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Abstract: The photocatalytic performance of g-C3N4 materials prepared by different precursors for
Rhodamine B (RhB) dye degradation was studied. Their crystal structure, morphologies, chemical
compositions, functional groups, and optical and photoelectrochemical performances of prepared
g-C3N4 were analysed and characterised using X-ray diffraction, scanning electron microscopy, X-
ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV-Vis diffuse reflectance
spectra, photoluminescence, and electrochemical workstations. The degradation of RhB dye in
the presence of visible light and sunlight was utilised to assess the photocatalytic efficiency of
the g-C3N4 photocatalyst. The results of the photocatalytic comparison experiment showed that
the g-C3N4 photocatalyst prepared with urea as a precursor (UCN) has the best photocatalytic
performance, achieving 99.61% removal in 40 min. In addition, the photocatalyst UCN can completely
degrade 10 mg/L RhB dye within 20 min under sunlight, demonstrating its potential for practical
applications under natural sunlight conditions. After four cycles, the degradation rate remains
above 99%, demonstrating excellent stability and reusability. Due to its lower average pore number,
larger BET-specific surface area and volume of pores, UCN provides more activity spaces and
facilitates the adsorption of pollutant molecules, thereby enhancing photocatalytic activity. It was
established through the active substance trapping studies that the main reactive species involved
in the photocatalytic degradation process of RhB dye is •O2

−. This study showed that g-C3N4

synthesised with urea as the precursor has better photocatalytic performance in the degradation of
RhB dye.

Keywords: g-C3N4; urea; melamine; photocatalysts; Rhodamine B

1. Introduction

With the continuous advancement of China’s industrialisation and urbanisation, envi-
ronmental pollution, such as water pollution, has become an increasingly severe problem,
a crucial factor restricting economic development and social progress [1]. Many efforts
have been made to eliminate contaminants from the water. Recently, photocatalysis tech-
nology was investigated for removing organic dyes from water because of its mild reaction
conditions, low price, cleanliness, and high efficiency [2,3]. Budnyak et al. [4] synthesised
the photoactive lignin/Bi4O5Br2/BiOBr bioinorganic complex site and found that 18.9% of
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Bi4O5Br2/BiOBr exhibited photocatalytic degradation capabilities towards cationic methy-
lene blue and Rhodamine B (RhB) dyes under 20 W blue light irradiation. Li et al. [5]
fabricated a C-BiOCl composite photocatalyst and found that it exhibited superior pho-
tocatalytic activity with RhB dye degradation irradiated for only 6 min under a 300 W
Xe arc lamp. Zhang et al. [3] synthesised ZSM-5/Bi4O5Br2 photocatalysts and found that
1ZSM-5/Bi4O5Br2 had an excellent photocatalytic performance. The RhB dye removal
rate reached 99.86% within 25 min under 300 W Xe arc lamp irradiation. Yang et al. [6]
synthesised a nitrogen-deficient porous g-C3N4 photocatalyst that can completely degrade
RhB dye in just 20 min under simulated visible light irradiation.

The photocatalytic process depends on highly active substances, such as superoxide
radicals (•O2

−), hydroxyl radicals (•OH), and holes (h+) produced by the photocatalyst
after absorbing light energy to decompose target pollutants [7]. Various photocatalysts,
including TiO2-based [8], Bi-based [9,10], Mo-based [11], Zn-based [12], and Ag-based [13]
semiconductors, have been developed and effectively removed RhB dye. Nevertheless,
many of the aforementioned photocatalysts might give off precious elemental metals, in-
troducing the risk of additional contamination caused by the release of metals from the
photocatalysts. Therefore, metal-free photocatalysts are environmentally friendly alterna-
tives that have prospective widespread usage [14].

