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Abstract: Rapid urban development and increase in construction have significantly altered the
surface coverage of cities, resulting in a rise in impervious surfaces such as roofs, streets, and
pavements. These changes act as barriers against rainwater infiltration into the soil, leading to
a substantial increase in surface runoff. Managing surface runoff has become a critical task in
civil engineering and urban planning, as it can mitigate damage and provide opportunities for
utilizing excess water. However, traditional flood control and guidance systems tend to be extensive
and expensive, prompting researchers to explore cost-effective alternatives that consider all design
parameters and variables. In this research, we propose an innovative approach that combines the
NSDE (non-dominated sorting differential evolution) metaheuristic algorithm as an optimizer with
the SWMM (storm water management model) as a simulator. The objective is to design efficient
surface runoff collection networks by thoroughly investigating their hydraulic behaviors. This
study focuses on the Chitgar watershed in Tehran, Iran, utilizing the SWMM model and NSDE
multi-objective metaheuristic algorithm to determine the optimal dimensions of the channel and its
intersecting structures. The aim is to minimize costs and reduce water leakage from the network. A
comparison is made between the optimized design results and the existing network plan (without
any design modifications). The analysis reveals substantial reductions in water leakage for all three
design scenarios: a 7.66% reduction when considering only bridges, a 7.35% reduction with only the
canal, and an impressive 95.26% reduction when both the canal and bridges are incorporated. These
findings demonstrate the superiority of the optimized designs in terms of cost-effectiveness and the
efficient management of surface runoff.

Keywords: urban development; surface runoff; NSDE metaheuristic algorithm; SWMM model;
Chitgar watershed; optimization; water leakage reduction

1. Introduction

Floods annually inflict significant damage on buildings, infrastructure, and urban
environments, often resulting in loss of life and immense financial losses [1]. The increased
occurrence of floods can be attributed to the rapid pace of urbanization, which has led
to changes in land-use and land-cover, resulting in the expansion of impervious surfaces
and subsequent amplification of runoff volume [2]. This surge in runoff, accompanied by
environmental pollution, road inundation, higher peak discharges, and altered flood char-
acteristics due to atmospheric precipitation, highlights the escalating risk of urban flooding
and underscores the need for attention to urban drainage and flood systems [3]. Despite
these challenges, the optimal design and improvement of surface water collection systems
have not received adequate consideration in many cities, leading to visible problems at
the urban level [4,5]. It is essential to assess the existing potential of urban watersheds,
evaluate the efficiency of drainage networks, and determine optimal dimensions in terms
of hydraulics and hydrology to facilitate the safe discharge of urban floods [6]. Moreover,
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flood control plans are numerous and diverse, each requiring consideration of local condi-
tions, risk mitigation, anticipated benefits, and socioeconomic factors. Therefore, selecting
an appropriate plan from both technical and economic perspectives becomes crucial [7,8].

Urban runoff and flood management are critical aspects of urban planning and environ-
mental management. As cities continue to expand and develop, the increase in impervious
surfaces, such as buildings, roads, and pavements, significantly alters the natural water
cycle [9]. These impervious surfaces prevent rainwater from infiltrating into the ground,
leading to a surge in surface runoff. This excess water, along with pollutants accumulated
on urban surfaces, poses serious challenges in terms of flooding, water quality degradation,
and damage to infrastructure and property [10,11]. The occurrence of floods in urban areas
has severe consequences, including economic losses, destruction of public and private prop-
erty, and even loss of life. Urbanization exacerbates these risks, as land-use changes and
urban development disrupt the natural flow patterns of water. The increased volume and
velocity of runoff overwhelm existing drainage systems, leading to the inundation of streets,
homes, and public spaces. As a result, the effective management of urban runoff and flood
events is of paramount importance for sustainable urban development, environmental
protection, and ensuring the safety and well-being of urban populations [12]. To address
the challenges posed by urban runoff and floods, various strategies and technologies have
been developed. These include the implementation of stormwater management systems,
green infrastructure practices, and advanced modeling techniques to assess flood risks
and optimize drainage networks [13]. Additionally, urban planners and policymakers are
increasingly recognizing the importance of integrating nature-based solutions, such as rain
gardens, permeable pavements, and green roofs, to mitigate the impacts of urban runoff.
Through effective flood management and sustainable urban design, cities can enhance
their resilience to climate change, minimize flood damages, and create healthier and more
livable urban environments [14].

One of the key elements in flood management is the enhancement and strengthening
of the urban surface water collection system (known as runoff conveying system, RCS).
This system includes a network of drains, channels, culverts, and other infrastructure
designed to collect and convey excess rainfall and stormwater runoff [15]. By improving
this system, cities can effectively manage and control the movement of water during heavy
rainfall events, reducing the risk of localized flooding and protecting critical infrastructure,
including buildings, roads, and bridges [16–19]. The importance of an efficient RCS lies
in its ability to handle the increased runoff caused by urbanization [20]. As cities expand
and develop, the replacement of natural land surfaces with impervious materials, such
as concrete and asphalt, reduces the ability of the soil to absorb rainfall. Consequently,
a larger volume of water is directed to drainage systems, which must be adequately
designed and maintained to prevent being overwhelmed and subsequently flooding [21].
An optimized RCS system, incorporating proper sizing, routing, and storage capacity,
can efficiently manage the flow of water, reducing flood risks and ensuring that water
is safely and effectively conveyed away from populated areas [22]. In conclusion, flood
management and the improvement and strengthening of urban RCS are crucial for urban
resilience and the well-being of communities. These measures not only mitigate the
risks associated with urban flooding but also provide opportunities for sustainable water
resource management [23]. The present study is focused on RCS and will attempt to
provide an optimized model regarding RCS.

