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Abstract: The difficulty in determining the rheological characteristics of tailings inside reservoirs as
well as their intrinsic variability adds uncertainty to tailings dam failures in flood studies. Uncertainty
propagation in non-Newtonian hydrodynamic models stands as a great scientific challenge. This
article explores the sensibility of tailings dam breach flood mapping to rheological parameters in
Bingham and Herschel-Bulkley (H-B) models. The developed approach was based on the probabilistic
Latin Hypercube Sampling of rheological parameters. It was automated to propagate uncertainty
throughout multiple hydrodynamic simulations using the HEC-RAS v.6.1 software. Rheological
parameter ranges and distributions were based on a broad bibliographic review. Bingham models
were revealed to be more sensitive than H-B in terms of simulated min-max area values: for Bingham,
flood areas, maximum depths, and arrival times varied by 17.9%, 9.3%, and 8.2%, respectively;
for H-B, variations were 25.7%, 5.1%, and 3.9%. However, Bingham was less sensitive in terms
of hydrodynamically associated probability: high probability ratios were related to a small range
of simulated areas in Bingham, while H-B presented great variability. Finally, for each model, the
parameters that affect uncertainty the most were identified, reinforcing the importance of determining
them properly. Furthermore, the identified parameter ranges for both models should be valuable
for defining variable value boundaries for flood sensitivity tests on specific tailings materials for
other case studies. The automated algorithm can be used or adapted for specific tests with other
hydrodynamic simulations.

Keywords: non-Newtonian fluid; hyperconcentrated flow; mudflow; dam-break study; flood-risk
assessment; uncertainty boundaries; automated computational routine

1. Introduction

Failures of tailings dams occur at a significantly higher frequency compared to those
of water storage dams [1]. Recent incidents have highlighted the immense destructive
potential associated with tailings inundations [2,3]. Forecasting and mapping flood hy-
drodynamics are crucial for implementing effective risk mitigation measures. Different
uncertainties may impact flood risk assessments. During the last decade, the simula-
tion of floods resulting from tailings dam failures has commonly been performed using
Newtonian models. However, the tailings comprise a combination of fine materials and
water, and depending on the proportions in terms of solid concentration, their properties
can resemble non-Newtonian fluids (hyper-concentrated), which brings uncertainty to
dam-break studies.

Rheology investigated the flow and deformation behavior of fluids in different con-
texts [4,5]. Rheological parameters are obtained and analyzed through rheological tests
conducted on various materials over time [6–8]. Several factors can influence the variability
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of rheological parameters, including shear rate, solid concentration, pH, and tempera-
ture [9]. The effects of physical and geotechnical parameters on rheological properties
were also evaluated [10]. Different models have been employed for simulating hyper-
concentrated flows for decades [11–13].

The term “hyper-concentrated flow” commonly refers to natural mudflows or debris
flows [14]. Numerous investigations have delved into the influence of rheological param-
eters on the natural flow of mud, particularly debris flow [15–22]. These studies yielded
good results when compared to recorded events. However, for predictive applications, it is
widely recognized that the difficulties in determining representative rheological parameters,
along with their considerable spatial variability, remain significant sources of uncertainty in
this type of model [17,23,24]. Notably, the authors in [24] conducted a sensitivity analysis
of non-Newtonian hydrodynamic modeling of debris flow with regards to rheological
parameters, highlighting the relevance of these parameters in hydrodynamics.

Over the course of time, numerous in-depth investigations have been undertaken to
explore various dimensions of this uncertainty. Specifically, the author in [25] investigated
the uncertainties inherent in physical and rheological parameters during the numerical
simulation of non-Newtonian flow phenomena. The authors in [26] focused on the exami-
nation of uncertainties pertaining to input parameters employed in the modeling of natural
soil landslides within steep terrains. Moreover, the authors in [27] evaluated the param-
eter variability concerning the uncertainties associated with rheological characterization.
These studies highlighted the relevance of rheological characterization for hydrodynamic
analyses.

Sensitivity analyses have also been applied in the study of rheology, with methods such as
the Monte Carlo Method (MCM) being used to investigate various scenarios, including mud-
flow and natural debris events [26,28] and pipeline and pump flows associated with tailings
transportation [29]. The studies encompassed the utilization of Bingham models [26,28,30]
and the Voellmy model [26]. In contrast, the authors in [24] uniquely conducted a global
sensitivity analysis of the Quadratic model in FLO-2D software, employing Latin hypercube
sampling (LHS), to evaluate the impact of rheological parameters on natural mudflows.

Despite the numerous studies that have focused on these parameters in the context of
debris flows, limited attention has been given to their investigation in the context of tailings
dam failures. Studies that performed sensitivity assessments of the rheological parameters
linked to tailings dam failure, the specific subject of this article, have not been found. Despite
the potential similarity in behavior between flood wave propagation in tailings dam failures
and debris flows, there is currently a lack of studies specifically focusing on the propagation
of uncertainties in the hydrodynamic modeling of tailings dam failure floods. In this context,
the significance of the pronounced variability of rheological parameters is underscored
among the challenges associated with the modeling of tailings dam failure floods. With the
purpose of filling this scientific gap, this article explores rheology uncertainty in the context
of dam-break studies.

Currently, several hydrodynamic models allow for the simulation of hyper-concentrated
flow and are already being used for dam-break studies, such as FLO-2D [15,24,31,32],
RIVERFLOW2D [33], and FLWAV [34]. Recently, the widely used and freely available pro-
gram HEC-RAS has also incorporated non-Newtonian flow modeling. However, sensitivity
studies of HEC-RAS to rheological parameters in the modeling of hyper-concentrated flow,
particularly for tailings dam failures, have not been performed.

In order to assess the effects of rheology uncertainty and to explore the applicabil-
ity of the HEC-RAS model for practical purposes related to mapping floods with hyper-
concentrated flow, this study seeks to address the following question: How does the rheolog-
ical variability of stored materials impact the results of modeling floods caused by mining
tailings dam failures? To address this question, this article presents a probabilistic method
to analyze the sensitivity of flood maps to input parameters of the HEC-RAS Bingham [35]
and Herschel-Bulkley [36] rheological models, which are the most adapted rheological mod-
els for hyper-concentrated flow simulations [9,27,37]. Within this context, the developed
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research compares the influence of rheological characterization in both models, raising the
question of the suitability of these models for dam-break analysis regarding uncertainty
boundaries. For this purpose, ranges of variation for rheological parameters were explored
based on an extensive literature review and through a case study probabilistic analysis. Thus,
this study demonstrates the importance of rheological characterization in dam-break studies
and introduces a probabilistic method to assist in the analysis of rheological parameter
uncertainties due to the heterogeneity of tailings materials.

2. Materials and Methods

The sensitivity analysis proposed in this research is based on four main steps: (1) defini-
tion of test parameters; (2) literature review of parameter ranges and probabilistic sampling;
(3) automated downstream propagation simulations of the rupture wave; (4) compilation
and analysis of results.

The Bingham and Herschel-Bulkley models were tested, and the Latin Hypercube
Sampling (LHS) technique was used to randomly sample the rheological parameters
under investigation based on a comprehensive literature review. The sensitivity analysis
is applicable to any deterministic hydrodynamic model developed using the HEC-RAS
framework, that encompasses the propagation of wave rupture in tailings dam scenarios.
Similar to the existing approach [24], the impact on flood extent and maximum depth
was also assessed. Additionally, the analysis encompassed the examination of flood wave
arrival times, considering the significant importance of this parameter in studies concerning
impacts and loss of life [38,39]. The automated repetition of these steps is determined by
the parameters being tested and the sampling approach. The developed sensitivity analysis
was applied to the conceptual case study conceived and analyzed in [40], proposed by the
International Commission on Large Dams (ICOLD).

2.1. Mathematical Rheological Models and Parameterization

Given the nonlinear relationships between shear stress and strain rate, several mathematical
models were developed to represent the behavior of non-Newtonian fluids [14,35,36,41,42].
Laboratory experimental results [43] cited in the study [4] confirmed that under deformation
rates observed in the field, fluids with high concentrations of fine particles exhibit plastic
behavior resembling Bingham fluids. In this context, the rheological models commonly
used to represent the flow resulting from the rupture of ore tailings dams are the Bingham
and Herschel-Bulkley models [9,24,27,37].

The Bingham model, applied to plastic fluids, was developed in 1922 based on its
conceptualization of the yield limit phenomenon, where a residual shear stress value
must be exceeded for the material to flow. The Bingham plastic model tends to remain
undeformed under the application of small shear stresses [44], represented by the sum of
yield and viscous stresses, as given by Equations (1) and (2) [35].

τ = τy + µ
dvx

dz
, τ > τy (1)

dvx

dz
= 0, τ < τy (2)

where τ is the shear stress; τy is the yield stress or limit stress; µ is the dynamic viscosity of
the mixture or dynamic viscosity; and dvx/dz is the strain rate or velocity gradient.

Pseudoplastic fluids with yield stress can be represented by the Herschel-Bulkley
model. This model, also known as the “generalized Bingham model”, was developed based
on the Bingham and Power-Law models, aiming to incorporate the non-linear flow curve
for stresses higher than the yield stress τy [45]. In this model, the shear stress and strain
rate exhibit a non-linear relationship, serving as a generalized proposition of the Bingham
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plastic fluid. This relationship is described by Equations (3) and (4), indicating the sum of
yield and viscous/turbulent stresses [46].