Graphite carbon nitride (g-C3N4) has generated considerable interest as a metal-free
photocatalyst because of its straightforward and affordable synthesis; energy bandwidth for
solar power collection; thermal stability; trustworthy chemical inertness; and electrochem-
ical, multipurpose, and nicely organised photocatalytic characteristics [15–17]. g-C3N4
has the in-plane tri-s-triazine units, and the sp2-hybridised carbon and nitrogen form a π-
conjugated system, advantageous for modifying materials based on nanosheets in electrical
and optical electronics [18,19]. g-C3N4 has good photocatalytic performance because of the
narrow band gap and capacity to take in light that is visible, which can effectively absorb
and use the light of wavelengths below 460 nm [20]. The g-C3N4 band gap is approximately
2.70 eV, and the conduction band (CB) potential is negative (−1.3 eV), providing a strong
reduction ability for photogenerated electrons [21]. The synthesis methods of g-C3N4
primarily include deposition [22,23], template [24], solvothermal [25], and thermal poly-
merisation [26,27]. Thermal polymerisation is frequently employed because of its affordable,
easy availability of raw materials, and simple operation. A few molecules with a high
nitrogen content, such as cyanamide [28], dicyandiamide [29], melamine [30], and urea [31],
served as a single source of molecular antecedents to fabricate g-C3N4. Ma et al. [32] pre-
pared g-C3N4 from various raw materials using thermal polycondensation, and the shapes
of the products obtained using mono-cyanamide, dicyandiamide, and melamine were
spherical, irregular, and layered, respectively. Liu et al. [33] prepared 3D interconnected
g-C3N4 via one-step thermal polymerisation using melamine and cyanuric acid.

The occurrence of catalytic reactions necessitates adsorption, and numerous studies
have highlighted that optimal adsorption can yield enhanced catalytic efficiency [34,35].
Zhang et al. [36] loaded Cu on an oxide semiconductor surface to improve wastewater
remediation, and the results showed that Cu particle deposition can improve the adsorp-
tion activity of a single oxide and thus improve the photocatalytic activity. Luo et al. [37]
demonstrated that the adsorption process promotes the photodegradation of pollutants by
g-C3N4, while the photodegradation of dyes supported on g-C3N4 regenerates its adsorp-
tion capacity many times, indicating that the photocatalytic process also enhances pollutant
adsorption on g-C3N4. Yu et al. [38] confirmed that a modified g-C3N4/MgZnAl-calcined
layered double hydroxide composite (MCN/cLDH) possesses a large SBET-specific surface
area, which enhances its adsorption capacity and improves the separation efficiency of
photogenerated carriers. Furthermore, MCN/cLDH nanostructures exhibit enhanced syn-
ergistic degradation through adsorption-photocatalysis to remove oxytetracycline (95.73%)
from artificial seawater. Ni et al. [39] demonstrated that the addition of g-C3N4 to CCN
(Co3O4 QDs/3D g-C3N4) catalyst led to an increase in tetracycline adsorption, indicating
that an optimal amount of g-C3N4 as a Co3O4 QDs carrier can enhance adsorption and
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expose more active sites, thereby achieving the best synergistic effect between adsorption
and oxidative degradation. Liu et al. [40] prepared an efficient three-dimensional (3D)
hollow porous C-doped polymeric carbon nitride (CPCN) catalyst, and found that the
formed 3D hollow porous structure gave the CPCN catalyst a large specific surface area and
numerous exposed active sites, promoted the substrate adsorption reaction and maintained
its structural stability, and thus improved its photolytic water hydrogen production and
pollutant elimination activity.

In this study, melamine and urea were utilised as precursors for the preparation of
g-C3N4 (MCN and UCN, respectively) through thermal polymerisation. The photocatalytic
degradation ability and practical application potential of MCN and UCN were assessed
by comparing the change in RhB dye concentration under visible light and sunlight ir-
radiation. The crystal structure, morphology, chemical composition, functional groups,
optics, photoelectric chemical properties, and stability of g-C3N4 were investigated. To
understand how RhB molecules behaved in the reaction procedure, three-dimensional
excitation-emission matrix fluorescence spectra (3D EEMs) were used. In comparison to
MCN, UCN has better photocatalytic capabilities for degrading RhB dye when exposed to
visible light and sunlight. This study serves as a reference for research on the synthesis and
properties of g-C3N4.