Sharifan [24] focused on investigating the uncertainty of water depth in significant
manholes within drainage system pipelines located in the historical center of Shiraz, a city
located in the southwest region of Iran. To simulate the complex processes of precipitation,
runoff, and flow patterns in water channels, the SWMM (storm water management model)
was utilized. Additionally, the Monte Carlo simulation (MCS) was employed to conduct
uncertainty analysis. The findings of their research revealed notable variations in the water
depth coefficient across multiple manholes, ranging from 12% to 66%. These variations
highlight the significance of considering uncertainty factors when assessing water depth in
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drainage systems. Notably, parameters related to subbasins and rainfall were identified as
having the most significant influence on peak flood discharge and its associated uncertainty.
Understanding these influential parameters is essential for effective flood management and
the design of robust drainage systems. Caradot et al. [25] recognized the global challenge
of water management in the 21st century and placed a particular emphasis on urban
flood protection as a primary objective to benefit all residents. Their study proposed a
method that enables water management authorities to evaluate the services offered by
urban drainage systems in terms of protection against urban flooding. By utilizing a
database of sewer flood event records, the approach aimed to assess sewer flood risk and
provide decisionmakers with valuable insights into the current state of affairs, rather than
predicting future flood occurrences. The key aspect of this research involved adopting a
comprehensive understanding of risk, which encompassed not only the vulnerabilities of
the region but also the perception of urban water issues. By considering these factors, the
proposed method aimed to assist beneficiaries in developing effective strategies to enhance
the services provided by the urban drainage system.

Yazdi et al. [26] employed MCS as a tool for optimizing the design of urban drainage
networks. In this study, a multi-objective optimization model based on Copula functions
was proposed. The Copula-based model allowed for efficient exploration and optimization
of multiple objectives in the design process. Additionally, the hydraulic model SWMM was
utilized to simulate and evaluate the hydraulic performance of the drainage network. The
integration of MCS and Copula functions provided a robust framework for the optimization
of the design of urban drainage networks. By using MCS, researchers were able to capture
the uncertainty and variability associated with input parameters and their impact on the
performance of the network. The Copula-based multi-objective optimization approach
allowed for the simultaneous consideration of various design criteria, such as minimiz-
ing flooding risks, maximizing system efficiency, and optimizing cost. Obaid et al. [27]
conducted a study on the carrying capacity of the sewage network in Karbala, Iraq, using
the SWMM model. The model investigated two scenarios: heavy rainfall and population
increase during religious gatherings in the city of Karbala. The findings revealed that due to
population growth, the sewage network lacked the capacity to handle the sewage flow, lead-
ing to overflow issues. This problem was particularly exacerbated during intense rainfall
events coinciding with religious ceremonies, further exacerbating the severity of the issue.
Li et al. [28] conducted a study focused on the optimal design of retention ponds under the
constraints of urban stormwater control criteria. Their objective was to develop an efficient
and robust method and framework for designing a retention pond network. The hydraulic
simulation model, SWMM, and the modified particle swarm optimization (PSO) algorithm
were employed to minimize engineering costs and mitigate the risks of flood occurrences,
while considering local design criteria. To validate the proposed method, the researchers
applied this model to a county in China, considering the design and size of the retention
pond network, as well as various construction factors in the modeling and optimization
processes. The researchers demonstrated the feasibility and credibility of the proposed
framework for the multi-objective optimal design of retention ponds within the urban
stormwater drainage system (USDS). The study showcased the potential and validation of
the proposed method for the optimal design of multi-objective retention ponds in the USDS.
The findings of their research contributed to advancing the field of urban hydrology and
providing valuable insights for improving USDS control strategies, enhancing the resilience
of urban areas against floods, and optimizing the design of retention pond networks.

Yazdi et al. [29] utilized the non-dominated sorting harmony search (NSHS) algorithm
to achieve the optimal solution in the desirable reconstruction of urban sewer pipe networks.
They compared the obtained results with the multi-objective algorithms NSGA-II and
MOPSO. The results indicated the superiority of the solutions obtained using the NSHS
algorithm. The NSHS algorithm proved to be effective in finding the optimal solutions
for the reconstruction of urban sewer pipe networks, surpassing the performance of other
multi-objective algorithms. Also, Yazdi et al. [30] employed the multi-objective optimization
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algorithms NSHS, NSDE, NSGA2, and SPEA2 to investigate the hydraulic efficiency of
USDS. These algorithms were utilized to assess and enhance the performance of the
drainage networks. By leveraging the capabilities of these optimization algorithms, the
researchers aimed to optimize the hydraulic behavior of USDS, thereby improving their
overall efficiency and performance. The study compared the results obtained from each
algorithm, providing valuable insights into the effectiveness of different optimization
approaches for enhancing the hydraulic functionality of USDS. Hooshyaripor and Yazdi [31]
presented a simulation-optimization model for reducing urban flooding by integrating
the NSGA2 algorithm with the SWMM model in the city of Gonbad-e Kavus. A multi-
objective optimization problem with two conflicting objectives was successfully solved
using the NSGA2 algorithm to identify a set of well-known optimal solutions known as
the Pareto front. The study aimed to address the challenges of urban flooding through the
integration of simulation and optimization techniques. By utilizing the NSGA2 algorithm,
the researchers were able to find efficient solutions that mitigate the risk of urban flooding
in a more integrated and comprehensive manner. The results provided valuable insights for
urban planners and decisionmakers in developing effective strategies for flood management
and urban resilience. Housh [32] employed the robust counterpart method to analyze the
hydrological and hydraulic uncertainties in urban drainage systems. In this study, the
multi-objective optimization algorithm NSGA-II was utilized, taking the reduction in flood
damage costs and the total construction cost as the objective functions. By incorporating
the robust counterpart approach, the researchers were able to account for uncertainties
and generate robust solutions that provide reliable performance even under uncertain
conditions. This approach enhances the resilience and effectiveness of urban drainage
systems in mitigating the impacts of floods. Khaleghi et al. [33] focused on the Shiraz Dry
River and executed the hydraulic model SWMM to simulate the flow characteristics in the
area. They compared the model output with the hydrographs from the Nahr-e Azam and
Chenarsoukhteh gauging stations and demonstrated a high level of accuracy, with an R2
correlation coefficient of 0.96 and a Nash–Sutcliffe coefficient of 0.91. The results indicated
that SWMM is a reliable tool for predicting the effects of various management scenarios on
flow characteristics. The study showcased the efficacy of SWMM in facilitating informed
decision making regarding flood management strategies and assessing their impacts on
the flow characteristics of the river. Basnet et al. [34] evaluated the performance of the
SWMM model for estimating runoff in the Lamachaur watershed in the city of Pokhara,
Nepal. They compared the calibration and validation results of the SWMM model using
a rational method and found that, except for subbasin 1, the other subbasins exhibited
acceptable Nash–Sutcliffe coefficients and coefficient of variation ratios. The model’s output
hydrographs also exhibited a good match with the observed data. Based on these findings,
the researchers concluded that the SWMM model was effective in estimating runoff in
the Pokhara urban watershed and provided reliable insights for flood estimation and
mitigation measures.