τ = τy + K
(

dvx

dz

)n
, τ > τy (3)

dvx

dz
= 0, τ < τy (4)

The relationship between shear stress and strain rate depends on the dimensionless
exponent n, which is specific for each fluid and determined experimentally [44]. This
coefficient is the same as the behavior index in the Power Law model. In addition to the
flow behavior index n, the consistency index K in the Herschel-Bulkley model is also an
empirical parameter [6].

HEC-RAS has four rheological models in its structure [46]: the Bingham model, which
is standard for hyperconcentrated flows; the O’Brien (Quadratic) and Generalized Herschel-
Bulkley models for mud and debris flows; and the Clastic-Grain Flow model (Mohr-Coloumb
geotechnical model) for clastic flows.

In this research, the test parameters were defined according to the input data of
the non-Newtonian fluid modeling in HEC-RAS for the Bingham and Herschel-Bulkley
rheological models. The following parameters were defined for the Bingham model:
volumetric concentration of solids (Cv); maximum volumetric concentration of solids (Max
Cv); and the coefficients a and b of the exponential yield stress curve. These parameters
were determined in view of the predefined HEC-RAS approaches. For the Herschel-Bulkley
model, the following parameters were defined: the yield stress (τy), the consistency index
(K), and the behavior index (n). In this case, the predefined approach of the exponential
curve, i.e., the calibration parameters a and b, was not used since these parameters are
usually adjusted based on the yield stress (τy) of the Bingham model. Thus, Herschel-
Bulkley yield stress (τy) values obtained from previous studies were used.

2.2. Parameter Intervals and Sampling

To conduct the sensitivity tests in this study, parameter value ranges for the equations were de-
termined based on an extensive literature review related to mining tailings [2,7–10,14,27,37,38,47–53].
The tailings studied by these authors included coal, copper, iron, lithium, base metal, nickel,
gold, pyrophyllite, uranium, and zinc, as well as synthetic and theoretical materials, and
the obtained values are listed in Appendix A. Although there are limited studies on tailings
rheology analysis, the identified intervals served the purpose of constituting a sample space
that allowed for the variation of values and the evaluation of their influence.

The establishment of physically plausible value ranges for the rheological parameters
of interest was performed (Table 1) based on the provided literature review (Appendix A).

Table 1. Value ranges of rheological parameters defined for the sensitivity assessment of HEC-RAS
using Bingham and Herschel-Bulkley models.

Rheological Model Varied Parameters Literature Value Ranges Adopted Interval

Bingham

Cv (%) 9.3–65.0 20.0–60.0
Max Cv (%) 49.9–76.5 49.0–61.5

a (Pa) 0.0000001–3.45 0.067–3.450
b 1.2–40.0 1.2–10.359

Herschel-Bulkley
(H-B)

Cv (%) 20.0–60.0
τy (Pa) 0.6–251.9

K (Pa·sn) 0.008–130.0
n 0.192–1.5
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In the case of the Bingham model, the parameters Cv, Max Cv, a, and b were subject to
variation. The decision to employ independent random sampling for these parameters is
justified by the inherent limitation of HEC-RAS, which utilizes a fixed Cv value. Conse-
quently, the resulting values of yield stress (τy) and dynamic viscosity (µ) remain constant
when Cv is employed in their calculation. Additionally, to ensure physically meaningful
parameter combinations, the value ranges and relationships between the parameters were
adjusted to yield τy and µ values within the ranges documented in the literature (Table 1),
following a similar approach [24].

To encompass the classification of flow types proposed by the authors [54], the interval
for solid volume concentration (Cv) in the context of hyperconcentrated flow was defined
as 20% to 60%. This interval was chosen to cover a range of flow conditions, including
floods, mudflows, and hyperconcentrated flows. Based on the literature, the study [54]
suggested a Cv range of 20% to 50% for floods and mudflows, while [54] proposed a Cv
range of 30% to 60% specifically for hyperconcentrated flows.

In relation to the maximum volumetric concentration parameter (Max Cv), the chosen
interval considered a maximum value of 61.5%, which corresponds to the value reported
in [53]. This value is pre-defined in HEC-RAS [46], and since it exceeds the upper limit of
the adopted interval for solid volume concentration (Cv of 60%), it was established as the
maximum value for the Max Cv interval.

The values of Cv and Max Cv were independently sampled, along with the parameters
a and b in the Bingham model. Subsequently, the sampled values of Max Cv were reorga-
nized to ensure that within each parameter set, the value of Max Cv was always greater
than Cv. Another criterion in combining these parameters was to adhere to the limits of
dynamic viscosity (µ) reported in the literature, with a minimum µ of 0.002 Pa·s [9] and
a maximum µ of 100.0 Pa·s [38]. In brief, the Max Cv samples were rearranged, based on
the Cv samples, in such a way that the relationship between the parameters satisfied two
criteria: Max Cv > Cv, and the relationship between Max Cv and Cv in the calculation of µ
using the Maron and Pierce method [46] yielded values within the range of 0.002–100.0 Pa·s.

The values of a and b in the yield stress curve were adjusted to ensure that the
combination of parameters yielded values within the range of 0.085 Pa [49] to 1726.33 Pa [48].
The value of 2396.53 Pa presented in Appendix A as the maximum value from the study [48]
is related to a Cv of 65% in the slump test. In accordance with the Cv range of 20% to 60%
adopted in this study, the value of 1726.33 Pa was considered the maximum value for τy,
also obtained in the slump test for a Cv of 60%.

The parameters that varied in the Herschel-Bulkley (H-B) model were Cv, τy, K, and n.
For this test, the ranges defined in the literature review (Table 2) were maintained, as the
parameters K and n are calibration parameters of the H-B model and do not have a direct
relationship that allows for evaluating or limiting their ranges. The range of solid volume
concentration (Cv) was kept from 20% to 60% [14,54].

Similarly, the range of τy values in the H-B model remained the same as observed in
previous studies. Although they share the same name, the yield stresses of the Bingham
and H-B models have different values for the same fluid. Thus, the adopted yield stress
range considers only the values adjusted according to the H-B model.

The random sampling of parameters using Latin Hypercube Sampling (LHS) was
performed independently with the aim of analyzing the sensitivity of HEC-RAS to the
parameters within their variability intervals. A total of 1000 parameter sets were selected
for the simulations of each model, as the random sampling conducted by LHS allows
for a reduced number of samples compared to the Monte Carlo method [55]. To achieve
convergence in the Monte Carlo simulation, other authors have employed 5000 [26,29]
and 10,000 [25] realizations, respectively. LHS is a statistical method [56] that generates
a quasi-random sample of parameter values from a multidimensional distribution. In
LHS, each variable set is divided into equal intervals, and one value is obtained for each
stratum [56]. Assuming these variables are independent, the sample sets are randomly
combined with each other, forming a multidimensional sample [56].



Water 2023, 15, 2866 6 of 32

To obtain a set of samples generated by the LHS, it is necessary to adopt a probability
distribution for each parameter to be varied. Few studies have evaluated the best-fit
distributions for the variations in rheological parameter values. The research in [25] and
the more recent work [30] considered that the dynamic viscosity (µ) follows a normal
distribution. The probability distribution of the volumetric concentration of solid particles
(Cv) in tailings was compared to the normal distribution using measured data [57]. The
authors in [27] fitted normal, lognormal, gamma, and beta statistical distributions for
rheological parameter sets. Due to the scarcity of studies and data used in fitting probability
distributions in the literature for these parameters, the approach in [24] was adopted in
this paper, which used a uniform distribution to account for the variation of all rheological
parameters tested.

2.3. Automation of Sensitivity Analysis in HEC-RAS

To conduct probabilistic analysis, it was necessary to automate the modeling pro-
cesses due to the repetitive nature of sampling and simulation. The automation of sim-
ulations in HEC-RAS was based on the principles exposed in [58] and achieved using
HEC-RASController v.6.1, which is part of the model’s programming interface and consists
of a collection of subroutines and functions in Visual Basic [59]. HEC-RASController can be
used with Visual Basic for Applications (VBA), but according to [60], this programming
language has limited usage, albeit highly useful. Consequently, other languages such as
MATLAB and Python have been implemented in the HEC-RASController [60–62]. In this
investigation, the automation of the four methodological steps: (1) sampling parameters
with LHS and uniform distribution using the SCIPY.STATS library; (2) changing rheological
parameters by editing the file “unsteady flow” (.u01) in text format; (3) simulation via
HEC-RASController; and (4) Storing the results of flooded area, maximum depths, and
arrival times using the H5PY library, was implemented using Python based on the same
principles exposed by [58] to achieve a probabilistic full 2D and complete hydrodynamic
model propagation algorithm.

Following the proposed methodology for sensitivity analysis, the developed computa-
tional routine (code provided in Appendix B) begins with Step 1, generating the sampling
for each parameter to be varied. Contrary to [58], the developed algorithm for sampling was
performed using the Latin Hypercube Sampling (LHS) method, similar to [24]. These tests
with associated probability distributions (uniform) were performed using the SCYPY.STATS
library in Python.

For achieving Step 2, the parameterization of the hydrodynamic model is done by
modifying the “unsteady flow data” file (extension .u01), which stores input data, including
the rheological parameters, as a text file.

After modifying the parameter set, simulations (Step 3) are performed using functions
from HEC-RASController, opening and running the project with the altered parameters.
Following each simulation, in Step 4, the results of the flooded area, maximum depths, and
arrival times in each cell of the 2D model are stored using the H5PY library in HDF files,
which allow for the organization and storage of large amounts of numerical data (such as
matrix data).