2. Experimental
2.1. Materials

Urea (H2NCONH2), melamine (C3H6N6), isopropanol (C3H8O, IPA), benzoquinone
(C6H4O2, BQ), Rhodamine B (RhB, C28H31ClN2O3), and sodium oxalate (Na2C2O4, SO)
were purchased from Xilong Scientific Co., Ltd. (Shantou, China). All reagents are analytical
grade and can be used without further purification.

2.2. Synthesis of g-C3N4

g-C3N4 was synthesised using the thermal polymerisation process with melamine and
urea as the reactive precursors, and 15 g melamine and urea were placed, respectively, into
a 50 mL covered crucible in a muff furnace. The heating rate was set to 5◦/min; the target
temperature was 550 ◦C, maintained for 3 h; and the substance was ground for 5 min to
obtain g-C3N4 photocatalytic materials, named MCN and UCN.

2.3. Material Characterisation

The crystal structure information of MCN and UCN was recorded using powder X-ray
diffraction (XRD) on a PANalytical X’Pert3 Powder diffraction instrument. The specific
functional groups of MCN and UCN were measured using Fourier transform infrared
spectroscopy (FTIR) (IS10, Thermo Fisher Scientific, Madison, WI, USA), and the morphol-
ogy and structure were evaluated using scanning electron microscopy (SEM) (JSM-7900F
Plus, Nidec Corporation, Kyoto, Japan). The surface chemical composition and electronic
state of MCN and UCN were determined using X-ray photoelectron spectroscopy (XPS)
(Thermo Scientific K-Alpha Nexsa, Waltham, MA, USA), and the N2 adsorption–desorption
isotherms and Brunauer–Emmett–Teller (BET) surface area were evaluated using a specific
surface area analyser (ASAP 2460). The optical properties were obtained using diffuse re-
flectance spectra (DRS) via a 3600 UV-Vis spectrophotometer. The photoluminescence (PL)
spectra of MCN and UCN were studied using an FLS 980 fluorescence spectrophotometer
(Edinburgh Instruments, Livingston, UK) employing an excitation wavelength of 325 nm.
Electrochemical impedance (EIS) and photocurrent response tests were conducted on MCN
and UCN using an electrochemical workstation (CHI660E, Shanghai Chenhua Instrument
Co., Ltd., Shanghai, China). A standard three-electrode system is adopted (sample-coated
conductive glass is the working electrode, platinum electrode is the opposite electrode,
and Ag/AgCl is the reference electrode). The working electrode is prepared as follows:
10 mg of powder sample is weighed and dispersed in 1 mL of ethanol solution, followed
by the addition of 50 µL of Nafion solution. The mixture is then subjected to ultrasonic
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treatment for 30 min to achieve a homogeneous suspension. Subsequently, 150 µL of the
suspension is dropped onto an ITO glass substrate and dried at room temperature for
testing. The measurement process was conducted in a 0.1 M Na2SO4 aqueous solution.
Raman analysis was performed using a confocal Raman microscope (CRM) (Alpha300R,
WITec GmbH, Ulm, Germany) equipped with a TEM single-frequency laser (λ = 532 nm,
laser power = 40 mW, WITec GmbH, Germany). Elemental analysis of MCN and UCN was
performed using the PerkinElmer 24,000 Series II CHNS/O analyser. The EEM fluorescence
spectrum was acquired using a fluorescence spectrophotometer (Aqualog-UV-800).

