeng-Guanling-Huajiang County, Guizhou, China. Carbonate Evaporite 2019, 34, 45–51. [Google Scholar] [CrossRef]
- Zhang, K.N.; Zhu, K.F.; He, Y.; Zhang, Y.Y. Experimental study on karst development characteristics of calcrete and analysis of its dissolution mechanism. Carbonate Evaporite 2022, 37, 41. [Google Scholar] [CrossRef]
- Huang, Y.; Hou, X.L.; Fu, Z.M.; Wang, J.G. Detection of leakage paths at the Wanyao dam body in Southwest China by hydrochemical analysis and tracer testing. Environ. Earth Sci. 2018, 77, 791. [Google Scholar] [CrossRef]
- Qiu, H.Y.; Hu, R.; Huang, Y.; Gwenzi, W. Detection and Quantification of Dam Leakages Based on Tracer Tests: A Field Case Study. Water 2022, 14, 1448. [Google Scholar] [CrossRef]
- Barbieri, M.; Boschetti, T.; Petitta, M.; Tallini, M. Stable isotope (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy). Appl. Geochem. 2005, 20, 2063–2081. [Google Scholar] [CrossRef]
- Jang, J.; Lee, J.Y.; Kim, H. Characteristics of Hydrochemistry and Stable Isotopes in a Karst Region in Samcheok, Republic of Korea. Water 2021, 13, 213. [Google Scholar] [CrossRef]
- Palcsu, L.; Gessert, A.; Turi, M.; Kovacs, A.; Futo, I.; Orsovszki, J.; Puskas-Preszner, A.; Temovski, M.; Koltai, G. Long-term time series of environmental tracers reveal recharge and discharge conditions in shallow karst aquifers in Hungary and Slovakia. J Hydrol. Reg. Stud. 2021, 36, 100858. [Google Scholar] [CrossRef]
- Wang, Z.J.; Guo, X.L.; Kuang, Y.; Chen, Q.L.; Luo, M.M.; Zhou, H. Recharge sources and hydrogeochemical evolution of groundwater in a heterogeneous karst water system in Hubei Province, Central China. Appl. Geochem. 2022, 136, 105165. [Google Scholar] [CrossRef]
- Peng, T.R.; Wang, C.H. Identification of sources and causes of leakage on a zoned earth dam in northern Taiwan: Hydrological and isotopic evidence. Appl. Geochem. 2008, 23, 2438–2451. [Google Scholar] [CrossRef]
- Vasic, L.; Milanovic, S.; Puskas-Preszner, A.; Palcsu, L. Determination of the groundwater-leakage mechanism (binary mixing) in a karstic dam site using thermometry and isotope approach (HPP Visegrad, Bosnia, and Herzegovina). Environ. Earth Sci. 2020, 79, 174. [Google Scholar] [CrossRef]
- Noraee-Nejad, S.; Sedghi-Asl, M.; Parvizi, M.; Shokrollahi, A. Salt tracer experiment through an embankment dam. IJST-Trans. Civ. Eng. 2021, 45, 2787–2797. [Google Scholar] [CrossRef]
- Al-Fares, W. Contribution of the geophysical methods in characterizing the water leakage in Afamia B dam, Syria. J. Appl. Geophys. 2011, 75, 464–471. [Google Scholar] [CrossRef]
- Yilmaz, S.; Koksoy, M. Electrical resistivity imaging and dye tracer test for the estimation of water leakage paths from reservoir of Akdegirmen Dam in Afyonkarahisar, Turkey. Environ. Earth Sci. 2017, 76, 829. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, S.; Wu, S.; Huang, H.; Ding, S. Hidden karst in dam foundation of Cuijiaying Hydroproject on Hanjiang River. Chin. J. Geotech. Eng. 2010, 32, 1772–1779. [Google Scholar]
- Fang, Y.; Li, Z.; Fan, G.; Jiang, J.; Bi, C. Application of monitoring data, water pressure test and comprehensive geophysical method to identification of leakage of a core dam. Water Resour. Hydropower Eng. 2022, 53, 87–97. [Google Scholar] [CrossRef]