Finally, upon completion of each simulation, the Python code generates the following
outputs: the extent of the flooded area in a vector file, which is utilized to determine
the flooded areas; maximum depths and arrival times derived from the “unsteady flow
analysis” file (extension .p01) of HEC-RAS, encompassing the results for each cell of the
model; relative errors in volume balance to assess potential instabilities in the simulations
that could influence the results and consequently should be disregarded. With these results,
it is possible to assess the sensitivity of the hydrodynamic model by observing the impacts
caused by varying each rheological parameter. All Python codes developed are provided
in Appendix B and can be used or adapted for other studies where automation is feasible.
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2.4. Case Study: The Hydrodynamic Model

The sensitivity analysis methodology developed in this study was applied to the
ICOLD case study, which involves a hypothetical dam presented by [40], and was adapted
here for the proposed testing purpose. This fictional dam is implemented in a virtual
environment and has undergone extensive testing in a study conducted by the International
Commission on Large Dams (ICOLD), which was presented at the 12th International
Benchmark Workshop on Numerical Analyses of Dams. Eight studies evaluating the risks
associated with the dam’s failure under different methodologies were published, and these
studies were compiled by [40]. More recently, other studies have conducted dam failure
analyses using the same case study [58,63]. None of these studies focused on rheological
aspects, which is a novelty promoted by the present study.

The fictional dam has a height of 61 m (Elevation 272 m), upstream and downstream
slopes of 3:1, a base width of 416 m, and a crest width of 24 m. The crest length is 360 m,
forming a reservoir with a capacity of 38 × 106 m3. It is located in a virtual mountainous
terrain, with a confined V-shaped downstream valley along the first 3.6 km and a flat-
floored urban area valley ending in a lake along approximately 17.6 km. It should be noted
that for this study, it was assumed that the dam is an earth dam storing undefined mining
tailings.

The Digital Elevation Model (DEM) used has a horizontal resolution of 9.5 m. The
classification of land use and land cover, along with the assignment of Manning’s roughness
coefficient values, is based on 14 typologies (Figure 1): open water (0.019); low-intensity
open space developed areas (0.065); medium-intensity open space developed areas (0.074);
high-intensity open space developed areas (0.070); barren land (0.056); deciduous forest
(0.138); evergreen forest (0.158); mixed forest (0.123); shrubs (0.057); grass (0.038); pasture
(0.070); cultivated land (0.068); and wetlands with shrubs (0.155) [40].
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Figure 1. Two-dimensional model of the ICOLD case study used in the simulations with HEC-RAS.

The computational domain of the developed model in HEC-RAS covers an area of
69.8 km2. The computational mesh consists of cells with dimensions of 50 × 50 m, with
a refinement of 40 × 40 m in the downstream thalweg of the confined valley, and cells
of 100 × 100 m in the lake area. The downstream boundary conditions are defined as
normal depth in two sections, with a slope of 0.005 m/m for the thalweg and 0.0001 m/m
for the downstream lake. The computational time step used in the simulations was one
second, satisfying the Courant condition with a maximum value of unity. The shallow
water equations (SWE) were employed to perform the simulations.
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Table 2. Breach parameters calculated based on Froehlich.

Parameters Data Froehlich [64]

Failure Mode Overflow
Total volume (Vw) (1.000 m3) 38,276.34

Average breach width (Bm) (m) 116.27
Minimum breach width (m) 55.27

Elevation of the dam crest (m) 272.00
Elevation of the base of the dam (m) 211.00

Elevation of the bottom of the breach (m) 211.00
Dam height (m) 61.0

Height of the breach (Hb) (m) 61.0
Time of breach formation (h) 0.54

Left Lateral Slope (H:1V) 1.0
Right Side Slope (H:1V) 1.0

Mode of progression Sine Curve

The flood hydrograph used in the analysis was obtained using the parametric model
proposed by Froehlich [64], which is widely applied for defining dam failure debris flow.
No considerations were made for breach formation and mobilized volume parameter
variations. The theoretical failure mode assumed the complete opening of a breach with
a height equal to the height of the dam. The calculated parameters can be observed in
Table 2.

After the parameter calculation, the obtained values were integrated into the HEC-RAS
software to derive the rupture hydrograph, representing the flow characteristics ensuing
from breach initiation and subsequent reservoir discharge. The analysis yielded a peak
flow rate of 37,826.19 m3/s.

3. Results

The sensitivity evaluation was performed according to the results of each simulation.
A total of 2000 simulations were performed, 1000 with the Bingham model and 1000 with
the Herschel-Bulkley (H-B) model.

The results obtained were evaluated in terms of flooded area, maximum depths, and
arrival times. To analyze the results of the 2000 simulations, percentage coefficient of varia-
tion (COV), Spearman’s rank correlation coefficient, and histograms were used. The details
of these results are presented in the following sections: A summary for each model with
the computational specifications of interest for the probabilistic simulations is presented in
Appendix C. Complementary exhaustive result sets analyzed in relation to their variabil-
ity, their correlations with the input parameters, and their probability distributions with
histograms are presented in Appendix D.

3.1. Probabilistic Maps Related to Flooded Areas

Probabilistic maps were generated by manipulating the maximum depth outcomes
from each simulation and transforming these results into binary data indicating whether or
not each cell area was flooded during each simulation: the value of one was assigned to
flooded cells, and zero was assigned to non-flooded cells [58,61]. The flooding probabilities
for each model cell were calculated using Equation (5) presented by [58].

Pflood =
NUMBER OF SCENARIOS WITH FLOODED CELL

TOTAL NUMBER OF SIMULATED SCENARIOS
(5)

For both the Bingham (Figure 2) and H-B models (Figure 3), the influence of the varia-
tion of the rheological parameters on the inundation area occurs mainly in the extension of
the simulated area, i.e., the downstream flood wave extent.
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Figure 2. Probabilistic mapping of the Bingham model.
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Within the ranges of simulated parameter values for the model, the H-B (Figure 3)
presented a greater discretization of simulated areas according to the flood probabilities.
Regarding the flood extent, only the maps obtained from flood probabilities between 0.1
and 20% reached the model output, and the other probability range maps indicate that the
material was retained upstream. In the Bingham model (Figure 2), the flooded areas with a
probability of occurrence between 50 and 80% extended to the border of the model.

Taking as a reference the area relative to the cells that were flooded in all simulations,
the extent of the flooded area varied between 15.5 km (100% probability flooded) and 17.6 km
(border of the simulated area) in the Bingham model. In the H-B model, the difference in
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flood extent was greater, about 3.2 km (from 14.3 km to 17.6 km). However, the associated
probabilities were significantly lower at the border of the model for the H-B model. The
Bingham model showed greater variation regarding the minimum and maximum simulated
areas, with flood extents varying from 10.1 km to 17.6 km (extent difference of 7.5 km). The
H-B model simulations resulted in a maximum difference in extent of 3.6 km, varying from
14.0 km to 17.6 km.

3.2. Arrival Times and Maximum Depth Variation along the Valley

To understand the impact on the dynamics of the flood event along the valley, 12 cross-
sections (CS) were used for extracting and analyzing the simulation results (Figure 4): CS-00
to CS-10 (1 km of distance from each section) and CS-11, located 2 km from CS-10.
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Figure 4. Results analysis sections.

The arrival time was calculated for each CS, considering the time from the beginning
of the event to the moment the depth of 0.3 m (1 foot) is reached, following the standard
approach in [65]. The results presented include the maximum and minimum values and
the coefficient of variation (COV %) of the arrival times comparing the 1000 simulations for
both rheological models at the 11 cross-sections (Figure 5).
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model and (b) Herschel-Bulkley (H-B) model.

In general, arrival times varied between 2 and 7 min in the Bingham simulations,
except for the last section, where a range of 42 min (variation from minimum to maximum
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values) was observed. For H-B, we observed arrival times varying from 1 to 5 min in the
simulations for CS-01 to CS-10. For the last section (CS-11), a range of 15 min was observed.

For the Bingham model (Figure 5a), the greatest variation (8.2%) occurred in the last
section of the model (CS-11), where the wave arrival time for the 0.3 m depth varied
between 61 and 103 min; the smallest variation occurred in section CS-05 (between 34 and
36 min) with a COV equal to 0.4%. The CS-05 is located at the transition between the V-
shaped valley and the flat-floored valley. In the H-B model (Figure 5b), the largest variation
(3.91%) also occurred in the downstream section CS-11, where the wave arrival time for the
0.3 m depth varied between 61 and 76 min; the smallest variation occurred in section CS-07
(0.88%), which is located in the transition region between the embedded shaped valley and
the flat-floored area, similar to what was observed in the Bingham model.

Regarding the depth variations simulated with the Bingham model, it can be seen that
between sections CS-00 and CS-09, the maximum depths varied from a minimum of 1.8 m
(CS-00) to a maximum of 4.1 m (CS-02) (Figure 6a). In the downstream sections, the variations
of simulated maximum depths were higher: from 0.14 m to 6.84 m and from 0 m to 4.93 m
in sections CS-10 and CS-11, respectively. These higher influences in downstream areas may
be related to upstream volume retention caused by rheology parameter assumptions related
to smaller flow velocities for more viscous materials. The highest COV value, 9.3%, was
observed in the last downstream section, CS-11, and the lowest, 0.4%, in the most upstream
section, CS-00, indicating that changes in rheological parameters were more expressive in
the depths further from the dam. Although the coefficients of variation obtained are less
than 10%, it is observed that the variations are relevant in absolute values of maximum
depth since depths above 0.3 or 0.61 m already have significant associated risks [65].
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Figure 6. Variation of maximum depths along the downstream talweg for the (a) Bingham and
(b) H-B models.