2.4. Photocatalytic Performance Measurement

The photocatalytic performance was assessed by comparing the photocatalytic degra-
dation of RhB dye (dissolved in deionised water) using MCN and UCN. The procedure was
as follows: 50 mg of MCN (or UCN) was weighed and placed into a solution in a 250 mL
beaker (100 mL, 10 mg/L, 20 mg/L, and 30 mg/L RhB dye). To ensure a balance between
adsorption and desorption, each suspension was agitated in the darkness for 60 min and
then exposed to a 300 W Xenon lamp (λ ≥ 420 nm) or direct sunlight. Experiments using
sunlight illumination were carried out outside between 13:00 pm and 14:00 pm (2023/5;
weather: fine; 26–35 ◦C). During the photocatalytic procedure, 5 mL of suspension was
taken at predetermined time intervals, and the photocatalyst powder was separated using
a 0.45 µm filter membrane. The RhB dye concentration (λmax = 554 nm) in the suspension at
different irradiation time intervals was measured using a 6100A UV-Vis spectrophotometer
(Shanghai Yuanxi Instruments Co., Ltd., Shanghai, China), and the Lambert–Beer law was
used to calculate the RhB removal efficiency.

3. Results and Discussions
3.1. Crystal Structure and Functional Group Analysis

The crystal properties and composition of the synthesised photocatalysts were charac-
terised using the XRD technique. The diffraction pattern in Figure 1a displays two distinct
peaks at 2θ values of 13.18◦ and 27.86◦, which can be attributed to the (100) and (002) planes
of g-C3N4, respectively (JCPDS NO. 01-087-1526) [41]. The (100) crystal plane indicates
the periodic arrangement of the structural units in the layer, and the (002) crystal plane
corresponds to the interlayer stacking of aromatic segments. The positions of these two
diffraction peaks correlate with those previously reported for g-C3N4 [42]. Compared with
MCN, UCN’s peak intensity and width of the (002) crystal plane is weaker and broader,
indicating that urea as a precursor can inhibit the crystal growth of g-C3N4. The average
crystal diameters were calculated using Scherrer’s equation: D = Kλ/βcosθ, where D is the
average crystal diameter (nm); K is the Scherrer constant (0.89); λ is the wavelength of the
X-ray (1.5406◦A); β is the full width at half-maximum intensity and θ corresponds to the
angle of maximum peak [3,43], and the calculated average crystallite sizes of MCN and
UCN are equal to 3.67 and 1.77 nm, respectively.
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Figure 1. (a) XRD patterns, (b) FTIR spectra, and (c) Raman spectra of MCN and UCN.
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The intrinsic chemical structure of the samples can be detected using FTIR spectra.
Figure 1b shows that the characteristic peak value at 810 cm−1 corresponds to the out-of-
plane bending vibration of the triazine ring [44], and the broader band of approximately
3000 to 3600 cm−1 corresponds to the N–H stretching vibration [45]. The characteristic
band at 1675–1200 cm−1 ascribes to the stretching vibration mode of C–N and C=N [46,47].
The tensile vibrations of the bonds in the prepared photocatalyst can be revealed via
Raman spectroscopy, as depicted in Figure 1c. The peaks observed at 478 cm–1, 710 cm−1,
753 cm−1, 978 cm−1, and 1235 cm−1 correspond to the tensile vibrations of C–C and C–N
heterocycles [48–50].

3.2. Microstructure and Compositions Analysis

SEM was performed on MCN and UCN to study the typical morphology and detailed
structure of the as-prepared samples. Figure 2a shows that MCN presents a hierarchical
structure with layers stacked tightly into blocks. UCN becomes thinner and presents a
more dispersed and uniform porous structure (Figure 2c). The degree of the UCN sample’s
interlayer stacking structure is low, and the interlayer structure is loose, which can increase
the surface area and reactive sites [51]. The results are consistent with those of BET. SEM-
EDS was used to analyse the distribution and content percentage of elements on the surface
of the photocatalyst. C and N are uniformly distributed on the surface of the photocatalyst
(Figure 2b,d). The results of the elemental analysis of MCN and UCN are shown in Table 1.
The C/N of MCN and UCN are 0.56 and 0.61, respectively.
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Table 1. Elemental analysis of MCN and UCN.