Stormwater management encompasses the design of effective control measures to miti-
gate the adverse impacts of stormwater runoff on the environment and public infrastructure.
One critical aspect of stormwater management involves optimizing the dimensions of flood
walls, channel embankments, and cross structures to balance multiple objectives, such
as minimizing flood risk, reducing pollutant runoff, and managing construction costs.
This problem presents a multi-objective optimization challenge, where various design
parameters serve as decision variables, and numerous conflicting objectives need to be
simultaneously considered. To address this complex task, the application of optimiza-
tion algorithms, such as non-dominated sorting differential evolution (NSDE), appears
promising. NSDE, a derivative of differential evolution and non-dominated sorting, holds
potential for identifying a set of Pareto-optimal solutions that represent the best trade-offs
between conflicting objectives, thus providing decisionmakers with a diverse range of
optimal design alternatives to choose from based on their preferences and project require-
ments. The successful implementation of NSDE in stormwater management design relies
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on the utilization of accurate simulation models to assess the performance of different
design alternatives under varying hydrological conditions. Through iterative evolution-
ary processes, NSDE explores the design space by generating and evaluating a diverse
range of solutions, ultimately converging towards the Pareto-optimal front. However,
it is essential to acknowledge that the application of NSDE, or any other optimization
algorithm, in stormwater management demands the careful consideration of practical con-
straints, environmental regulations, and computational resources. Despite these challenges,
the integration of NSDE holds significant promise for advancing the field of stormwater
management by providing robust and efficient approaches to design environmentally
sustainable and cost-effective stormwater control measures. Further research in this area
is needed to fully realize the potential benefits of optimization algorithms like NSDE in
improving the resilience and effectiveness of stormwater management practices [35–40].
The present article develops a systemic approach to the set of methods for improving
and enhancing surface water collection systems by considering the combined and indi-
vidual impact of each urban stormwater management option. It ultimately proposes the
optimal and most cost-effective combination of these methods to minimize runoff and
rehabilitation costs based on heuristic methods and simulation models. The multi-objective
optimization algorithm, NSDE, is utilized to optimize the design of stormwater control
measures and determine the dimensions of (a) flood walls; (b) channel embankments;
and (c) cross-structures, which are the main objectives in this study. The NSDE algorithm
is employed to solve the optimization problem of urban stormwater management. The
NSDE algorithm brings several benefits to the field of urban stormwater management.
One of its key advantages is its ability to handle multi-objective optimization problems.
In stormwater management, there are typically multiple objectives to consider, such as
minimizing runoff volume, reducing flooding risks, and minimizing infrastructure costs.
The NSDE algorithm efficiently explores the trade-offs between these objectives and pro-
vides a set of Pareto-optimal solutions, giving decision-makers a range of options to choose
from. Another strength of NSDE is its robustness and reliability. It effectively explores the
search space, converging towards a diverse set of near-optimal solutions. This ensures that
decisionmakers have a comprehensive understanding of the trade-off surface, enabling
them to make informed decisions. Efficient convergence is another notable benefit of NSDE.
By employing differential evolution operators, NSDE strikes a balance between explo-
ration and exploitation. It efficiently explores different regions of the search space while
converging towards optimal solutions. This makes it well-suited for optimizing complex
stormwater management systems with multiple decision variables and constraints [41,42].

NSDE is also capable of handling uncertainty, a crucial aspect of urban stormwater
management. With various sources of uncertainty such as rainfall variability and modeling
errors, NSDE generates a diverse set of solutions that cover a range of possible scenarios.
This allows decisionmakers to assess the robustness of different strategies under uncertain
conditions and select the most suitable solutions. Additionally, NSDE offers flexibility
and adaptability. It can be customized to incorporate specific constraints, objectives, and
decision variables relevant to stormwater management. This versatility allows for the
incorporation of different performance metrics, design criteria, and system constraints,
making it a valuable tool for optimizing stormwater management systems [41,42].

2. Materials and Methods
2.1. Study Area and Dataset

The study area of the Chitgar watershed in Tehran is geographically located between
507,351 to 537,325 East and 3,943,208 to 3,978,875 North, using the WGS_1984_UTM_Zone_39N
coordinate system. The total area of the study is approximately 604 km2, with 385 km2

falling within the suburban area and 219 km2 within the urban area, based on the approved
20-year city boundary of Tehran. It should be noted that the average elevation of the study
area is 1931 m above sea level [43].
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In terms of the city’s location, the study area extends from the eastern border of Eastern
Districts 2 and 18 to the northern border of Northern Districts 2, 5, and 22, and from the
western border of Western Districts 21 and 22 to the southern border of Southern Districts
21 and 18. The majority of Districts 2, 5, and 18, along with the entire areas of Districts 21
and 22, are encompassed within the scope of the current study, highlighting the extensive
coverage of the study area [43]. Figure 1 illustrates the positioning of the study area in
relation to the city districts and boundaries of Tehran. Figure 2 shows the study area and
its main drainage network in the SWMM environment.
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The Chitgar watershed in Tehran, also known as the Chitgar Lake Basin, is an im-
portant hydrological region within the city. It is located in the western part of Tehran,
encompassing several districts and neighborhoods [44]. The watershed plays a significant
role in managing surface water resources and mitigating the risk of urban flooding in the
region. The Chitgar Lake is a prominent feature within the watershed. It is an artificial lake
constructed to provide recreational space for the residents of Tehran. The lake acts as a
reservoir for collecting and storing surface water runoff from the surrounding area, helping
to control flooding during heavy rainfall events [43].