In the H-B model, the maximum depths obtained in the analysis sections experienced
the greatest variation in section CS-11 (5.1%), ranging from 3.9 m to 4.9 m (Figure 6b). The
least variation in simulated maximum depths occurred in section CS-00 (0.5%), from 27.0 m
to 27.9 m. Overall, the variation in maximum depths in the sections was small, ranging
between 0.8 m and 1.5 m from changes in the rheological parameters of the H-B model.
The qualitative variation was similar when comparing the H-B model and the Bingham
one regarding the effect of the distance along the valley, with increasing variations from
upstream to downstream sections.

3.3. Rheological Parameters vs. Simulated Areas

With Bingham, the minimum and maximum simulated areas were 8.1 km2 and
50.8 km2 (Figure 7), respectively, and the area results showed a COV of 17.9%. It is
observed that most simulations returned values close to the maximum one: about 68% of
the simulations resulted in flooded areas within a 5% variation from the maximum simu-
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lated area (from 48.2 km2 to 50.8 km2). It revealed that most sets of rheological parameters
resulted in higher flooded area values. The relationships of the four parameters (Cv, Max
Cv, a and b) with the flooded area indicated a tendency toward reduction in the flooded
area with the increase of these input parameters, as indicated by the Spearman correlation
coefficient (negative). This influence was most noticeable between the flooded area and the
values of b, the exponent of the yield stress curve, which indicated the strongest correlation
(ρ = −0.7301) (Figure 7). The parameters Cv and a showed moderate correlation with
the flooded area, with Spearman’s correlation coefficients equal to −0.4116 and 0.4606,
respectively. The parameter Max Cv showed a weak correlation with the flooded area
(ρ = −0.0529). Thus, the simulations that returned smaller flooded areas are mainly related
to the increase in the value of the parameter b.
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Figure 7. Relationship between flooded areas and Cv, Max Cv, a, and b in 1000 simulations with the
Bingham model.

In the H-B model (Figure 8), the flooded areas ranged from 20.1 km2 to 50.4 km2, with
a coefficient of variation of 25.7%. A very strong correlation (ρ = −0.9738) is observed
between the increase in yield stress (τy) and the reduction in flooded area (Figure 8). The
variation of the parameter Cv showed a weak correlation with the flood-simulated areas
(ρ = 0.2371), and the parameters K and n showed no correlation (respectively, ρ = 0.0113
and ρ = 0.0241).

Both models reached the maximum flooded area threshold of approximately 50 km2. It
is observed that this maximum flooded area threshold refers to physical limitations related
to the terrain, roughness, runoff volume, or different sets of rheological parameters, which
were defined by the modeler and considered for the different scenarios. The results showed
that, in these conditions, both models were able to represent the worst-case scenario with
different sets of rheologically assigned variables.
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3.4. Rheological Parameters vs. Hmean

For a more general sensitivity assessment, the study area was discretized into two
areas for evaluating the maximum depth variations in function of the rheological parameter
determination: A1 and A2 (Figure 9).
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The results of maximum depths (Hmax) in the computational mesh cells for the areas
of interest (A1 and A2) (Figure 9) were evaluated according to Equation (6). This equation
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calculates the maximum average runoff height (Hmean) for each area by summing up the
maximum flow depth (Hmax) in each flooded cell (H > 0) within each area and dividing the
result by the total number of flooded cells (NWC) for each area [24].

Hmean =
NWC

∑
j=0

Hmax(j)/NWC (6)

where j is the cell index; NWC is the total number of flooded cells (h > 0); and Hmax is the
maximum flow depth.

The relationships between Hmean and each parameter were obtained for each area of
interest for the Bingham model (Figure 10) and for the H-B model (Figure 11).
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For the Bingham model, in region A1 (Figure 10), the simulated depths were greater
due to the valley confinement condition immediately downstream of the dam, with average
maximum depths in the cells ranging between 6.1 m and 8.8 m and a coefficient of variation
equal to 3.8%. The depths reduced in the A2 region due to the spreading of the non-Newtonian
fluid on the floored-shaped valley floodplain, ranging between 1.9 m and 4.8 m (COV equal
to 11.8%). These results highlighted that the variation of rheological parameters has more
influence on the simulated depths over the flatter region, further downstream of the dam (A2).

In region A1 (Figure 11), the resulting maximum average runoff height ranged from
6.4 m to 7.6 m and indicated a coefficient of variation of 3.0%. In the A2 region (Figure 11),
the depth was reduced from upstream to downstream, ranging from 2.0 m to 3.1 m, with a
COV of 9.8%. Thus, like the Bingham model, changes in the rheological parameters of the
H-B model had a greater impact on the depths in the section further downstream of the
simulated model, in flatter areas (A2).

For the Bingham model, in Table 3, it is noted that Spearman’s correlation coefficient is
approximately 0, i.e., an almost null correlation between maximum average runoff height
and Max Cv in regions A1 and A2 (0.0520 and 0.0640, respectively). Between Hmean and b,
it is verified that in both regions, A1 and A2, the larger values of b led to higher values of
Hmean, with strong correlations in region A1 (0.6902) and in region A2 (0.6896).

Table 3. Spearman’s rank correction coefficients between rheological parameters and Hmean.

Results/Parameters
Bingham Herschel H-B

Cv Max Cv a b Cv τy K n

Hmean
Region A1 0.4777 0.052 0.4357 0.6902 −0.2728 0.8255 0.4149 0.1937
Region A2 0.4737 0.064 0.4323 0.6896 −0.2667 0.9317 0.2096 0.0881

For the H-B model (Table 3), the increase of τy led to the increase of Hmean, with Spearman
correlation strong in region A1 (0.8255) and very strong in region A2 (0.9317). Spearman’s
correlation between parameter n and depths shows a weak correlation for both regions, equal
to 0.1937 and 0.0881, respectively. By the formulation of the H-B model, a more evident effect
of the parameters K and n on the results was expected; therefore, the parameter ranges may
have evidenced the impact of the yield stress (τy) on the results. Therefore, in this scenario,
the parameter τy was the one that caused the most noticeable effect on the flooded area and
the maximum average runoff height results.

4. Discussion

The Bingham and Herschel-Bulkley (H-B) models presented the same minimum ar-
rival time simulated values along the valley (among the 1000 simulations of each model).
However, when evaluating the frequency distribution of arrival times (Appendix D), the
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Bingham model proved to be more conservative once it presented lower values for arrival
times (critical risk conditions) compared to the H-B model. With respect to the maximum
arrival time values, the Bingham model indicated an extreme value in the furthest down-
stream section of the model. The Bingham model showed a larger coefficient of variation
(variability of the data in relation to the mean) than H-B. Considering both models, the
arrival times experienced greater variations further downstream of the dam, highlighting
that the further downstream, the more uncertain the predictions related to this variable.
Furthermore, the frequency distribution of the results in the last section shows that the
Bingham model returned in most simulations arrival times close to the minimum simulated
value (more conservative results), while the H-B model returned more distributed arrival
times, presenting the Gamma distribution as the best fit.

Regarding the results of maximum depths along the simulated reach, the Bingham
model also exhibited larger coefficients of variation in the downstream sections compared
to the H-B model. The Bingham model resulted in greater depths than H-B, considering the
maximum values of all simulations carried out. Nevertheless, most of the simulations with
the Bingham model returned shallower depth values compared to H-B. The maximum depth
results indicated the best fit to the exponential and normal distributions, in sections CS-00
and CS-11, respectively, in the Bingham model. And in the H-B model, the best fit occurred in
the normal and lognormal distributions to the results of maximum depths, in sections CS-00
and CS-11. This differs from what was presented in [26], where the Gamma distribution was
the best fit to the results of maximum depths and velocities in the sensitivity analysis of the
MassaMov2D dynamic model to Bingham and Voellmy rheological parameters.

As for the flooded areas, the Bingham model presented a smaller coefficient of variation
than the H-B model, even though the Bingham model presented a larger amplitude between
the maximum and minimum values of the simulated area. The Bingham model resulted, in
most simulations, in values close to the maximum value of the simulated area, once again
more conservative without presenting a good fit to the probability distributions. The H-B
model, on the other hand, presented more distributed flooded area values in the set of
results obtained, with the best fit to the exponential distribution. For comparison purposes,
the eight studies [40] that applied this same case study considering a water dam evaluated
sensitivities and uncertainties related to erodibility coefficients, breach parameters, and
propagation methods and models. In these studies, the simulated areas ranged from 27 km
to 47 km, with a COV of 18.6%. This demonstrates how the rheological parameters have
significant relevance in flood modeling since the flooded areas of the Bingham model
showed COV equal to 17.9% and H-B equal to 25.7%.

The Bingham model resulted in a greater maximum average runoff height than the H-B
model and showed greater coefficients of variation. The maximum average runoff height
results suggest a normal and exponential distribution, respectively, in regions A1 (confined
valley close to the dam) and A2 (flatter areas further from the dam) for the Bingham model.
With the H-B model, in region A1, the Hmean frequency distribution showed a normal
distribution of this result, and in region A2, the results were uniformly distributed.

