Assessing the Cooling Effect of Blue-Green Spaces: Implications for Urban Heat Island Mitigation
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Data Sources
- USGS Landsat 8 Collection 2 Tier 1 TOA Reflectance (LANDSAT/LC08/C02/T1_TOA)
- USGS Landsat 8 Level 2, Collection 2, Tier 1 (LANDSAT/LC08/C02/T1_L2)
3.2. Data Processing and Analysis Using GEE
3.2.1. Landscape Indices and Land Cover Extraction
3.2.2. Retrieved LST
3.2.3. Correlation Analysis
3.2.4. Masking and LST Spatial Analysis
3.2.5. Validation of Estimated LST
4. Results
4.1. Landscape Indices
- NDVI: The NDVI values’ range indicated a moderate vegetation cover, with the northwestern part of Bhubaneswar, which is part of the Chandaka Forest range, exhibiting a higher vegetation density than others.
- MNDWI: The study area exhibited a predominant presence of non-water features, resulting in negative mean MNDWI values. Notably, Kuakhai and its distributaries, the Daya and Bhargavi rivers, gracefully flow through the central–eastern part of Bhubaneswar, accompanied by sporadic occurrences of smaller water bodies such as lakes, dams, and ponds scattered throughout the city.
- NDBI: The NDBI values ranged from −0.72 to 0.31, with a mean value of -0.08 and a standard deviation of 0.11. A previous study suggested that the urban area has undergone significant growth and intensification over the past two decades, expanding outward from the centre along major transportation routes. Recent years have witnessed a sprawl of urban development, with an increasing intensity of structures in already urbanised areas, particularly in close proximity to the city centre [55,56].
4.2. Spatial Distribution of LST
4.3. Comparison of LST between Different Urban Areas
4.4. Correlation Analysis Using Landscape Indices and LST
5. Discussion
5.1. Cooling Effect of Blue-Green Spaces
5.2. Explore Potential Water-Sensitive Design
5.3. Heat Action Plans (HAPs) as a Strategic Approach for Managing Urban Heat
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, P.; Weng, Q. A Time Series Analysis of Urbanization Induced Land Use and Land Cover Change and Its Impact on Land Surface Temperature with Landsat Imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.; Guha, S.; Kundu, S. Dynamic Status of Land Surface Temperature and Spectral Indices in Imphal City, India from 1991 to 2021. Geomat. Nat. Hazards Risk 2021, 12, 3265–3286. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H.; Dey, A.; Gill, N. A Case Study on the Relationship between Land Surface Temperature and Land Surface Indices in Raipur City, India. Geogr. Tidsskr.-Dan. J. Geogr. 2020, 120, 35–50. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef]
- Guo, L.; Liu, R.; Men, C.; Wang, Q.; Miao, Y.; Zhang, Y. Quantifying and Simulating Landscape Composition and Pattern Impacts on Land Surface Temperature: A Decadal Study of the Rapidly Urbanizing City of Beijing, China. Sci. Total Environ. 2019, 654, 430–440. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the Relationship between Land Use Land Cover Change and Land Surface Temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [Google Scholar] [CrossRef]
- Singh, P.; Kikon, N.; Verma, P. Impact of Land Use Change and Urbanization on Urban Heat Island in Lucknow City, Central India. A Remote Sensing Based Estimate. Sustain. Cities Soc. 2017, 32, 100–114. [Google Scholar] [CrossRef]
- Ravanelli, R.; Nascetti, A.; Cirigliano, R.V.; Di Rico, C.; Leuzzi, G.; Monti, P.; Crespi, M. Monitoring the Impact of Land Cover Change on Surface Urban Heat Island through Google Earth Engine: Proposal of a Global Methodology, First Applications and Problems. Remote Sens. 2018, 10, 1488. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal Remote Sensing of Urban Climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Amiri, R.; Weng, Q.; Alimohammadi, A.; Alavipanah, S.K. Spatial-Temporal Dynamics of Land Surface Temperature in Relation to Fractional Vegetation Cover and Land Use/Cover in the Tabriz Urban Area, Iran. Remote Sens. Environ. 