Samples C (%) N (%) C/N

MCN 33.93 60.97 0.56
UCN 34.73 57.32 0.61
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XPS was used to analyse and compare the surface elemental composition of MCN and
UCN. The XPS survey spectrum shows that C and N existed in MCN and UCN (Figure 3a).
The C 1s spectra are fitted into two peaks at 288.1 and 284.8 eV (Figure 3b). The primary
C 1s peak at 288.1 eV is associated with the sp2-bonded carbon (N–C=N), and the peak
at 284.8 eV corresponds to C–C [31]. The N1s XPS spectrum in Figure 3c displays four
peaks at 398.5, 400.4, 401.3, and 404.2 eV [52]. These peaks correspond to C=N–C, ternary
N (N(–C)3), N-H bond [7,46], and π-excitations [31], respectively.
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3.3. BET Surface Area and Pore Size Distribution Analysis

The BET surface area and the distribution of pore sizes for the MCN and UCN
were measured using the N2 adsorption–desorption isotherms (Figure 4). The adsorption–
desorption isotherms of the MCN and UCN are classical type IV with a hysteresis loop
of type H3, indicating that the catalyst has a mesoporous structure [53]. The BET surface
area of UCN is 60.03 m2·g−1, more than eight times that of MCN. Table 2 shows that UCN
exhibits a larger specific surface area, greater pore volume, and smaller average pore size,
thereby providing an increased number of active sites that contribute to the adsorption of
pollutant molecules [54]. Therefore, the mesoporous structure and large BET surface area
of UCN are expected to enhance the adsorption capacity and photocatalytic degradation
efficiency of pollutants.
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Table 2. The results of the N2 adsorption–desorption analysis for MCN and UCN.

Samples BET Surface Area
(m2·g−1)

Pore Volume
(cm3·g−1)

Average Pore Size
(nm)

MCN 7.4408 0.002278 20.4142
UCN 60.0322 0.005151 17.6493

3.4. UV–Vis Spectroscopy and Photochemical Characteristics

To understand the light absorption capacity of MCN and UCN, UV–vis absorption
spectra were analysed, as shown in Figure 5. The sharp innate absorption edge for MCN
and UCN are at around 480 and 460 nm, respectively. The absorption edge’s shift is
primarily due to the porous structure’s strong quantum constraint causing the nanosheets
to become thinner and smaller in the UCN [55]. The Kubelka–Munk formula was used
for estimation to understand the MCN and UCN energy bands better. This is based on
αhυ = A (hυ − Eg)n/2, where a, h, n, A and Eg are the absorption coefficient, the Planck
constant, light frequency, a constant and band gap energy [56], respectively. The value of n
depends on the type of optical transition exhibited by the semiconductor. For g-C3N4 with
a direct band gap, the value of n is equal to 1 [21,57]. The Eg of MCN and UCN are 2.70
and 2.79 eV, respectively, similar to the study by Hong et al. [58].
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Figure 5. (a) UV-vis diffuse reflectance spectra and (b) plots of (αhυ)2–hυ of MCN and UCN.