In the Bingham model, the parameter b of the yield stress curve showed greater
correlation with the results of flooded area and depths, and the parameter Max Cv was the
one that showed less correlation. In the H-B model, the yield stress (τy) was the parameter
that showed greater correlation with the variation of results, and the behavior index (n)
expressed less correlation. In the results obtained by [24], it was observed that the FLO-2D
model (Quadratic rheological model) is mainly sensitive to the parameter β1 that composes
the rheological curve of the dynamic viscosity, affecting mainly the results of the simulated
flow depth. The study presented in [66] indicates that the results of maximum debris flow
depths were more affected by the variation of the turbulent coefficient and the friction
coefficient of the Voellmy rheological model in the 2D dynamic modeling with the RAMMS
v.1.3.16 (Rapid Mass Movements) software. It is noticed that different hydrodynamic
models have different sensitivities, which could justify future comparative tests using
different approaches from this perspective.
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Finally, the H-B model proved to be more sensitive to rheological parameter changes
since the results varied considerably in the 1000 simulations performed. This sensitivity
was expected by the H-B model formulation due to the variation of the flow behavior
index (n), as pointed out in [37], although it was not the most sensitive parameter in the
actual study. However, the changes in rheological parameters caused more significant
impacts on the results with the Bingham model in terms of the amplitude (extreme values)
of the results obtained. In this perspective, these results may indicate agreement with the
conclusions presented in [8], considering that the Bingham model may be applied as a
first approximation for modeling non-Newtonian flow as it presents conservative results.
For a better understanding of the probabilistic variability of the simulations, it is indeed
suitable to perform simulations considering the H-B model. The present study extended
this understanding to dam-break analysis, leading to the same conclusions related to arrival
time simulations.

5. Conclusions and Recommendations

Following the methodology developed, it was possible to bring considerable elements of
answers to the main question raised within this article: “How does the rheological variability
of the stored materials impact the results of the modeling of flooding caused by mining
tailings dam ruptures?”.

This article demonstrated the importance of determining rheological parameters since
their variability brings relevant discrepancies in terms of simulated areas, depths, and
arrival times. The Bingham model was shown to be more sensitive than the H-B model in
terms of maximum and minimum values of simulated areas. Furthermore, in probabilistic
terms, the Bingham model was shown to be much less sensitive, tending to represent
higher simulated area values, while Herschel-Bulkley showed great variability of areas
as a function of the probabilities associated with the rheology parameters. Bingham was
considered, on the one hand, more uncertain since it can lead to considerably lower flooded
area values and, on the other hand, more conservative since, in probabilistic terms, it tends
to higher area results. Therefore, the use of this model within a deterministic scheme could
bring significant uncertain results. In this context, the Herschel-Bulkley model proved to
be more efficient for probabilistic analysis, presenting a smaller range of uncertainties with
a better distributed probability distribution, which enables a better appreciation for risk
management purposes.

This article also provided contributions related to the broad bibliographic survey
carried out on the ranges of values for mining tailings rheological parameters. This litera-
ture review demonstrates the great variability of these parameters and may be valuable
for establishing boundaries for sensitivity analysis in other case studies. The proposed
automated methodology proved robust for the evaluation of uncertainties concerning the
rheological parameters in the HEC-RAS. The evaluation considers, in probabilistic terms,
the flooded areas, the maximum depths reached, and the arrival times of the flood wave.
Finally, the algorithm developed in Python allows for automated estimation of uncertainty
in the simulation results in probabilistic terms. It is available and can be adapted for other
applications in further studies.

As suggestions and recommendations for future work, it is important to evaluate the
impact of the sample space of the parameters in the evaluation of the sensitivity of hydrody-
namic models. The application of global sensitivity analysis [24] is a relevant alternative, as it
allows a complete and complex analysis, indicating the sensitivity as a function of different
indicators. In addition, since there are several sources of uncertainty in these dam failure
models, the inclusion of the variation of failure breach parameters, mobilized volumes, and
Manning coefficient, together with rheological parameters, would be of great importance to
understanding the significance of each parameter in the results of these models in a global
analysis. This type of global uncertainty analysis may provide more robustness in the study of
floods and associated risks.
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Furthermore, it was stated that probabilistic methods can help in defining the rhe-
ological parameters due to the high heterogeneity of the material as well as quantifying
the uncertainty in the risk assessment results, which is critical to assisting planning and
decision-making in more comprehensive risk analyses. Consequently, the use of this prob-
abilistic approach in real case studies could be an interesting direction for future studies
searching for a better understanding and validation of different methods.
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Appendix A

Table A1. Literature review with values of the rheological parameters of interest for the models.

Parameter
[Unit] Parameter Range Reference Tailings Test/Method Rheological Model/

Fitted Equation

Volumetric
concentration of

solids (Cv)
[%]

21.21–35.78 [47] Coal

n.a. n.a.

27.98–46.65 [47] Copper
36.50–38.62 [47] Gold
36.34–44.62 [47] Lithium
11.09–19.66 [47] Nickel
25.48–31.25 [47] Uranium
11.82–50.11 [47] Zinc

18.0–52.5 [7] Base metal
21.8–55.3 [48] Iron
32.5–65.0 [48] Iron
9.3–48.4 [9] Gold

34.75–57.14 [49] Iron
58 [2] Iron
47 [37] Iron
23 [52] Iron

Maximum volumetric
concentration of solids

(Max Cv)
[%]

61.5 [53] - -

n.a.
53 [7] Base metal -

49.0–62.0 * [50] Copper [67] **
59.9–76.5 * [51] Iron [67] **
57.3–68.0 * [51] Gold [67] **

Dynamic viscosity (µ)
[Pa·s]

0.03–0.49 [7] Base metal Viscometer Bingham
0.15–2.69 [48] Iron Viscometer Bingham

0.002–0.311 [9] Gold Viscometer Bingham
0.0071–0.4457 [49] Iron Rheometer Quadrática

1.09–1.46 [8] Pyrophyllite Rheometer Bingham
50 [37] Iron Calibration Bingham

30.0–100.0 [38] Iron Calibration Full Bingham
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Table A1. Cont.

Parameter
[Unit] Parameter Range Reference Tailings Test/Method Rheological Model/

Fitted Equation

Yield stress (τy)
[Pa]

2.122–48.535 [47] Coal Viscometer Herschel-Bulkley
0.641–93.50 [47] Copper Viscometer Herschel-Bulkley

0.6–1.5 [47] Gold Viscometer Herschel-Bulkley
1.048–11.165 [47] Lithium Viscometer Herschel-Bulkley
1.564–37.110 [47] Nickel Viscometer Herschel-Bulkley
2.769–9.411 [47] Uranium Viscometer Herschel-Bulkley

0.652–100.260 [47] Zinc Viscometer Herschel-Bulkley
26.0–638.0 [7] Base metal Viscometer Bingham

19.36–602.82 [48] Iron Viscometer Bingham
59.59–2396.53 *** [48] Iron Slump test Bingham

0.5–181.0 [9] Gold Viscometer Bingham
0.085–118.0 [49] Iron Rheometer Quadrática

12.0–23.0 [8] Pyrophyllite Rheometer Herschel-Bulkley
9.7–251.9 [27] Synthetic Rheometer Herschel-Bulkley

100.0–1000.0 [37] Iron Calibration Bingham
750.0–1000.0 [38] Iron Calibration Full Bingham

a
[Pa]

1 [7] Base metal Viscometer

Exponential

21.381 [48] Iron Viscometer
0.0065 [48] Iron Slump test

0.08 [52] Iron Calibration
1.00 × 10−7 [49] Iron Rheometer
~0.04–3.40 [10] Copper Rheometer
~0.40–3.45 [10] Iron Rheometer

b
[-]

12.2 [7] Base metal Viscometer

Exponential

90.874 [48] Iron Viscometer
20.47 [48] Iron Slump test

40 [52] Iron Calibration
39.278 [49] Iron Rheometer

~1.2–5.0 [10] Copper Rheometer
~1.2–5.5 [10] Iron Rheometer

Consistency index (K)
[Pa·sn]

0.034–6.409 [47] Coal Viscometer

Herschel-Bulkley

0.008–130.0 [47] Copper Viscometer
0.108–0.221 [47] Gold Viscometer
0.222–1.515 [47] Lithium Viscometer
0.154–2.001 [47] Nickel Viscometer
0.065–0.097 [47] Uranium Viscometer
0.428–14.720 [47] Zinc Viscometer

0.69–1.96 [8] Pyrophyllite Rheometer

Flow behavior index (n)
[-]

0.4–1.0 [47] Coal Viscometer

Herschel-Bulkley

0.192–1.347 [47] Copper Viscometer
0.705–0.744 [47] Gold Viscometer
0.766–1.020 [47] Lithium Viscometer
0.450–0.602 [47] Nickel Viscometer
0.742–0.913 [47] Uranium Viscometer
0.306–0.577 [47] Zinc Viscometer

0.84–1.14 [8] Pyrophyllite Rheometer
0.50–1.50 [37] Teórico Calibration

* Values obtained based on tailings porosity; ** Proposes the equation: Max Cv = 1-pm’, to estimate the maximum
concentration based on bed porosity (pm’); *** Cv of 65% in Slump Test; n.a.: not applicable.