The watershed area consists of diverse land use patterns, including residential areas,
commercial zones, industrial facilities, and open spaces. The presence of these different
land uses contributes to the generation of stormwater runoff, which needs to be effectively
managed to minimize the risk of flooding and protect the environment [44]. To address
the water management challenges in the Chitgar watershed, various initiatives have been
undertaken, including the implementation of stormwater management infrastructure, such
as drainage systems, retention ponds, and green spaces. These measures aim to capture
and store excess rainfall, reduce the volume of runoff, and enhance water quality before it
reaches the Chitgar Lake or other water bodies in the region [43]. Additionally, hydrologi-
cal studies, modeling, and monitoring activities are conducted to better understand the
dynamics of the watershed and optimize water management strategies. These studies help
in assessing the impact of land use changes, climate variability, and urban development on
the hydrological characteristics of the Chitgar watershed [44].
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The Chitgar watershed drainage network plan in Tehran province has been developed
and presented in Figure 2. This plan includes the design and layout of a comprehensive net-
work of channels, pipes, and other drainage infrastructure to efficiently manage stormwater
runoff in the watershed. The plan takes into consideration factors such as topography, land
use, and anticipated rainfall patterns to ensure effective drainage and minimize the risk of
flooding in the area. It also incorporates measures for sediment control, erosion prevention,
and water quality management. The drainage network plan aims to enhance the resilience
of the Chitgar watershed by providing a robust and sustainable system for stormwater
management.

2.2. Methodology

In this study, the EPA-SWMM rainfall-runoff model [45] was used to simulate ur-
ban stormwater runoff. The NSDE algorithm was employed to find the optimal design,
which includes determining the required elevation increments for the different segments
of the main drainage channels and optimizing the dimensions of critical structures, such
as bridges and cross-sectional culverts, to minimize the outflow from the surface water
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collection network. The simulation and optimization models were connected in the MAT-
LAB environment to achieve the objectives of the optimal design. Subsequently, each of the
simulation and optimization models is briefly introduced.

2.2.1. The Hydraulic Simulations

The storm water management model (SWMM) is a widely utilized and comprehensive
computer software package developed by the United States Environmental Protection
Agency (EPA). The SWMM serves as a powerful hydrology–hydraulic simulation tool for
analyzing and simulating stormwater runoff, drainage systems, and their impacts on urban
areas. With its roots dating back to the late 1960s, the SWMM has undergone iterative
advancements to encompass diverse stormwater management aspects [46]. Key features of
SWMM include its ability to simulate hydrologic processes, such as precipitation, infiltra-
tion, and runoff generation, and its hydraulic modeling capabilities for drainage systems,
incorporating pipes, channels, culverts, and storage facilities. The software version 5.1 fur-
ther accommodates water quality analysis, enabling users to evaluate the transport and fate
of pollutants in stormwater runoff, while also assessing the efficacy of best management
practices (BMPs) and green infrastructure in mitigating water pollution. The SWMM’s
versatility and applicability have led to its widespread adoption by researchers, engineers,
and urban planners as an indispensable tool for understanding and designing resilient
stormwater management systems to combat the challenges posed by urbanization and
environmental concerns. In the realm of stormwater management and urban hydrology, the
SWMM has emerged as a preeminent computational model, providing a dynamic platform
for investigating complex drainage systems. Leveraging advanced hydrological method-
ologies and hydraulic simulations, the SWMM enables the analysis of water flow behavior,
velocity, and capacity across diverse urban landscapes. Moreover, the software’s capacity
to assess the impact of stormwater runoff on water quality fosters a holistic approach to
environmental protection and sustainable development. By facilitating the simulation of
green infrastructure practices and BMPs, the SWMM empowers decision-makers to devise
effective strategies for flood control, pollution reduction, and stormwater system design.
Its widespread adoption in the academic, engineering, and regulatory communities testifies
to the SWMM’s significance as a fundamental tool in comprehending urban hydrology,
furthering the endeavor to create resilient and ecologically sensitive urban environments.
Ongoing research and updates to the software continue to enhance its capabilities, solidi-
fying the SWMM’s position as an indispensable resource in the pursuit of integrated and
efficient stormwater management solutions [47,48].

The hydraulic simulation model used in this study is the SWMM, which was devel-
oped in collaboration with the University of Florida’s Engineering Company and the Water
Resources and U.S. Environmental Protection Agency from 1969 to 1971 [46]. Since then, it
has been regularly updated and improved. Some of the hydraulic capabilities of this model
include [49]:

• Ability to analyze flow in separate and combined sewer networks.
• Ability to analyze one-dimensional flow in both steady and unsteady states.
• Capability to model various channels and pipes with different cross-sectional shapes.
• Capability to model different hydraulic structures.
• Ability to estimate flow volume and duration of runoff from the network.
• Capability to simulate flow in free and pressurized stormwater systems.
• Capability to simulate complex networks, including networks with parallel, series,

and looped pipe or channel arrangements.

In this study, the SCS (Soil Conservation Service) curve number method was used
to calculate and estimate losses. The Hazen–Williams hydraulic head loss equations and
continuity equation were used to calculate surface runoff. For flow routing in channels, the
method of dynamic wave routing was employed. The EPA–SWMM model was chosen for
its numerous and suitable capabilities in modeling complex networks, its graphical features,
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user-friendly interface, and its compatibility with optimization models. Additionally, its
availability as a free tool further contributed to its selection in this research.

2.2.2. The Optimizations

Optimization is a method through which the best possible solution for a problem is
determined based on a given objective and specified constraints, all of which are defined
by mathematical functions and equations. Multi-objective optimization refers to a prob-
lem with multiple objective functions (criteria) and several constraints that collectively
encompass the characteristics of the targeted system [50].

