Optimization of Multi-Reservoir Flood Control Operating Rules: A Case Study for the Chaobai River Basin in China
Abstract
:1. Introduction
2. Methods and Materials
2.1. Chaobai River Basin
2.2. Multi-Reservoir Flood Control Operation Model
2.3. Operating Rules
2.4. Investigated Floods
2.5. NSGA-II Solving Method
3. Results and Discussion
3.1. Impact of Inter-Basin Water Transfer on the Flood Control Situation of the Miyun Reservoir
3.2. Flood Regulation
3.3. Compariosn to the Current Operating Rules
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jain, S.K.; Shilpa, L.S.; Rani, D.; Sudheer, K.P. State-of-the-art review: Operation of multi-purpose reservoirs during flood season. J. Hydrol. 2023, 618, 129165. [Google Scholar] [CrossRef]
- Wan, W.; Zhao, J.; Lund, J.R.; Zhao, T.; Lei, X.; Wang, H. Optimal Hedging Rule for Reservoir Refill. J. Water Res. Plan. Man. 2016, 142, 4016051. [Google Scholar] [CrossRef]
- Glavan, M.; Cvejić, R.; Zupanc, V.; Knapič, M.; Pintar, M. Agricultural production and flood control dry detention reservoirs: Example from Lower Savinja Valley, Slovenia. Environ. Sci. Policy 2020, 114, 394–402. [Google Scholar] [CrossRef]
- Ding, W.; Zhang, C.; Cai, X.; Li, Y.; Zhou, H. Multi-objective hedging rules for flood water conservation. Water Resour. Res. 2017, 53, 1963–1981. [Google Scholar] [CrossRef]
- Zhao, T.; Zhao, J.; Lund, J.R.; Yang, D. Optimal Hedging Rules for Reservoir Flood Operation from Forecast Uncertainties. J. Water Res. Plan. Man. 2014, 140, 4014041. [Google Scholar] [CrossRef]
- Chou, F.N.; Wu, C. Stage-wise optimizing operating rules for flood control in a multi-purpose reservoir. J. Hydrol. 2015, 521, 245–260. [Google Scholar] [CrossRef]
- Lei, X.; Zhang, J.; Wang, H.; Wang, M.; Khu, S.; Li, Z. Deriving mixed reservoir operating rules for flood control based on weighted non-dominated sorting genetic algorithm II. J. Hydrol. 2018, 564, 967–983. [Google Scholar] [CrossRef]
- Meng, X.; Chang, J.; Wang, X.; Wang, Y.; Wang, Z. Flood control operation coupled with risk assessment for cascade reservoirs. J. Hydrol. 2019, 572, 543–555. [Google Scholar] [CrossRef]
- Lu, Q.; Zhong, P.; Xu, B.; Zhu, F.; Huang, X.; Wang, H.; Ma, Y. Stochastic programming for floodwater utilization of a complex multi-reservoir system considering risk constraints. J. Hydrol. 2021, 599, 126388. [Google Scholar] [CrossRef]
- Arnold, J.L. The Evolution of the 1936 Flood Control Act; Office of History; US Army Corps of Engineers: Fort Belvoir, VA, USA, 1988.
- Windsor, J.S. Optimization model for the operation of flood control systems. Water Resour. Res. 1973, 9, 1219–1226. [Google Scholar] [CrossRef]
- Labadie, J.W. Optimal operation of multireservoir systems: State-of-the-art review. J. Water Res. Plan. Man. 2004, 130, 93–111. [Google Scholar] [CrossRef]
- Guo, S.; Chen, J.; Li, Y.; Liu, P.; Li, T. Joint operation of the multi-reservoir system of the Three Gorges and the Qingjiang cascade reservoirs. Energies 2011, 4, 1036–1050. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, H.; Ardakani, M.K.; Ahmadian, M.; Tang, X. Multi-reservoir utilization planning to optimize hydropower energy and flood control simultaneously. Environ. Process. 2020, 7, 41–52. [Google Scholar] [CrossRef]
- Qi, Y.; Yu, J.; Li, X.; Wei, Y.; Miao, Q. Reservoir flood control operation using multi-objective evolutionary algorithm with decomposition and preferences. Appl. Soft Comput. 2017, 50, 21–33. [Google Scholar] [CrossRef]
- Moridi, A.; Yazdi, J. Optimal allocation of flood control capacity for multi-reservoir systems using multi-objective optimization approach. Water Resour. Manag. 2017, 31, 4521–4538. [Google Scholar] [CrossRef]
- Ahmad, A.; El-Shafie, A.; Razali, S.F.M.; Mohamad, Z.S. Reservoir optimization in water resources: A review. Water Resour. Manag. 2014, 28, 3391–3405. [Google Scholar] [CrossRef]