Appendix B

Python language codes for automatic simulations with the Bingham and Herschel-
Bulkley rheological models. The complete algorithm is also available at https://github.
com/MCGI-UFMG/rheologyrasprob.git.

https://github.com/MCGI-UFMG/rheologyrasprob.git
https://github.com/MCGI-UFMG/rheologyrasprob.git
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# -*- coding: utf-8 -*- 

""" 

@author: Malena Melo 

Bingham Code 

""" 

 

# Importing Libraries 

 

import win32com.client 

import pandas as pd 

import re as re 

import numpy as np 

import h5py 

from osgeo import ogr 

from osgeo import osr 

 

RC = win32com.client.Dispatch("RAS610.HECRASCONTROLLER") 

parametros = pd.read_csv('C:\param_bingham.txt', sep=" ") 

 

# Parameter variation 

for index, linha in parametros.iterrows(): 

    sim = index + 1 

    cv = linha['Cv'] 

    cvmax = linha['Cvmax'] 

    a = linha['a'] 

    b = linha['b'] 

 

    # Reading the lines from the file unsteady 

    with open('C:\ICOLD_Z_G.u01', 'r') as f: 

        dados = f.readlines() 

 

        # Finding the parameter line of interest and setting the line to be the old 

parameter 

        for line in dados: 

            if re.search(r'Non-Newtonian Constant Vol Conc', line): 

                break 

        antp_cv = line 

 

        for line in dados: 

            if re.search(r'Non-Newtonian Max Cv', line): 

                break 

        antp_cvmax = line 
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        for line in dados: 

            if re.search(r'Non-Newtonian Yield Coef', line): 

                break 

        antp_a_b = line 

 

    # Opening and saving a file to change the previous parameter line by the new 

value 

    with open('C:\ICOLD_Z_G.u01', 'r') as f: 

        dados = f.read() 

    novop_cv = 'Non-Newtonian Constant Vol Conc=' + str(cv) + '\n' 

    novop_cvmax = 'Non-Newtonian Max Cv=' + str(cvmax) + '\n' 

    novop_a_b = 'Non-Newtonian Yield Coef=' + str(a) + ', ' + str(b) + '\n' 

 

    print('Simulação %d - ' % sim, novop_cv, novop_cvmax, novop_a_b) 

    dados = dados.replace(antp_cv, novop_cv) 

    dados = dados.replace(antp_cvmax, novop_cvmax) 

    dados = dados.replace(antp_a_b, novop_a_b) 

 

    with open('C:\ICOLD_Z_G.u01', 'w') as f: 

        f.write(dados) 

 

    # Opening the project in RAS and simulating with changed parameters 

    RC.ShowRAS() 

    RC.Project_Open(r"C:\ICOLD_Z_G.prj") 

    RC.Compute_CurrentPlan(None, None, True) 

    RC.QuitRAS() 

 

    # Saving results of maximum depths in each cell 

    file = "C:\ICOLD_Z_G.p01.hdf" 

    with h5py.File(file, "r") as hdf: 

        celldepth = hdf.get( 

            '/Results/Unsteady/Output/Output Blocks/Base Output/Unsteady Time 

Series/2D Flow Areas/jusante/Cell Hydraulic Depth') 

        depthmax = np.amax(celldepth, axis=0) 

        depthmax = h5py.File('depth_max.hdf', 'a') 

        depthmax.create_dataset('sim_%d' % sim, data=depthmax) 

        depthmax.close() 

 

    # Saving arrival times to 0.30 (1 foot) per simulation performed 

        for depth in tempos: 

            cell = depth.tolist() 
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            for x in cell: 

                if x > 0.3: 

                    tempo_cheg_t1.append(cell.index(x)) 

                    break 

            else: 

                tempo_cheg_t1.append(0) 

                continue 

 

        tempo30 = np.array(tempo_cheg_t1) 

        tempo_chegada30 = h5py.File('tempo_chegada30.hdf', 'a') 

        tempo_chegada30.create_dataset('sim_%d' % sim, data=tempo30) 

        tempo_chegada30.close() 

 

    # Accessing and saving flooded area results 

    driver = ogr.GetDriverByName('ESRI Shapefile') 

    hinputfile = driver.Open(r'C:\Inundation Boundary (Max Value_0).shp', 0) 

    in_layer = hinputfile.GetLayer(0) 

 

    # Transformation between projections 

    src_srs = in_layer.GetSpatialRef() 

    tgt_srs = osr.SpatialReference() 

    tgt_srs.ImportFromEPSG(3395) 

    transform = osr.CoordinateTransformation(src_srs, tgt_srs) 

 

    for feature in in_layer: 

        geom = feature.GetGeometryRef() 

        geom2 = geom.Clone() 

        geom2.Transform(transform) 

        area_m2 = geom2.GetArea() 

        area_km2 = area_m2 / 1000000 

        print('Area em km²: ', area_km2) 

        area = h5py.File('area.hdf', 'a') 

        area.create_dataset('sim_%d' % sim, data=area_km2) 

        area.close() 

 

    # Storing the volume error in 1000 m3 and in percent per simulation 

    with open('C:\ICOLD_Z_G.p01.computeMsgs.txt', 'r') as f: 

        dados = f.readlines() 

        erro_vol = [] 

        erro_volperc = [] 

 

        for line in dados: 
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            if re.search(r'Overall Volume Accounting Error in 1000', line): 

                erro_vol.append(line) 

                with open('erro_vol.txt', 'a') as txt: 

                    txt.write(str(erro_vol)) 

                break 

 

        for line in dados: 

            if re.search(r'Overall Volume Accounting Error as percentage', line): 

                erro_volperc.append(line) 

                with open('erro_volperc.txt', 'a') as txt: 

                    txt.write(str(erro_volperc)) 

                break 

 

    print('End simulation', sim) 

    hinputfile.Destroy() 

else: 

    print("Simulations with LHS finished.") 
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# -*- coding: utf-8 -*- 

""" 

@author: Malena Melo 

Herschel-Bulkley Code 

""" 

 

# Importing Libraries 

 

import win32com.client 

import pandas as pd 

import re as re 

import numpy as np 

import h5py 

from osgeo import ogr 

from osgeo import osr 

 

RC = win32com.client.Dispatch("RAS610.HECRASCONTROLLER") 

parametros = pd.read_csv('C:\param_HB_icold.txt', sep=" ") 

 

# Parameter variation 

for index, linha in parametros.iterrows(): 

    sim = index + 1 

    cv = linha['Cv'] 
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    ty = linha['Ty'] 

    k = linha['K'] 

    n = linha['n'] 

 

    # Reading the lines from the file unsteady 

    with open('C:\ICOLD_Z_G.u01', 'r') as f: 

        dados = f.readlines() 

 

        # Finding the parameter line of interest and setting the line to be the 

old parameter 

        for line in dados: 

            if re.search(r'Non-Newtonian Constant Vol Conc', line): 

                break 

        antp_cv = line 

 

        for line in dados: 

            if re.search(r'User Yeild', line): 

                break 

        antp_ty = line 

 

        for line in dados: 

            if re.search(r'Herschel-Bulkley Coef', line): 

                break 

        antp_k_n = line 

 

    # Opening and saving a file to change the previous parameter line by the new 

value 

    with open('C:\ICOLD_Z_G.u01', 'r') as f: 

        dados = f.read() 

    novop_cv = 'Non-Newtonian Constant Vol Conc=' + str(cv) + '\n' 

    novop_ty = 'User Yeild=' + str(ty) + '\n' 

    novop_k_n = 'Herschel-Bulkley Coef=' + str(k) + ', ' + str(n) + '\n' 

 

    print('Simulação %d - ' % sim, novop_cv, novop_ty, novop_k_n) 

    dados = dados.replace(antp_cv, novop_cv) 

    dados = dados.replace(antp_ty, novop_ty) 

    dados = dados.replace(antp_k_n, novop_k_n) 

 

    with open('C:\ICOLD_Z_G.u01', 'w') as f: 

        f.write(dados) 

 

    # Opening the project in RAS and simulating with changed parameters 
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    RC.ShowRAS() 

    RC.Project_Open(r"C:\ICOLD_Z_G.prj") 

    RC.Compute_CurrentPlan(None, None, True) 

    RC.QuitRAS() 

 

    # Saving results of maximum depths in each cell 

    file = "C:\ICOLD_Z_G.p01.hdf" 

    with h5py.File(file, "r") as hdf: 

        celldepth = hdf.get( 

            '/Results/Unsteady/Output/Output Blocks/Base Output/Unsteady Time Se-

ries/2D Flow Areas/jusante/Cell Hydraulic Depth') 

        depthmax = np.amax(celldepth, axis=0) 

        depthmax = h5py.File('depth_max.hdf', 'a') 

        depthmax.create_dataset('sim_%d' % sim, data=depthmax) 

        depthmax.close() 

 

    # Saving arrival times to 0.30 (1 foot) per simulation performed 

        for depth in tempos: 

            cell = depth.tolist() 

            for x in cell: 

                if x > 0.3: 

                    tempo_cheg_t1.append(cell.index(x)) 

                    break 

            else: 

                tempo_cheg_t1.append(0) 

                continue 

 

        tempo30 = np.array(tempo_cheg_t1) 

        tempo_chegada30 = h5py.File('tempo_chegada30.hdf', 'a') 

        tempo_chegada30.create_dataset('sim_%d' % sim, data=tempo30) 

        tempo_chegada30.close() 

 

    # Accessing and saving flooded area results 

    driver = ogr.GetDriverByName('ESRI Shapefile') 

    hinputfile = driver.Open(r'C:\Inundation Boundary (Max Value_0).shp', 0) 

    in_layer = hinputfile.GetLayer(0) 

 

    # Transformation between projections 

    src_srs = in_layer.GetSpatialRef() 

    tgt_srs = osr.SpatialReference() 

    tgt_srs.ImportFromEPSG(3395) 

    transform = osr.CoordinateTransformation(src_srs, tgt_srs) 
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    for feature in in_layer: 

        geom = feature.GetGeometryRef() 

        geom2 = geom.Clone() 

        geom2.Transform(transform) 

        area_m2 = geom2.GetArea() 

        area_km2 = area_m2 / 1000000 

        print('Area em km²: ', area_km2) 

        area = h5py.File('area.hdf', 'a') 

        area.create_dataset('sim_%d' % sim, data=area_km2) 

        area.close() 

 

    # Storing the volume error in 1000 m3 and in percent per simulation 

    with open('C:\ICOLD_Z_G.p01.computeMsgs.txt', 'r') as f: 

        dados = f.readlines() 

        erro_vol = [] 

        erro_volperc = [] 

 

        for line in dados: 

            if re.search(r'Overall Volume Accounting Error in 1000', line): 

                erro_vol.append(line) 

                with open('erro_vol.txt', 'a') as txt: 

                    txt.write(str(erro_vol)) 

                break 

 

        for line in dados: 

            if re.search(r'Overall Volume Accounting Error as percentage', line): 

                erro_volperc.append(line) 

                with open('erro_volperc.txt', 'a') as txt: 

                    txt.write(str(erro_volperc)) 

                break 

 

    print('End simulation ', sim) 

    hinputfile.Destroy() 

else: 

    print("Simulations with LHS finished.") 
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Appendix C

Table A2. Specifications of the models and machines used in the probabilistic simulations.