The objective of optimization in a specific case can be either maximizing or minimizing
a certain function. In this study, the NSDE algorithm was utilized for optimizing the
problem at hand, and the algorithm will be briefly introduced below. In recent years, the
differential evolution (DE) algorithm has been introduced as a powerful and fast method for
optimization problems in continuous spaces. It was initially proposed by Storn and Price
in 1995 [42]. They demonstrated that this algorithm performs well in optimizing non-linear
and non-differentiable functions. The main difference between genetic algorithms and the
DE algorithm lies in how mutation and crossover operations are applied. After generating
a new solution using a self-adaptive mutation operator and a crossover operator, the new
solution is compared with the previous one, and if it is superior, it replaces the previous
solution [49]. The NSDE algorithm is an evolved and multi-objective version of the DE
algorithm, and the optimization process and methods of Algorithm 1 are as follows [41]:

The NSDE algorithm is an evolved and multi-objective version of the differential
evolution algorithm. The sequential process steps of this algorithm are as follows:

Step 1: Generating the initial population randomly and evaluating it based on the
defined objective functions.

Step 2: Selecting parent individuals and generating offspring population using muta-
tion and crossover operators.

Step 3: Sorting individuals using non-dominated sorting. The individuals in the first
category form a completely non-dominated set compared to other individuals in the current
population. The individuals in the second category are only dominated by the individuals
in the first category, and this process continues for other categories until each individual in
each category is assigned a rank based on the category number.

Step 4: Sorting individuals in each front based on the population’s crowding distance.
This parameter is calculated for each individual in each group, indicating the proximity of
the target sample to other individuals in that group. A higher value of this parameter leads
to better diversity and range in the population set.

Step 5: Removing undesirable individuals.
Step 6: Returning to Steps 2 to 5 if the termination conditions are not met.
In the NSDE algorithm, the algorithm parameters are influential, and their values are

adjusted based on the recommended values in previous research (Table 1).

Table 1. Defined values for NSDE elements for volume reduction and cost minimization (adapted
form Ref. [41]).

No. Parameter Value

1 Population Size 100
2 Mutation Rate 0.5
3 Crossover Rate 0.9
4 Scaling Factor 0.8
5 Maximum Generations 200
6 Termination Criteria Convergence or Maximum Generations Reached

Note: The values presented in this table have been determined to reduce volume and minimize costs in the NSDE
algorithm.



Water 2023, 15, 2927 10 of 24

Algorithm 1 A summary view of the process by optimization algorithm

Begin
Set Npop = 100
MaxIter: Maximum number of Iteration
Initialize a random population Xg

i ∀I, i = 1, . . ., Npop
Evaluate f (xi

g) ∀i, i = 1, . . ., Npop
for iter = 1 to MaxIter do
for i = 1 to Npop
x = pop (i).Position;
A = randperm(nPop)
XBest

Position = pop (XBest
Rank).Position;

XBest
Cost = CostFunction(XBest

Position);
XWorst

Position = pop (XWorst
Rank).Position;

XWorst
Cost = CostFunction(XWorst

Position);

XBetter
Position = pop (XBetter

Rank).Position;
XBetter

Cost = CostFunction(XBetter
Position);

# Mutation operator
Xavg

Position = 1/3 ×(XBest
Position + XWorst

Position + XBetter
Position);

Xavg
Cost = CostFunction Xavg

Position);
F = unifrnd(0.1,0.8);%Pmax and Pmin recommended to be 1 and 0.1, respectively

if rand < Pmax + (Pmax-Pmin) × e(it/MaxIt)

y1
Position = pop(1).Position + F × (pop(2).Position − pop(3).Position) + F × (pop(4).Position − pop(5).Position);

y2
Position = XBest

Position + F × (pop(1).Position − pop(2).Position) + F × (pop(3).Position − pop(4).Position);
y3

Position = pop(i).Position + F × (XBest
Position -pop(i).Position) + F × (pop(1).Position − pop(2).Position);

else

y1
Position = Xavg

Position + F1 × (XBest
Position − XBetter

Position) + F2 × (XBest
Position − XWorst

Position) + [(F1 + F2)/2] × (XBest
Position − XWorst

Position);
y2

Position = Xavg
Position + (P2-P1) × (XBest

Position − XWorst
Position) + (P3-P2) × (XBest

Position − XWorst
Position) + (P1-P3) × (XBest

Position − XWorst
Position);

y3
Position = XBest

Position + F1 × (XBest
Position − XBetter

Position) + F2 × (XBest
Position − XWorst

Position);

end

if rand < 0.5
σ = [2×rand](1/η + 1) − 1;

else
σ = 1 [2-2×rand](1/η + 1);

end

%where σ is polynomial mutation, η is a distribution index, Ub and Lb are the lower and upper bounds of decision variable,

# Crossover operator

z = zeros(size(x));
j0 = randi([1 numel(x)]);
for j = 1:numel(x)
if j = j0 || rand <= PCR

z(j) = y1
Position (j) + σ × (Ub-Lb);

elseif rand < 0.5
z(j) = y2

Position (j);
elseif rand >0.5 or rand < 0.75
z(j) = y3

Position (j);
else
z(j) = xPosition (j);
end

% Apply Variable Limits
z = max(z, Lb);
z = min(z, Ub);

NEWi
Position = z;

NEWi
Cost = CostFunction(NEWi

Position);
end

2.3. Formulation of the Optimizations

With a fixed level of investment, it is possible to reduce the volume of runoff (excess
flow over channel capacity) by a certain amount using an optimal design. Further reduction
requires an increase in the level of investment. Therefore, in this study, capital investment
costs and runoff volume are considered as two independent and competing objectives in
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the multi-objective optimization model. The general formulation of the objective functions
is as follows:

Min F1 = Costt =
n

∑
i=1

CostB
i +

m

∑
j=1

CostW
j

=
n

∑
i=1

f1

(
HB

i

)
+

m

∑
j=1

f2

(
HW

j

) (1)