2009, 113, 2606–2617. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two Decades of Urban Climate Research: A Review of Turbulence, Exchanges of Energy and Water, and the Urban Heat Island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H. Annual Assessment on the Relationship between Land Surface Temperature and Six Remote Sensing Indices Using Landsat Data from 1988 to 2019. Geocarto Int. 2022, 37, 4292–4311. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H. Seasonal Impact on the Relationship between Land Surface Temperature and Normalized Difference Vegetation Index in an Urban Landscape. Geocarto Int. 2022, 37, 2252–2272. [Google Scholar] [CrossRef]
- Mirzaei, P.A. Recent Challenges in Modeling of Urban Heat Island. Sustain. Cities Soc. 2015, 19, 200–206. [Google Scholar] [CrossRef]
- Rinner, C.; Hussain, M. Toronto’s Urban Heat Island-Exploring the Relationship between Land Use and Surface Temperature. Remote Sens. 2011, 3, 1251–1265. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J. Evaluating the Impact of Climate Change on Urban Environment Using Geospatial Technologies in the Planning Area of Bilaspur, India. Environ. Chall. 2021, 5, 100286. [Google Scholar] [CrossRef]
- Kayet, N.; Pathak, K.; Chakrabarty, A.; Sahoo, S. Spatial Impact of Land Use/Land Cover Change on Surface Temperature Distribution in Saranda Forest, Jharkhand. Model Earth Syst. Environ. 2016, 2, 127. [Google Scholar] [CrossRef]
- Chun, B.; Guldmann, J.M. Spatial Statistical Analysis and Simulation of the Urban Heat Island in High-Density Central Cities. Landsc. Urban Plan. 2014, 125, 76–88. [Google Scholar] [CrossRef]
- Coseo, P.; Larsen, L. How Factors of Land Use/Land Cover, Building Configuration, and Adjacent Heat Sources and Sinks Explain Urban Heat Islands in Chicago. Landsc. Urban Plan. 2014, 125, 117–129. [Google Scholar] [CrossRef]
- Dai, Z.; Guldmann, J.M.; Hu, Y. Spatial Regression Models of Park and Land-Use Impacts on the Urban Heat Island in Central Beijing. Sci. Total Environ. 2018, 626, 1136–1147. [Google Scholar] [CrossRef]
- Kim, J.P.; Guldmann, J.M. Land-Use Planning and the Urban Heat Island. Environ. Plan B Plann. Des. 2014, 41, 1077–1099. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, Z.F.; Ye, X.Y.; Cai, Y.B.; Ma, W.C.; Chen, M.N. Analysis of Land Use/Land Cover Change, Population Shift, and Their Effects on Spatiotemporal Patterns of Urban Heat Islands in Metropolitan Shanghai, China. Appl. Geogr. 2013, 44, 121–133. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does Spatial Configuration Matter? Understanding the Effects of Land Cover Pattern on Land Surface Temperature in Urban Landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Krishnan, R.; Sanjay, J.; Gnanaseelan, C.; Mujumdar, M.; Kulkarni, A.; Chakraborty, S. Assessment of Climate Change over the Indian Region A Report of the Ministry of Earth Sciences (MoES); Government of India: New Delhi, India, 2020. [Google Scholar]
- Halder, D.; Garg, R.D.; Fedotov, A. Latitudinal Trend Analysis of Land Surface Temperature to Identify Urban Heat Pockets in Global Coastal Megacities. Remote Sens. 2023, 15, 1355. [Google Scholar] [CrossRef]
- Habeeb, D.; Vargo, J.; Stone, B. Rising Heat Wave Trends in Large US Cities. Nat. Hazards 2015, 76, 1651–1665. [Google Scholar] [CrossRef]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing Frequency, Intensity and Duration of Observed Global Heatwaves and Warm Spells. Geophys. Res. Lett. 2012, 39, 10. [Google Scholar] [CrossRef]
- Rathi, S.K.; Chakraborty, S.; Mishra, S.K.; Dutta, A.; Nanda, L. A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Urbanites of Four Cities of India. Int. J. Environ. Res. Public Health 2022, 19, 283. [Google Scholar] [CrossRef]
- India National Disaster Management Authority. National Guidelines for Preparation of Action Plan-Prevention and Management of Heatwave; India National Disaster Management Authority: New Delhi, India, 2019.