Recombining photogenerated carriers within the photocatalyst releases fluorescence
energy, and a high fluorescence signal indicates a high photogenerated carrier recombina-
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tion rate [9,54]. Therefore, PL analysis was used to evaluate the efficiency of photogenerated
electron–hole pair separation. Figure 6a shows that MCN and UCN have distinct signal
peaks near 480 nm. The UCN fluorescence intensity is significantly weaker than that of
MCN, indicating that UCN aids in the separation of photogenerated electron-hole pairs
and thus improves photocatalytic activity. Furthermore, the photocarrier interface sepa-
ration and migration of g-C3N4 were measured using the Nyquist plots of EIS. Generally,
a smaller radius of the arc on the EIS Nyquist plot indicates more efficient interface charge
transfer and lower photogenerated electron–hole pair recombination [59]. In Figure 6b,
the EIS Nyquist plot of UCN shows a smaller arc radius than that of MCN, indicating
that UCN has a lower interfacial charge transfer resistance and can separate photoinduced
carriers more efficiently. The photocurrent responses of MCN and UCN are shown in
Figure 6c. The higher the photocurrent density, the better the electron–hole pair separation
performance [60]. The photocurrent response of UCN is higher, which further indicates
that UCN has a stronger electron–hole pair separation ability.
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Figure 6. (a) PL spectra, (b) EIS plots, and (c) photocurrent responses of MCN and UCN.

3.5. Photocatalytic Degradation Performance

The degradation of RhB dye was used to gauge both the adsorption and photocatalytic
abilities of MCN and UCN. Figure 7 demonstrates that UCN exhibits superior removal
efficiency in treating RhB dye at different concentrations under visible light or sunlight,
with equilibrium being achieved within 20 min. After 40 min of visible light exposure
(Figure 7a), the removal efficiency of UCN towards 30 mg/L RhB dye reaches up to 99.61%,
which is higher by 20.31% compared to MCN. MCN has the best effect on the treatment
of RhB dye with a concentration of 10 mg/L under visible light, and the removal rate is
98.58% after 40 min of illumination, but the removal efficiency is still lower than that of
UCN (99.36%). Additionally, the applicability of the prepared photocatalyst under natural
sunlight was also investigated. As shown in Figure 7c, the photocatalyst UCN outperforms
the laboratory-simulated visible light catalytic system by completely degrading 10 mg/L
of RhB dye in 20 min. This is mostly because that natural sunlight emits not only visible
light but also ultraviolet radiation, which can potentially enhance the generation of charge
carriers by the catalyst and facilitate the degradation of RhB dye [61]. In order to visualise
the photocatalytic degradation of RhB dyes via UCN and MCN, a degradation diagram
excluding the adsorption effect was made. As shown in Figure 7b,d, under simulated
visible light and real sunlight irradiation, the effect of UCN is still better after deducting
the adsorption effect, which indicates the adsorption–photocatalytic synergy. In conclusion,
the utilisation of urea yields superior results in the preparation of g-C3N4.

Figure 8 shows the UV-Vis absorption spectra for the photodegradation of RhB dye in
the UCN photocatalyst. The maximum absorption peak of RhB dye at 554 nm (λmax) grad-
ually decreased with the photodegradation process. After 5 min of visible light irradiation,
the UCN photocatalyst decomposed approximately 96.15% of the RhB dye. The primary
absorption peak’s position was significantly reduced, indicating that UCN has excellent
photocatalytic performance.
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Figure 8. UV-Vis spectral changes of RhB dye in UCN.

In addition, 3D EEMs technology was employed to elucidate the alterations of RhB
dye after photocatalysis. Before visible light illumination, the characteristic fluorescence
signal appeared at Ex/Em = 460–590/540–700 nm and 200–425/550–670 nm. After being
stirred in darkness for 30 min (Figure 9a), the position and shape of the fluorescence peak
remained relatively stable, but its intensity slightly decreased, indicating that the RhB
molecule was only adsorbed on the catalyst without decomposition. After 40 min, the
fluorescence intensity began to decrease. This indicates that the RhB has broken down into
pieces and molecular fragments [62]. This is consistent with the results shown in Figure 8.
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Figure 9. The 3D EEMs results of the RhB solution: (a) the original solution, (b) after dark adsorption
for 60 min, and (c) after illumination for 40 min of UCN.