- Celeste, A.B.; Billib, M. Evaluation of stochastic reservoir operation optimization models. Adv. Water Resour. 2009, 32, 1429–1443. [Google Scholar] [CrossRef]
- Kim, Y.; Sun, B.; Kim, P.; Jo, M.; Ri, T.; Pak, G. A study on optimal operation of gate-controlled reservoir system for flood control based on PSO algorithm combined with rearrangement method of partial solution groups. J. Hydrol. 2021, 593, 125783. [Google Scholar] [CrossRef]
- Zhao, T.; Cai, X.; Yang, D. Effect of streamflow forecast uncertainty on real-time reservoir operation. Adv. Water Resour. 2011, 34, 495–504. [Google Scholar] [CrossRef]
- Shim, K.; Fontane, D.G.; Labadie, J.W. Spatial decision support system for integrated river basin flood control. J. Water Res. Plan. Man. 2002, 128, 190–201. [Google Scholar] [CrossRef]
- Wan, W.; Zhao, J.; Wang, J. Revisiting water supply rule curves with hedging theory for climate change adaptation. Sustainability 2019, 11, 1827. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; McPhee, J.; Yeh, W.W.G. A diversified multiobjective GA for optimizing reservoir rule curves. Adv. Water Resour. 2007, 30, 1082–1093. [Google Scholar] [CrossRef]
- Afshar, A.; Shafii, M.; Haddad, O.B. Optimizing multi-reservoir operation rules: An improved HBMO approach. J. Hydroinform. 2011, 13, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Guo, S.; Xu, X.; Chen, J. Derivation of Aggregation-Based Joint Operating Rule Curves for Cascade Hydropower Reservoirs. Water Resour. Manag. 2011, 25, 3177–3200. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, P.; Wang, H.; Lei, X.; Zhou, Y. A Bayesian model averaging method for the derivation of reservoir operating rules. J. Hydrol. 2015, 528, 276–285. [Google Scholar] [CrossRef]
- Liu, P.; Li, L.; Chen, G.; Rheinheimer, D.E. Parameter uncertainty analysis of reservoir operating rules based on implicit stochastic optimization. J. Hydrol. 2014, 514, 102–113. [Google Scholar] [CrossRef]
- Nourani, V.; Rouzegari, N.; Molajou, A.; Hosseini Baghanam, A. An integrated simulation-optimization framework to optimize the reservoir operation adapted to climate change scenarios. J. Hydrol. 2020, 587, 125018. [Google Scholar] [CrossRef]
- Bao, Z.; Fu, G.; Wang, G.; Jin, J.; He, R.; Yan, X.; Liu, C. Hydrological projection for the Miyun Reservoir basin with the impact of climate change and human activity. Quatern Int. 2012, 282, 96–103. [Google Scholar] [CrossRef]
- Wang, Z. Status and causes of storage change in Miyun Reservoir. Beijing Water 2013, 13–16. (In Chinese) [Google Scholar]
- Xu, W.; Zhao, J.; Zhao, T.; Wang, Z. Adaptive Reservoir Operation Model Incorporating Nonstationary Inflow Prediction. J. Water Res. Plan. Man. 2014, 141, 4014099. [Google Scholar] [CrossRef]
- Ma, H.; Yang, D.; Tan, S.K.; Gao, B.; Hu, Q. Impact of climate variability and human activity on streamflow decrease in the Miyun Reservoir catchment. J. Hydrol. 2010, 389, 317–324. [Google Scholar] [CrossRef]
- Yao, J.; Sun, S.; Zhai, H.; Feger, K.; Zhang, L.; Tang, X.; Li, G.; Wang, Q. Dynamic monitoring of the largest reservoir in North China based on multi-source satellite remote sensing from 2013 to 2022: Water area, water level, water storage and water quality. Ecol. Indic. 2022, 144, 109470. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, H.; Liang, G.; Xu, H. Optimal Operation of Bidirectional Inter-Basin Water Transfer-Supply System. Water Resour. Manag. 2015, 29, 3037–3054. [Google Scholar] [CrossRef]
- Wan, W.; Guo, X.; Lei, X.; Jiang, Y.; Wang, H. A novel optimization method for multi-reservoir operation policy derivation in complex inter-basin water transfer system. Water Resour. Manag. 2018, 32, 31–51. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, X.; Zhang, X. The Drought Assessment and Its Impact Analysis in Chaobai River Basin from 1980 to 2012. Clim. Chang. Res. Lett. 2014, 3, 52–60. [Google Scholar] [CrossRef]