Specification Bingham Herschel-Bulkley H-B

Model area 69.8 km2

2D mesh resolution
40 m on the slope centerline in the embedded valley

100 m in the downstream lake
50 m for the rest of the model

Number of template cells 21,148
Equation Shallow Water Equations

Simulation time frame 20 h
Maximum number of

computational iterations 20

Computational Interval
Adjustable based on Courant:

maximum = 1.0; minimum = 0.45
1.0–16.0 s

Machine used
Processor AMD Ryzen 7 3700X. 8-Core.

3.6 GHz processing speed (4.4 GHz Turbo).
16 GB DDR4 RAM and 4 GB/s M,2 SSD

AMD Ryzen 3 3200G. 4-Core.
3.6 GHz processing speed.

8 GB DDR4 RAM and 6 GB/s Sata SSD
Average time per simulation 3.233 min/simulation 5.284 min/simulation
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7. Faitli, J.; Gombkötő, I. Some Technical Aspects of the Rheological Properties of High Concentration Fine Suspensions to Avoid

Environmental Disasters. J. Environ. Eng. Landsc. Manag. 2015, 23, 129–137. [CrossRef]
8. Jeong, S.-W. Shear Rate-Dependent Rheological Properties of Mine Tailings: Determination of Dynamic and Static Yield Stresses.

Appl. Sci. 2019, 9, 4744. [CrossRef]
9. Zengeni, B.T. Bingham Yield Stress and Bingham Plastic Viscosity of Homogeneous Non-Newtonian Slurries. Ph.D. Thesis, Cape

Peninsula University of Technology, Cape Town, South Africa, 2016.
10. Wang, X.; Wei, Z.; Li, Q.; Chen, Y. Experimental Research on the Rheological Properties of Tailings and Its Effect Factors. Environ.

Sci. Pollut. Res. 2018, 25, 35738–35747. [CrossRef]
11. Jeyapalan, J.K.; Duncan, J.M.; Seed, H.B. Investigation of Flow Failures of Tailings Dams. J. Geotech. Eng. 1983, 109, 172–189.

[CrossRef]
12. Yu, D.; Tang, L.; Chen, C. Three-Dimensional Numerical Simulation of Mud Flow from a Tailing Dam Failure across Complex

Terrain. Nat. Hazards Earth Syst. Sci. 2020, 20, 727–741. [CrossRef]

http://www.b1technicalinvestigation.com/
https://pedlowski.files.wordpress.com/2016/08/fundao-finalreport.pdf
https://pedlowski.files.wordpress.com/2016/08/fundao-finalreport.pdf
https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(877)
https://doi.org/10.3846/16486897.2015.1021698
https://doi.org/10.3390/app9224744
https://doi.org/10.1007/s11356-018-3481-1
https://doi.org/10.1061/(ASCE)0733-9410(1983)109:2(172)
https://doi.org/10.5194/nhess-20-727-2020


Water 2023, 15, 2866 31 of 32

13. Yang, S.-H.; Pan, Y.-W.; Dong, J.-J.; Yeh, K.-C.; Liao, J.-J. A Systematic Approach for the Assessment of Flooding Hazard and Risk
Associated with a Landslide Dam. Nat Hazards 2013, 65, 41–62. [CrossRef]

14. O’ Brien, J.S.; Julien, P.Y. Physical Properties and Mechanics of Hyperconcentrated Sediment Flows; Bowles, D.D., Ed.; Delineation of
Landslide, Flash Flood, and Debris-Flow Hazards in Utah; Utah Water Research Laboratory: Logan, UT, USA, 1985; pp. 260–279.

15. D’Agostino, V.; Tecca, P.R. Some Considerations On The Application Of The FLO-2D Model For Debris Flow Hazard Assessment.
In Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flows; WIT Press: The New Forest, UK, 2006; Volume 90,
pp. 159–170.

16. Naef, D.; Rickenmann, D.; Rutschmann, P.; McArdell, B.W. Comparison of Flow Resistance Relations for Debris Flows Using a
One-Dimensional Finite Element Simulation Model. Nat. Hazards Earth Syst. Sci. 2006, 6, 155–165. [CrossRef]

17. Sosio, R.; Crosta, G.; Frattini, P. Field Observations, Rheologucal Testing and Numerical Modeling of a Debris-Flow Event. Earth
Surf. Process. Landf. 2007, 32, 290–306. [CrossRef]

18. Rickenmann, D.; Laigle, D.; McArdell, B.W.; Hübl, J. Comparison of 2D Debris-Flow Simulation Models with Field Events.
Comput Geosci 2006, 10, 241–264. [CrossRef]

19. Cesca, M.; D’Agostino, V. Comparison between FLO-2D and RAMMS in Debris-Flow Modelling: A Case Study in the Dolomites.
In Monitoring, Simulation, Prevention and Remediation of Dense Debris Flows II; WIT Press: The New Forest, UK, 2008; Volume 60,
pp. 197–206, ISBN 978-1-84564-118-4.

20. Lin, J.-Y.; Yang, M.-D.; Lin, B.-R.; Lin, P.-S. Risk Assessment of Debris Flows in Songhe Stream, Taiwan. Eng. Geol. 2011, 123,
100–112. [CrossRef]

21. Hungr, O. A Model for the Runout Analysis of Rapid Flow Slides, Debris Flows, and Avalanches. Can. Geotech. J. 1995, 32,
610–623. [CrossRef]

22. Arattano, M.; Franzi, L.; Marchi, L. Influence of Rheology on Debris-Flow Simulation. Nat. Hazards Earth Syst. Sci. 2006, 6,
519–528. [CrossRef]

23. Coussot, P.; Meunier, M. Recognition, Classification and Mechanical Description of Debris Flows. Earth-Sci. Rev. 1996, 40, 209–227.
[CrossRef]

24. Zegers, G.; Mendoza, P.A.; Garces, A.; Montserrat, S. Sensitivity and Identifiability of Rheological Parameters in Debris Flow
Modeling. Nat. Hazards Earth Syst. Sci. 2020, 20, 1919–1930. [CrossRef]

25. Iaccarino, G. Quantification of Uncertainty in Flow Simulations Using Probabilistic Methods. In Proceedings of the Non-Equilibrium
Gas Dynamics from Physical Models to Hypersonic Flights, Rhode St. Genèse, Belgium, 8 September 2008.

26. Cepeda, J.; Quan Luna, B.; Nadim, F. Assessment of Landslide Run-out by Monte Carlo Simulations. In Proceedings of the
Landslides, Risk & Reliability, Paris, France, 2 September 2013; pp. 2157–2160.

27. Contreras, S.; Castillo, C.; Olivera-Nappa, Á.; Townley, B.; Ihle, C.F. A New Statistically-Based Methodology for Variability
Assessment of Rheological Parameters in Mineral Processing. Miner. Eng. 2020, 156, 106494. [CrossRef]

28. Kameda, J.; Okamoto, A. 1-D Inversion Analysis of a Shallow Landslide Triggered by the 2018 Eastern Iburi Earthquake in
Hokkaido, Japan. Earth Planets Space 2021, 73, 116. [CrossRef]

29. Stowe, J.; Farrell, I.; Wingeard, E. Tailings Transport System Design Using Probabilistic Methods. Min. Metall. Explor. 2021, 38,
1289–1296. [CrossRef]

30. De La Rosa, Á.; Ruiz, G.; Castillo, E.; Moreno, R. Calculation of Dynamic Viscosity in Concentrated Cementitious Suspensions:
Probabilistic Approximation and Bayesian Analysis. Materials 2021, 14, 1971. [CrossRef]

31. Quan Luna, B.; Blahut, J.; van Westen, C.J.; Sterlacchini, S.; van Asch, T.W.J.; Akbas, S.O. The Application of Numerical Debris
Flow Modelling for the Generation of Physical Vulnerability Curves. Nat. Hazards Earth Syst. Sci. 2011, 11, 2047–2060. [CrossRef]

32. Wu, Y.-H.; Liu, K.-F.; Chen, Y.-C. Comparison between FLO-2D and Debris-2D on the Application of Assessment of Granular
Debris Flow Hazards with Case Study. J. Mt. Sci. 2013, 10, 293–304. [CrossRef]

33. Pasculli, A.; Cinosi, J.; Turconi, L.; Sciarra, N. Learning Case Study of a Shallow-Water Model to Assess an Early-Warning System
for Fast Alpine Muddy-Debris-Flow. Water 2021, 13, 750. [CrossRef]

34. Fallas Salazar, S.; Rojas González, A.M. Evaluation of Debris Flows for Flood Plain Estimation in a Small Ungauged Tropical
Watershed for Hurricane Otto. Hydrology 2021, 8, 122. [CrossRef]

35. Bingham, E.C. Fluidity and Plasticity.; McGraw-Hill: New York, NY, USA, 1922.
36. Herschel, W.H.; Bulkley, R. Konsistenzmessungen von Gummi-Benzollösungen. Kolloid-Z. 1926, 39, 291–300. [CrossRef]
37. Ligier, P.-L. Implementation of Non-Newtonian Rheological Models in TELEMAC-2D. In Proceedings of the 2020 TELEMAC-