The stability and recycling properties of the UCN were verified by carrying out
four cycle tests for the photocatalytic degradation of RhB dye. After each photocatalytic
degradation, the powder material was extracted and recycled, cleaned three times with
deionised water, and dried for the next cycle experiment. Compared with the first time
(99.61%), the removal rate shows a slight change (Figure 10a). In four cycles, the treatment
rates were 99.58%, 99.49%, 99.36%, and 99.35%. The results indicate that UCN exhibits
exceptional stability and reusability. The photostability of UCN was further confirmed by
measuring the XRD patterns of UCN after four recycling tests on RhB (Figure 10b). The
XRD results show that there was no change in the crystal structure of UCN and that all the
characteristic peaks are present.
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Furthermore, the photocatalytic property of g-C3N4 was compared with other materi-
als explored by other researchers in removing RhB dye, and the results are demonstrated
in Table 3. Although the g-C3N4 studied in this work is relatively basic, its degradation
rate of RhB dye exceeds that of other composite photocatalysts. The results demonstrate
that g-C3N4 exhibits superior photocatalytic performance compared with most materials
over a specific time, thereby establishing a robust foundation for further research.
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Table 3. Comparison of RhB dye treatment efficiency of different photocatalysts.

Photocatalyst
(Dosages)

RhB
(mg/L)

Time
(min)

Rate
(%) Light Source Refs.

g-C3N4 (50 mg)
10
20
30

20
99.36
99.39
99.35

300 W Xe lamp This paper

g-C3N4 (50 mg)
10
20
30

20
100

98.78
99.15

Direct sunlight This paper

ZnO-g-C3N4 (40%)-Go (15%) (15 mg) 10 100 98 350 W Xe lamp [63]
g-C3N4/Bi4O5Br2-75 (50 mg) 10 10 92 72 W LED lamp [64]

TlSnI3/g-C3N4 (100 mg) 5 120 84.60 150 W Osram bulb [65]
TiO2/g-C3N4 (50 mg) 10 150 99.30 350 W Xe lamp [66]

Co@ZnSQDs/g-C3N4/MWCNT (220 mg) 10 75 96 500 W halogen lamp [67]
g-C3N4/ZnO/Cu2O (50 mg) 30 100 91.4 500 W halogen lamp [68]

3.6. Photocatalytic Mechanism

Trapping tests were conducted to study the various species implicated in photodegra-
dation and the primarily responsible species. The primary active species of UCN photocat-
alytic degradation were detected by adding IPA, BQ, and SO to RhB dye as scavengers of
•OH, •O2

−, and h+ [43]. Figure 11 shows that the degree of removal of RhB dye (41.56%)
declined significantly with the addition of BQ, while the scavenging effect of IPA (99.58%)
and SO (98.53%) was weaker than that of BQ. Therefore, in the reaction process of UCN
degradation of RhB dye, •O2

− serves as the primary reactive species.

Water 2023, 15, x FOR PEER REVIEW 12 of 16 
 

 

No quencher IPA SO BQ
0.0

0.2

0.4

0.6

0.8

1.0

D
eg

ra
da

tio
n 

(%
)

·OH h+

·O2
−

 
Figure 11. Trapping experiment of active species for UCN photocatalytic degradation of RhB under 
visible light. 

The valence band (VB) potentials of a semiconductor can be determined using the 
empirical equation EVB = X − Ee + 0.5Eg, where X, Ee, and Eg represent the semiconductor’s 
electronegativity (the X value for g-C3N4 is 4.72 eV [69]), the energy of free electrons on 
the hydrogen scale (4.5 eV), and the semiconductor’s bandgap, respectively [70]. Moreo-
ver, the CB potentials can be calculated using ECB = EVB + Eg [71]. In the DRS analysis results 
(Figure 5b), the Eg of UCN and MCN are 2.79 and 2.70 eV, respectively. Therefore, the CB 
and VB potentials of UCN are calculated to be −1.17 eV (ECB) and 1.62 eV (EVB), while the 
CB and VB potentials of MCN are -1.13 eV (ECB) and 1.57 eV (EVB), respectively. According 
to these results, Figure 12 illustrates the plausible photocatalytic mechanism involved in 
the process of RhB photocatalytic degradation. UCN and MCN tend to produce e− and h+ 
under visible light radiation. Since the CB potential of UCN and MCN is lower than 
Eθ(O2/•O2−) = −0.33 eV, the e− in the CB of UCN and MCN can capture the adsorbed O2 on 
the catalyst surface and reduce it to give •O2−. Since the EVB of UCN and MCN are more 
negative than Eθ(•OH/H2O) = 2.27 eV [71], •OH cannot be generated on the VB of UCN 
and MCN. The results correlate with the trapping experiments. 