- Zhang, W.B.; Shen, Z.Z.; Chen, G.Y.; Zhang, W.L.; Xu, L.Q.; Ren, J.; Wang, F. Optimization design and assessment of the effect of seepage control at reservoir sites under karst conditions: A case study in Anhui Province, China. Hydrogeol. J. 2021, 29, 1831–1855. [Google Scholar] [CrossRef]
- Foyo, A.; Tomillo, C.; Maycotte, J.I.; Willis, P. Geological features, permeability and groutability characteristics of the Zimapan Dam Foundation, Hidalgo State, Mexico. Eng. Geol. 1997, 46, 157–174. [Google Scholar] [CrossRef]
- Li, P.; Lu, W.X.; Long, Y.Q.; Yang, Z.P.; Li, J. Seepage analysis in a fractured rock mass: The upper reservoir of Pushihe pumped-storage power station in China. Eng. Geol. 2008, 97, 53–62. [Google Scholar] [CrossRef]
- Berhane, G.; Walraevens, K. Geological challenges in constructing the proposed Geba dam site, northern Ethiopia. Bull. Eng. Geol. Environ. 2013, 72, 339–352. [Google Scholar] [CrossRef]
- Barani, H.R.; Lashkaripour, G.; Ghafoori, M. Predictive permeability model of faults in crystalline rocks; verification by joint hydraulic factor (JH) obtained from water pressure tests. J. Earth Syst. Sci. 2014, 123, 1325–1334. [Google Scholar] [CrossRef] [Green Version]
- Banks, D.; Odling, N.E.; Skarphagen, H.; RohrTorp, E. Permeability and stress in crystalline rocks. Terra Nova 1996, 8, 223–235. [Google Scholar] [CrossRef]
- Manoutsoglou, E.; Lazos, I.; Steiakakis, E.; Vafeidis, A. The Geomorphological and Geological Structure of the Samaria Gorge, Crete, Greece-Geological Models Comprehensive Review and the Link with the Geomorphological Evolution. Appl. Sci. 2022, 12, 10670. [Google Scholar] [CrossRef]
- Stober, I.; Bucher, K. Origin of salinity of deep groundwater in crystalline rocks. Terra Nova 1999, 11, 181–185. [Google Scholar] [CrossRef]
- Roje-Bonacci, T.; Bonacci, O. The possible negative consequences of underground dam and reservoir construction and operation in coastal karst areas: An example of the hydro-electric power plant (HEPP) Ombla near Dubrovnik (Croatia). Nat. Hazards Earth Syst. Sci. 2013, 13, 2041–2052. [Google Scholar] [CrossRef] [Green Version]
- Jemcov, I. Impact assessment of grout curtain on the hydraulic behavior in karst, based on time a series analysis. Environ. Earth Sci. 2019, 78, 415. [Google Scholar] [CrossRef]
- Lu, M.; Wang, X.D.; Yue, F.J.; Liu, Z.H.; Shi, Z.Y.; Zhang, P. The effect of reservoir expansion from underground karst cave to surface reservoir on water quality in southwestern China. Environ. Sci. Pollut. Res. 2023, 30, 24718–24728. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Dong, X.; Miao, K.; Yang, W.; Huang, Y. Characteristics and Connectivity Analysis of Hidden Karst in Jurong Pumped Storage Power Station Area, China. Water 2023, 15, 2562. https://doi.org/10.3390/w15142562
Chen L, Dong X, Miao K, Yang W, Huang Y. Characteristics and Connectivity Analysis of Hidden Karst in Jurong Pumped Storage Power Station Area, China. Water. 2023; 15(14):2562. https://doi.org/10.3390/w15142562
Chicago/Turabian StyleChen, Liqiang, Xiaosong Dong, Kehan Miao, Wenjie Yang, and Yong Huang. 2023. "Characteristics and Connectivity Analysis of Hidden Karst in Jurong Pumped Storage Power Station Area, China" Water 15, no. 14: 2562. https://doi.org/10.3390/w15142562
APA StyleChen, L., Dong, X., Miao, K., Yang, W., & Huang, Y. (2023). Characteristics and Connectivity Analysis of Hidden Karst in Jurong Pumped Storage Power Station Area, China. Water, 15(14), 2562. https://doi.org/10.3390/w15142562