MASCARET, Online, 15 October 2020; pp. 14–25.
38. Lumbroso, D.; Davison, M.; Body, R.; Petkovšek, G. Modelling the Brumadinho Tailings Dam Failure, the Subsequent Loss of Life

and How It Could Have Been Reduced. Nat. Hazards Earth Syst. Sci. 2021, 21, 21–37. [CrossRef]
39. Da Silva, A.; Eleutério, J. Effectiveness of Dam-Breach Flood Alert in Mitigating Life-Losses—A Spatiotemporal Sectorisation

Analysis in a High-Density Urban Area in Brazil. Water 2023, under review.
40. Zenz, G.; Goldgruber, M. ICOLD Proceeding, 12th International Benchmark Workshop on Numerical Analysis of Dams. In

Proceedings of the ICOLD Proceedings, Gerald Zenz and Markus Goldgruber, Graz, Austria, 2 October 2013; Volume 12, p. 210.
41. Waele, A. Viscometry and Plastometry; Oil and Colour Chemists’ Association: Manchester, UK, 1923.
42. Ostwald, W. Ueber die Geschwindigkeitsfunktion der Viskosität disperser Systeme. II. Kolloid-Z. 1925, 36, 157–167. [CrossRef]

https://doi.org/10.1007/s11069-012-0344-9
https://doi.org/10.5194/nhess-6-155-2006
https://doi.org/10.1002/esp.1391
https://doi.org/10.1007/s10596-005-9021-3
https://doi.org/10.1016/j.enggeo.2011.07.003
https://doi.org/10.1139/t95-063
https://doi.org/10.5194/nhess-6-519-2006
https://doi.org/10.1016/0012-8252(95)00065-8
https://doi.org/10.5194/nhess-20-1919-2020
https://doi.org/10.1016/j.mineng.2020.106494
https://doi.org/10.1186/s40623-021-01443-y
https://doi.org/10.1007/s42461-021-00421-y
https://doi.org/10.3390/ma14081971
https://doi.org/10.5194/nhess-11-2047-2011
https://doi.org/10.1007/s11629-013-2511-1
https://doi.org/10.3390/w13060750
https://doi.org/10.3390/hydrology8030122
https://doi.org/10.1007/BF01432034
https://doi.org/10.5194/nhess-21-21-2021
https://doi.org/10.1007/BF01423485


Water 2023, 15, 2866 32 of 32

43. Qian, N.; Wan, Z. A Critical Review of the Research on the Hyperconcentrated Flow in China; International Research and Training
Centre on Erosion and Sedimentation: Beijing, China, 1986.

44. de Ferreira, F.O. Abordagem Matemática de Roll Waves em Escoamentos Hiperconcentrados Com Superfície Livre. Mater’s
Thesis, Universidade Estadual Paulista, Faculdade de Engenharia de Ilha Solteira, Ilha Solteira, Brazil, 2007.

45. Tarcha, B.A. Desafios na Medição da Tensão Limite de Escoamento de óleos Parafínicos. Mater’s Thesis, Universidade Federal do
Espírito Santo, Centro Tecnológico, Vitória, Espírito Santo, Brazil, 2014.

46. USACE (U. S. Army Corps of Engineers) HEC-RAS Mud and Debris Flow: Non-Newtonian User’s Manual. Available online:
https://www.hec.usace.army.mil/confluence/rasdocs/rasmuddebris (accessed on 5 June 2022).

47. Fitton, T.G.; Seddon, K.D. Relating Atterberg Limits to Rheology. In Proceedings of the Paste 2012, Australian Centre for Geomechanics,
Perth, Australia, 16 April 2012; pp. 273–284.

48. Ribeiro, V.Q.F. Proposta de Metodologia para Avaliação do Efeito de Rupturas de Estruturas de Contenção de Rejeitos. Master’s
Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2015.

49. Machado, N.C. Retroanálise da propagação decorrente da ruptura da barragem do fundão com diferentes modelos numéricos e
hipóteses de simulação. Master’s Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2017.

50. Gitari, W.M.; Thobakgale, R.; Akinyemi, S.A. Mobility and Attenuation Dynamics of Potentially Toxic Chemical Species at an
Abandoned Copper Mine Tailings Dump. Minerals 2018, 8, 64. [CrossRef]

51. Mahmood, A.A.; Elektorowicz, M. An Investigation of the Porosity Dependent Strength and Leachability of Mine Tailings
Matrices Containing Heavy Metals. Cogent Environ. Sci. 2020, 6, 1743626. [CrossRef]

52. Gibson, S.; Moura, L.Z.; Ackerman, C.; Ortman, N.; Amorim, R.; Floyd, I.; Eom, M.; Creech, C.; Sánchez, A. Prototype Scale
Evaluation of Non-Newtonian Algorithms in HEC-RAS: Mud and Debris Flow Case Studies of Santa Barbara and Brumadinho.
Geosciences 2022, 12, 134. [CrossRef]

53. Bagnold, R.A. Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid under Shear. Proc. R. Soc.
Lond. A 1954, 225, 49–63. [CrossRef]

54. Rickenmann, D. Hyperconcentrated Flow and Sediment Transport at Steep Slopes. J. Hydraul. Eng. 1991, 117, 1419–1439. [CrossRef]
55. Olsson, A.; Sandberg, G.; Dahlblom, O. On Latin Hypercube Sampling for Structural Reliability Analysis. Struct. Saf. 2003, 25,

47–68. [CrossRef]
56. McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis

of Output from a Computer Code. Technometrics 1979, 21, 239–245. [CrossRef]
57. Pirouz, B.; Javadi, S.; Seddon, K. Thickener Performance Variability: Underflow Solids Concentration and Flowrate. In Proceedings

of the Paste 2017, University of Science and Technology Beijing, Beijing, China, 16 June 2017; pp. 29–40.
58. Bezerra, R.; Eleutério, J. A Novel Full 2D Probabilistic Hydrodynamic Approach to Model and Map Floods from Dam Failures

Considering Breach Parameters Uncertainty. Water, 2023; under review.
59. Goodell, M.C.R. Breaking the HEC-RAS Code: A User’s Guide to Automating HEC-RAS, 1st ed.; H2ls: Portland, OR, USA, 2014;

ISBN 978-0-9908918-0-2.
60. Dysarz, T. Application of Python Scripting Techniques for Control and Automation of HEC-RAS Simulations. Water 2018, 10, 1382.

[CrossRef]
61. Papaioannou, G.; Vasiliades, L.; Loukas, A.; Aronica, G.T. Probabilistic Flood Inundation Mapping at Ungauged Streams Due to

Roughness Coefficient Uncertainty in Hydraulic Modelling. Adv. Geosci. 2017, 44, 23–34. [CrossRef]
62. Hamouda, T. Impact of Micro-Topography and Bathymetry Modification on Inundation Modelling with Different Magnitudes

Based on SRTM Data. Master’s Thesis, UNESCO-IHE Institute for Water Education, Delft, The Netherlands, 2018.
63. Da Silva, A.Â.C.L.; Eleutério, J.C. Identifying and Testing the Probability Distribution of Earthfill Dam Breach Parameters for

Probabilistic Dam Breach Modeling. J. Flood Risk Manag. 2023, e12900. [CrossRef]
64. Froehlich, D. Empirical Model of Embankment Dam Breaching. In Proceedings of the River Flow 2016, St. Louis, MO, USA, 11–14

July 2016; CRC Press: Boca Raton, FL, USA, 2016; pp. 1821–1826.
65. FEMA (Federal Emergency Management Agency). Federal Guidelines for Inundation Mapping of Flood Risks Associated with Dam

Incidents and Failures; FEMA: Washington, DC, USA, 2013; p. 145.
66. Hussin, H.Y. Probabilistic Run-out Modeling of a Debris Flow in Barcelonnette, France. Thesis, ITC: Faculty of Geo-Information

Science and Earth Observation, Enschede, The Netherlands, 2011. Available online: http://essay.utwente.nl/84877/ (accessed on
30 July 2023).

67. Wooster, J.K.; Dusterhoff, S.R.; Cui, Y.; Sklar, L.S.; Dietrich, W.E.; Malko, M. Sediment Supply and Relative Size Distribution
Effects on Fine Sediment Infiltration into Immobile Gravels. Water Resour. Res. 2008, 44. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.hec.usace.army.mil/confluence/rasdocs/rasmuddebris
https://doi.org/10.3390/min8020064
https://doi.org/10.1080/23311843.2020.1743626
https://doi.org/10.3390/geosciences12030134
https://doi.org/10.1098/rspa.1954.0186
https://doi.org/10.1061/(ASCE)0733-9429(1991)117:11(1419)
https://doi.org/10.1016/S0167-4730(02)00039-5
https://doi.org/10.2307/1268522
https://doi.org/10.3390/w10101382
https://doi.org/10.5194/adgeo-44-23-2017
https://doi.org/10.1111/jfr3.12900
http://essay.utwente.nl/84877/
https://doi.org/10.1029/2006WR005815

	Introduction 
	Materials and Methods 
	Mathematical Rheological Models and Parameterization 
	Parameter Intervals and Sampling 
	Automation of Sensitivity Analysis in HEC-RAS 
	Case Study: The Hydrodynamic Model 

	Results 
	Probabilistic Maps Related to Flooded Areas 
	Arrival Times and Maximum Depth Variation along the Valley 
	Rheological Parameters vs. Simulated Areas 
	Rheological Parameters vs. Hmean 

	Discussion 
	Conclusions and Recommendations 
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