 
Figure 12. Photocatalytic mechanism diagram of MCN and UCN under visible light radiation. 

Figure 11. Trapping experiment of active species for UCN photocatalytic degradation of RhB under
visible light.

The valence band (VB) potentials of a semiconductor can be determined using the
empirical equation EVB = X − Ee + 0.5Eg, where X, Ee, and Eg represent the semiconductor’s
electronegativity (the X value for g-C3N4 is 4.72 eV [69]), the energy of free electrons on the
hydrogen scale (4.5 eV), and the semiconductor’s bandgap, respectively [70]. Moreover,
the CB potentials can be calculated using ECB = EVB + Eg [71]. In the DRS analysis results
(Figure 5b), the Eg of UCN and MCN are 2.79 and 2.70 eV, respectively. Therefore, the CB
and VB potentials of UCN are calculated to be −1.17 eV (ECB) and 1.62 eV (EVB), while the
CB and VB potentials of MCN are −1.13 eV (ECB) and 1.57 eV (EVB), respectively. According
to these results, Figure 12 illustrates the plausible photocatalytic mechanism involved in
the process of RhB photocatalytic degradation. UCN and MCN tend to produce e− and
h+ under visible light radiation. Since the CB potential of UCN and MCN is lower than
Eθ(O2/•O2

−) = −0.33 eV, the e− in the CB of UCN and MCN can capture the adsorbed O2
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on the catalyst surface and reduce it to give •O2
−. Since the EVB of UCN and MCN are

more negative than Eθ(•OH/H2O) = 2.27 eV [71], •OH cannot be generated on the VB of
UCN and MCN. The results correlate with the trapping experiments.
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Eθ(O2/•O2−) = −0.33 eV, the e− in the CB of UCN and MCN can capture the adsorbed O2 on 
the catalyst surface and reduce it to give •O2−. Since the EVB of UCN and MCN are more 
negative than Eθ(•OH/H2O) = 2.27 eV [71], •OH cannot be generated on the VB of UCN 
and MCN. The results correlate with the trapping experiments. 

 
Figure 12. Photocatalytic mechanism diagram of MCN and UCN under visible light radiation. Figure 12. Photocatalytic mechanism diagram of MCN and UCN under visible light radiation.

4. Conclusions

MCN and UCN were prepared via thermal polymerisation using melamine and urea
as precursors. Compared to MCN, UCN exhibits superior photocatalytic degradation per-
formance towards RhB dye. Under the irradiation of visible light, the removal rate of RhB
dye at 10 mg/L within 20 min reaches 99.36%, while complete degradation can be achieved
under sunlight. The photocatalytic efficiency of UCN is enhanced by the layered structures
and a large specific surface area, which enrich the reaction sites, improve the transfer of
photoinduced charges, and strengthen the absorbance of visible light. The prepared UCN
exhibits exceptional stability, even after undergoing four cycles of photocatalytic reaction.
Moreover, the trapping experiments established that •O2

− was the primary reactive species
in the photocatalytic degradation of RhB dye under visible light radiation. Therefore, the
as-synthesised UCN are promising photocatalysts for environmental applications such as
the treatment of industrial wastewater under natural sunlight. This study highlights the
potential of UCN as a photocatalyst for RhB dye removal in wastewater treatment and lays
a foundation for further exploration of g-C3N4.
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