Min F2 =
m

∑
j=1

(VF,j) (2)

The constraints of the optimization problem are as follows:

Va ≤ Vmax (3)

HB
i ∈

{
HB

1 , HB
2 , HB

3 , . . . , HB
p

}
(4)

HW
i ∈

{
HW

1 , HW
2 , HW

3 , . . . , HW
q

}
(5)

∂Q
∂x

+
∂A
∂t

= q (6)

S f = S0 −
∂y
∂x
− v

g
∂v
∂x
− 1

g
∂v
∂t

(7)

In these equations, CostB
i , the cost of constructing and repairing critical cross structures

(culverts) is represented by ith; HB
i , the height of critical cross structures (culverts) is

represented by ith; CostW
j is the cost of flood walls in the jth interval; HW

j is the height
of the flood walls in the jth interval; t represents time; g represents gravity; A represents
area; Q represents flow rate; m represents the number of channel intervals; n represents the
number of critical cross structures (culverts); and VF,j the volume of the network’s flood in
the jth interval which is presented in Figure 3.
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In Equation (1), the objective function is to minimize the total cost of constructing bridges
and flood walls. In Equation (2), the second objective function is to reduce the volume of
floodwater (referring to the amount of water exiting the channel). Equations (3)–(5) represent
the constraints of the optimization problem. In the first constraint, the permissible velocity
in the channels is limited, and the other constraints represent the discrete values that the
decision variable can take. If the design/renovation of the surface water collection system
is considered, the objective functions in the optimization model will be minimizing the first
and second objectives. Here, the Saint Venant equations include the continuity equation
(Equation (6)) and the momentum equation (Equation (7)), which are hydraulic constraints
of the problem and are implicitly satisfied by running the SWMM model.
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2.4. Encoding

In solving the problem of designing a surface water collection system, the integer
encoding is used. In the case of integer encoding, the number of genes in each chromosome
is equal to the maximum number of proposed designs at the watershed level. In this case,
the value of each gene is an integer representing the dimensions of the corresponding
design. Integer encoding is particularly effective in cases where there are a large number
of proposed designs (such as real case studies) and helps reduce the search space of the
problem. Additionally, Figure 4 illustrates the algorithm for designing a flood control
system in the modeling scenario, and the steps of this algorithm are presented in the
flowchart.
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2.5. Model Establishment

Hydrological and hydraulic models were developed for the drainage networks in
Tehran as part of the comprehensive studies on Tehran’s surface water management
plan [50]. Therefore, in this research, the same modeling approach and parameter cal-
ibration were adopted to create the utilized model. In the initial stage of modeling and
design, determining the characteristics of the design rainfall, including its depth and dura-
tion along with the temporal pattern, was crucial. The depth of rainfall can be obtained
using intensity–duration–frequency (IDF) relationships for the selected return period. In
this method, meteorological studies provide intensity–duration–frequency curves for rain-
fall at 9 points in Tehran, and then, by analyzing this information, generalized curves
representing short-term rainfall in Tehran were obtained. Consequently, based on the
analysis of precipitation data from rain gauge stations within the Tehran metropolitan area,
the following formula was suggested for short-term rainfall [51]:

i = CAlt.RPD−0.654 (8)

In the above equation, i represents rainfall intensity (millimeters per hour), D repre-
sents rainfall duration (minutes), and CAlt.RP is the coefficient corresponding to the design
return period (50-year return period) and average subbasin elevation. The value of the
CAlt.RP coefficient is determined based on the frequency analysis of recorded precipitation
data considering the rainfall return period and has a direct relationship with the aver-
age subbasin elevation. The coefficient values for different return periods and various
elevations are presented in Table 2.

Table 2. Coefficients of the generalized equation of average rainfall intensity in Tehran (adapted from
Ref. [41]).

Height (m)
Return Periods (Years)

2 5 10 20 25 50 100

900 99 127 148 169 176 197 218
1000 108 138 161 184 191 214 236
1100 117 149 174 198 206 231 255
1200 125 160 187 213 221 248 274
1300 134 171 199 228 237 265 293
1400 143 182 212 242 252 282 312
1500 151 193 225 257 267 299 331
1600 160 204 238 272 283 316 350
1700 168 215 251 286 298 333 369
1800 177 226 264 301 313 350 388
1900 186 238 277 316 328 368 407
2000 194 249 290 330 344 385 426
2100 203 260 302 345 359 402 445
2200 212 271 315 360 374 419 463
2300 220 182 328 375 389 436 482
2400 229 293 341 389 405 453 501
2500 238 304 354 404 420 470 520

Based on previous studies, a rainfall design with a 50-year return period is recom-
mended for the stormwater network in Tehran, and therefore, this return period has been
chosen here. Additionally, based on the generated digital elevation model, the weighted
average elevation of each subbasin is determined. Considering the coefficients of the gener-
alized intensity–duration–frequency equation, the rainfall intensity for Tehran is extracted
from Table 2. Furthermore, the rainfall values for each subbasin are calculated for different
return periods based on a 6 h rainfall duration. The rainfall amount obtained from the 6 h
duration, using the alternating block pattern (suitable for short-duration rainfall in Tehran),
is distributed over time, thus determining the design rainfall. In summary, using the IDF
equation, the design rainfall with a 50-year return period is estimated to be between 34 to
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53 mm. In this study, the number curve method of the National Resources Conservation
Service (NRCS), also known as the former Soil Conservation Service (SCS), is used to
convert rainfall to net rainfall or runoff. Additionally, initial losses due to land use and soil
characteristics are calculated using the SCS curve number method [52–59].

3. Results

In this study, the runoff volume for each return period has been obtained based on the
output from the SWMM software version 5.1. The runoff volume for each return period is
presented in Figure 5. This runoff volume represents the amount of water escaping from
the stormwater channels, encompassing different return periods of the floodplain. This
causes damage to the land uses within the study area located in the floodplain. Also, the
longitudinal profile of the main channels of the Chitgar basin for the 50-year return period
is shown in Figure 6.
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As mentioned earlier, in this study, the NSDE optimization model was utilized to solve
the problem of optimal design of the stormwater control system and surface water collection
system for various return periods. Subsequently, the application of the optimization model
for the design and presentation of the best solution for urban stormwater control system
design will be provided in the case study.