- Mazdiyasni, O.; Aghakouchak, A.; Davis, S.J.; Madadgar, S.; Mehran, A.; Ragno, E.; Sadegh, M.; Sengupta, A.; Ghosh, S.; Dhanya, C.T.; et al. Increasing Probability of Mortality during Indian Heat Waves. Available online: https://www.science.org/doi/full/10.1126/sciadv.1700066 (accessed on 25 June 2023).
- Pattanaik, D.R.; Mohapatra, M.; Srivastava, A.K.; Kumar, A. Heat Wave over India during Summer 2015: An Assessment of Real Time Extended Range Forecast. Meteorol. Atmos. Phys. 2017, 129, 375–393. [Google Scholar] [CrossRef]
- Integrated Research and Action for Development (IRADe). Heat Wave Action Plan-Bhubaneswar City; Integrated Research and Action for Development (IRADe): New Delhi, India, 2020. [Google Scholar]
- Halder, B.; Bandyopadhyay, J.; Al-Hilali, A.A.; Ahmed, A.M.; Falah, M.W.; Abed, S.A.; Falih, K.T.; Khedher, K.M.; Scholz, M.; Yaseen, Z.M. Assessment of Urban Green Space Dynamics Influencing the Surface Urban Heat Stress Using Advanced Geospatial Techniques. Agronomy 2022, 12, 2129. [Google Scholar] [CrossRef]
- Cai, Y.B.; Wu, Z.J.; Chen, Y.H.; Wu, L.; Pan, W. Bin Investigate the Difference of Cooling Effect between Water Bodies and Green Spaces: The Study of Fuzhou, China. Water 2022, 14, 1471. [Google Scholar] [CrossRef]
- Gascon, M.; Mas, M.T.; Martínez, D.; Dadvand, P.; Forns, J.; Plasència, A.; Nieuwenhuijsen, M.J. Mental Health Benefits of Long-Term Exposure to Residential Green and Blue Spaces: A Systematic Review. Int. J. Environ. Res. Public Health 2015, 12, 4354–4379. [Google Scholar] [CrossRef] [PubMed]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising Green and Bluespace to Mitigate Urban Heat Island Intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef]
- Qiu, X.; Kil, S.H.; Jo, H.K.; Park, C.; Song, W.; Choi, Y.E. Cooling Effect of Urban Blue and Green Spaces: A Case Study of Changsha, China. Int. J. Environ. Res. Public Health 2023, 20, 2613. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.A.L.; Adolphe, L.; Bonhomme, M.; Bonneaud, F.; Faraut, S.; Ginestet, S.; Michel, C.; Guyard, W. Impact of Urban Cool Island Measures on Outdoor Climate and Pedestrian Comfort: Simulations for a New District of Toulouse, France. Sustain. Cities Soc. 2016, 26, 9–26. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, G.; Zuo, S.; Jørgensen, G.; Koga, M.; Vejre, H. Critical Review on the Cooling Effect of Urban Blue-Green Space: A Threshold-Size Perspective. Urban For. Urban Green 2020, 49, 126630. [Google Scholar] [CrossRef]
- Yu, Z.; Yao, Y.; Yang, G.; Wang, X.; Vejre, H. Strong Contribution of Rapid Urbanization and Urban Agglomeration Development to Regional Thermal Environment Dynamics and Evolution. Ecol. Manag. 2019, 446, 214–225. [Google Scholar] [CrossRef]
- Jamei, E.; Tapper, N. WSUD and Urban Heat Island Effect Mitigation. In Approaches to Water Sensitive Urban Design: Potential, Design, Ecological Health, Urban Greening, Economics, Policies, and Community Perceptions; Elsevier: Amsterdam, The Netherlands, 2018; pp. 381–407. ISBN 9780128128435. [Google Scholar]
- Beecham, S.; Razzaghmanesh, M.; Bustami, R.; Ward, J. The Role of Green Roofs and Living Walls as WSUD Approaches in a Dry Climate. In Approaches to Water Sensitive Urban Design: Potential, Design, Ecological Health, Urban Greening, Economics, Policies, and Community Perceptions; Elsevier: Amsterdam, The Netherlands, 2018; pp. 409–430. ISBN 9780128128435. [Google Scholar]