- Zhou, X.; Pan, X.; Zhu, Y.; Hu, Y. Research of the Mean Annual Water Balance during 1980–2013 in Chaobai River Basin. J. Nat. Resour. 2016, 31, 649–657. (In Chinese) [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, L.; Yan, M.; Dong, X.; Wu, Z.; Wei, C. The Valuation and Compensation Policies Suggestions of Main Capitals and Services of Miyun Reservoir. J. Nat. Resour. 2007, 22, 497–506. (In Chinese) [Google Scholar]
- Zhang, M.; Xue, Z.; Pan, L.; Wang, Z. Analysis on dispatching potential of Miyun Reservoir for extreme rainstorm under high water level condition. Beijing Water 2023, 7–13. (In Chinese) [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Hojjati, A.; Monadi, M.; Faridhosseini, A.; Mohammadi, M. Application and comparison of NSGA-II and MOPSO in multi-objective optimization of water resources systems. J. Hydrol. Hydromech. 2018, 66, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Crow-Miller, B.; Webber, M. Of maps and eating bitterness: The politics of scaling in China’s South-North Water Transfer Project. Political Geogr. 2017, 61, 19–30. [Google Scholar] [CrossRef]
Characteristic Water Level [m3] | Yaoqiaoyu Reservoir (R1) | Banchengzi Reservoir (R2) | Miyun Reservoir (R3) | Shachang Reservoir (R4) | Huairou Reservoir (R5) |
---|---|---|---|---|---|
Designed flood control standard [yr] | 100 | 100 | 1000 | 50 | 100 |
Flood limited water level | 463 (12.1) | 255 (5.75) | 152 (3037) | 165.5 (15.65) | 58 (39.4) |
Design flood level | 468.1 (17.37) | 258.5 (8.05) | 157.5 (3964) | 167.95 (19.05) | 64.16 (98.2) |
Check flood level | 469.78 (19.34) | 259.3 (8.63) | 158.5 (4145.4) | 170 (21.2) | 67.73 (144) |
Flood return period [yr] | 1000 | 100 | 50 | 20 | 10 |
Frequency [%] | 0.1 | 1 | 2 | 5 | 10 |
Peak flow [m3/s] | |||||
R1 (Yaoqiaoyu) | 2290 | 1500 | 1280 | 980 | 763 |
R2 (Banchengzi) | 457 | 288 | 195 | 78 | 67.2 |
R3 (Miyun) | 15,800 | 9320 | 7460 | 5120 | 3480 |
R4 (Shachang) | 1510 | 975 | 800 | 590 | 419 |
R5 (Huairou) | 7710 | 5059 | 4270 | 3280 | 2440 |
Criteria | R1 | R2 | R3 | R4 | R5 | Upstream Damage | Downstream Damage | Release from R3 |
---|---|---|---|---|---|---|---|---|
Release according to the current rules | [economic equivalence] | [106 m3] | ||||||
Z < FLWL | 0 | 0 | 0 | 0 | 0 | 15.91 | 9.1 | 479 |
FLWL Z < DFL | 80 | {600, 1000, 1500} a | a | |||||
DFL Z < CFL | 200 | {, } a | {420, 670} a | |||||
Z CFL | {, } a | |||||||
Rule parameters for the Pareto optimal | ||||||||
0.2698 | 0.3616 | 0.3528 | 0.4129 | 0.4032 | 14.4 | 8.9 | 471.6 | |
0.5586 | 0.6210 | 0 | 0.4779 | 0.0114 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, W.; Liu, Y.; Zheng, H.; Zhao, J.; Zhao, F.; Lu, Y. Optimization of Multi-Reservoir Flood Control Operating Rules: A Case Study for the Chaobai River Basin in China. Water 2023, 15, 2817. https://doi.org/10.3390/w15152817
Wan W, Liu Y, Zheng H, Zhao J, Zhao F, Lu Y. Optimization of Multi-Reservoir Flood Control Operating Rules: A Case Study for the Chaobai River Basin in China. Water. 2023; 15(15):2817. https://doi.org/10.3390/w15152817
Chicago/Turabian StyleWan, Wenhua, Yueyi Liu, Hang Zheng, Jianshi Zhao, Fei Zhao, and Yajing Lu. 2023. "Optimization of Multi-Reservoir Flood Control Operating Rules: A Case Study for the Chaobai River Basin in China" Water 15, no. 15: 2817. https://doi.org/10.3390/w15152817
APA StyleWan, W., Liu, Y., Zheng, H., Zhao, J., Zhao, F., & Lu, Y. (2023). Optimization of Multi-Reservoir Flood Control Operating Rules: A Case Study for the Chaobai River Basin in China. Water, 15(15), 2817. https://doi.org/10.3390/w15152817