In the optimization model, the decision variables are defined as follows:

• The amount of height increase for the flood walls is defined for 16 intervals. In
this variable, the corresponding channel is divided into 16 unequal parts, and the
criterion is the increase in height in critical walls that may result in the overflow of
the stormwater due to their low height. Increasing the height of these walls prevents
water from escaping the network or minimizes its quantity (16 decision variables).

• The acceptable increase in channel width based on the required capacity for width
expansion (16 decision variables).

• The increase in dimensions of cross-sectional structures or bridges (seven decision
variables). In this case, based on field observations and comparing bridges that have
the potential for modification, they are considered decision variables. Sometimes, the
low height of the bridges increases the likelihood of water overflow from the channel
and creating space for height variations in these cross-sectional structures or culverts,
considering the necessary costs, can be a good option for reducing damages and the
volume of water escaping from the corresponding channel.
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• Since in some cases, the width of the bridges is smaller than the channel width,
widening the bridges is considered a decision variable based on the maximum required
capacity for expansion (seven decision variables).
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Therefore, optimization has been performed in three different scenarios based on the
aforementioned decision variables.

• Scenario one considers only the increase in height and widening of bridges and cross-
sectional structures along the selected channel path. The number of decision variables
for this scenario is 14.

• Scenario two is the case where the increase in wall height and the widening of channels
and bridges are considered at different intervals for the Chitgar River basin channel.
Hence, the number of decision variables for this scenario is 32.

• Scenario three includes both previous scenarios, i.e., the increase in height for bridges
and cross-sectional structures, wall height, and the widening of channels and bridges.
The number of decision variables in scenario three is 46 (Table 3).

Table 3. The number of decision variables in each chromosome for different optimization modes.

Case Number of Channels Number of Bridges Number of Decision Variables

1 - 14 14
2 32 - 32
3 32 14 46

4. Discussion

This study determines the optimal values for increasing the height and width of flood
walls in the main channel and critical cross-sectional structures (chokepoints), as well as
widening walls and bridges to provide the hydraulic capacity for the passage of the 50-year
return period flood. Taking into account the cost considerations and the stability of the
walls, the optimization model defines the optimal design solutions.

The hydraulic modeling reveals that the existing bridges in the area sometimes hinder
the passage of floods, resulting in blockages in waterways, as well as water overflow and
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dispersion in various areas, including streets, pedestrian paths, and residential, administra-
tive, and commercial areas, leading to significant costs and damages. Since increasing the
width of the bridges is limited by field observations and initial studies, specific changes
in bridge width have been considered in the optimization model, taking into account
the constraints on width variation. Therefore, the increase in height and the widening of
chokepoints is considered a relevant decision variable for the cross-sectional structures
in a way that optimizing them can lead to a significant reduction in the volume of the
50-year return period flood, in addition to economic considerations. The optimization
model was executed for the approved 50-year return period by the urban officials in Tehran
for the renovation/reconstruction of the urban stormwater collection system, and the best
solutions were obtained from the optimizer for various scenarios. Figure 7 illustrates the
obtained Pareto front solutions from the optimization model in three different optimization
scenarios. In all three scenarios, there are solutions that are superior to the initial design
(without any optimization consideration). The best performance is achieved in the third
scenario, where both strategies of increasing wall height and widening, as well as bridge
dimensions, are considered.
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If the criterion for selecting a design is based on only one objective of the optimization
problem (e.g., reducing the flood volume), the results obtained from the three approaches
can be examined based on the Pareto front solutions from the optimization model. As
shown in this figure, considering any of the three scenarios yields superior solutions
compared to the current state without any flood control design. The superior solutions in
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terms of reducing the flood volume are evident, with a 7.66% reduction in the first scenario,
a 7.35% reduction in the second scenario, and a 95.26% reduction in the third scenario,
highlighting the superiority of all three scenarios.

As observed in the Figure 7, each point on the curve can be selected as an optimal
solution. The final decision of the decisionmaker can be made based on one of the following
key criteria:

• Determining the final point based on the expected reduction in the flood volume in
the study area.

• Determining the final point based on considering each of the first, second, and third
scenarios, where changes are possible (generally based on the available resources of
the municipality or relevant organizations for improvement in the objective function).

• Determining the final point based on a location on the curve that has an acceptable
reduction in the flood volume, with a proportional decrease in the associated cost
compared to the general state, and the potential for better cost-effective defense.

• Determining the final point based on the maximum approved budget for the Tehran
urban stormwater management project.

Now, considering the graphs in Figure 8, the percentage reduction in water escape
from the network for the first scenario, which includes considering the bridges as decision
variables, is almost optimal compared to the second scenario, which considers walls as
decision variables. However, overall, the superior solutions are obtained in the third
scenario, which demonstrates absolute superiority over the other two scenarios and the
initial state without any design.
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By keeping the construction costs constant for different scenarios, the best design was
determined for a specific cost range in which all three scenarios have feasible solutions.
The selected cost range in which all three designs have feasible solutions is 150–150 million
Tomans (unofficial unit of Iranian currency). Within this cost range, by comparing the
obtained solutions, it was determined that the optimized design of the first scenario
achieves a 7.67% reduction in flooding at the same fixed cost, while the second scenario
achieves a 6.68% reduction, and the comprehensive design of the third scenario achieves
a 64.01% reduction in flooding. This indicates the economic superiority of the overall
solution of the third scenario obtained from the optimization model compared to the other
two scenarios within a fixed cost range. Figure 9 illustrates the comparison performed for
the three designs under the condition of fixed costs. It also demonstrates the superiority of
the solutions of the first scenario over the second scenario within the selected cost range.
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In accordance with the results of the modeling and optimization, the analysis of
decision variable values can be described as:

Observed changes in the bridges: Based on the obtained optimal solutions, among the
seven existing bridges (refer to Figure 3), it can be stated that increasing the height of bridge
B6 leads to a reduction in the volume of flooding in such a way that in all the obtained
optimal solutions, increasing the height of bridge B6 is one of the options for reducing the
flood volume considering the changes in the throat heights. Therefore, the existence of
this bridge intensifies the flood volume and the damage caused by large or small floods
with a return period of 50 and 100 years. Consequently, rectifying this bridge results in a
reduction in the flood volume.

In the case of bridges B2 and B4, the changes in height based on the values of decision
variables in the optimal solution were not significant enough to consider changing the
heights of these bridges for reducing the flood volume for the 50- and 100-year return
periods. Due to the high costs of demolition and reconstruction of bridges, it is reasonable
for these bridges to be overlooked and left unchanged. In terms of the remaining bridges,
the changes in their heights lead to a reduction in the flood volume, and considering
the obtained costs, necessary changes in the heights of these bridges are recommended.
Considering the set of obtained solutions from the optimization model, it can be concluded
that the wide range of changes has a limited impact on flood reduction. The obtained
values are very small and insignificant, and economically, these solutions are highly logical.

Observed changes in the height and width of flood barriers: Based on the obtained solutions
from the optimizer among the 16 different intervals, as we move from the upper part
towards the middle of the channel, the changes in the heights of the walls become more
significant. Increasing the height of the walls in the middle of the channel leads to a
reduction in the flood volume. Among them, the changes in height in W1 to W6 (see
Figure 2) are minimal for reducing the flood volume, and the changes in height in W9 to
W16 are negligible in most of the optimal solutions, allowing us to overlook the changes
in their heights. Additionally, increasing the height of walls W7 to W8 each results in a
decrease in the flood volume and, consequently, the damage caused by flooding.

In the obtained optimal solutions from the optimization model, it can be mentioned
that the changes in the width of the walls somehow increase from the upper part to the
lower part, where the widths of walls W1, W4, W8, W12, and W15 are highly effective
in reducing the flood volume, and increasing the width in these walls is necessary. Of
these walls, the maximum increase in width is observed in walls W12 and W15, indicating
the most sensitive and effective range for widening the walls to reduce the flood volume.



Water 2023, 15, 2927 19 of 24

Considering the multiple obtained solutions from the optimization algorithm, the optimal
solution with the highest reduction in flood volume has been selected as the chosen solution.
The design options related to this selected solution are presented in Table 4, where WB

j is

the width of bridges, HB
j is the height of bridges, HW

j is the height of the wall, and WW
j is

the width of the dam wall.

Table 4. Values of decision variables in the selected optimal solution for the 50-year return period
approach.

No Variable Value (m) No Variable Value (m) No Variable Value (m)

1 HB
1 0.84 17 HW

3 0.10 33 WW
3 0.16

2 HB
2 0.00 18 HW

4 0.18 34 WW
4 0.69

3 HB
3 0.11 19 HW

5 0.13 35 WW
5 0.12

4 HB
4 0.08 20 HW

6 0.10 36 WW
6 0.11

5 HB
5 0.13 21 HW

7 0.48 37 WW
7 0.00

6 HB
6 1.40 22 HW

8 1.13 38 WW
8 0.39

7 HB
7 0.45 23 HW

9 0.11 39 WW
9 0.11

8 WB
1 0.29 24 HW

10 0.00 40 WW
10 0.04

9 WB
2 0.07 25 HW

11 0.11 41 WW
11 0.11

10 WB
3 0.08 26 HW

12 0.12 42 WW
12 1.71

11 WB
4 0.48 27 HW

13 0.00 43 WW
13 0.12

12 WB
5 0.57 28 HW

14 0.10 44 WW
14 0.14

13 WB
6 0.11 29 HW

15 0.11 45 WW
15 1.56

14 WB
7 0.02 30 HW

16 0.16 46 WW
16 0.09

15 HW
1 0 31 WW

1 0.59

16 HW
2 0.22 32 WW

2 0

After obtaining the optimal solution using the algorithm and incorporating the results
into the hydraulic simulation model, certain outputs of the hydraulic model are obtained.
Figure 10a illustrates the water discharge rates from the studied network for various nodes.
As shown, except for two nodes, the water discharge rate from the network is zero for
all nodes, indicating the effectiveness and proper performance of the specific code and
the optimization algorithm in reducing the flood volume and water discharge from the
studied network. Figure 10b shows the maximum water depth for different nodes in the
top solutions output by the simulation model. Additionally, Figure 11 also illustrates the
water levels for each of the water channels. Based on the obtained outputs, it is evident
that the rehabilitated channel has the necessary capacity to allow water flow, resulting in
the minimum possible water discharge in the network.
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5. Conclusions

The proposed algorithm in this study is a combination of various models and methods,
including the multi-objective optimization model NSDE and the rainfall–runoff model
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SWMM. The main results obtained from the development of the models and methods used
in this study are as follows.

The obtained optimal solutions with a 50-year return period demonstrate absolute
improvement compared to the existing conditions without the Chitgar Channel project. Fur-
thermore, considering the cost range considered for the optimal solutions with a 50-year re-
turn period, it was observed that the solution that incorporates both optimization scenarios
for channels and cross structures or bridges is the best solution for designing/rehabilitating
the system, and it is more effective in reducing flood damages. In different design scenarios
with a 50-year return period, the highest reduction in damages was 95.26%, with a cost
level of 700 million Tomans (unofficial unit of Iranian currency) compared to the no-project
scenario.

With almost the same cost level for the optimal solution with a 50-year return period,
the first scenario (only bridges) achieved a reduction of 7.66%, the second scenario (only
channels) achieved a reduction of 7.35%, and the third scenario (channels + bridges)
achieved a reduction of 95.26% in water discharge from the network, demonstrating
the superiority of all three scenarios over the no-project scenario. Thus, the obtained
results provide comprehensive information about the efficiency and relative importance of
different flood control projects and rank them accordingly. Consequently, the utilization
and development of these methods are necessary and essential for future studies.
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