- Rouse, W.; Haas, R.H.; Deering, D.W. Paper A 20 Monitoring Vegetation Systems In The Great Plains With Erts. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium: Section A–B, Washington, DC, USA, 10–14 December 1973. [Google Scholar]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- De Moura Reis, L.G.; de Oliveira Souza, W.; Ribeiro Neto, A.; Fragoso, C.R.; Ruiz-Armenteros, A.M.; da Silva Pereira Cabral, J.J.; Montenegro, S.M.G.L. Uncertainties Involved in the Use of Thresholds for the Detection of Water Bodies in Multitemporal Analysis from Landsat-8 and Sentinel-2 Images. Sensors 2021, 21, 7479. [Google Scholar] [CrossRef]
- Al-Doski, J.; Mansor, S.B.; Zulhaidi, H.; Shafri, M. NDVI Differencing and Post-Classification to Detect Vegetation Changes in Halabja City, Iraq. IOSR J. Appl. Geol. Geophys. 2013, 1, 1–10. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of Normalized Difference Built-up Index in Automatically Mapping Urban Areas from TM Imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Li, Z.L.; Wu, H.; Wang, N.; Qiu, S.; Sobrino, J.A.; Wan, Z.; Tang, B.H.; Yan, G. Land Surface Emissivity Retrieval from Satellite Data. Int. J. Remote Sens. 2013, 34, 3084–3127. [Google Scholar] [CrossRef]
- Chakraborty, T.C.; Lee, X.; Ermida, S.; Zhan, W. On the Land Emissivity Assumption and Landsat-Derived Surface Urban Heat Islands: A Global Analysis. Remote Sens. Environ. 2021, 265, 112682. [Google Scholar] [CrossRef]
- Malakar, N.K.; Hulley, G.C.; Hook, S.J.; Laraby, K.; Cook, M.; Schott, J.R. An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5717–5735. [Google Scholar] [CrossRef]
- Sekertekin, A.; Bonafoni, S. Sensitivity Analysis and Validation of Daytime and Nighttime Land Surface Temperature Retrievals from Landsat 8 Using Different Algorithms and Emissivity Models. Remote Sens. 2020, 12, 2776. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Mishra, K.; Garg, R.D. Assessing Variations in Land Cover-Land Use and Surface Temperature Dynamics for Dehradun, India, Using Multi-Time and Multi-Sensor Landsat Data. Environ. Monit. Assess. 2023, 195, 373. [Google Scholar] [CrossRef]
- Das, T.; Jana, A.; Mandal, B.; Sutradhar, A. S Patio-Temporal Pattern of Land Use and Land Cover and Its Effects on Land Surface Temperature Using Remote Sensing and GIS Techniques: A Case Study of Bhubaneswar City, Eastern India (1991–2021). Geo-Journal 2022, 87, 765–795. [Google Scholar] [CrossRef]
- Pritipadmaja; Garg, R.D. Evaluating the Impact of Climate Change on the Urban Environment Using Geospatial Technologies in Bhubaneswar, India. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2022, 48, 159–166. [Google Scholar] [CrossRef]
- Roy, B.; Bari, E. Examining the Relationship between Land Surface Temperature and Landscape Features Using Spectral Indices with Google Earth Engine. Heliyon 2022, 8, e10668. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J.; Banik, P. Evaluation of the Climate Change Impact on Urban Heat Island Based on Land Surface Temperature and Geospatial Indicators. Int. J. Environ. Res. 2021, 15, 819–835. [Google Scholar] [CrossRef]
- Doick, K.J.; Peace, A.; Hutchings, T.R. The Role of One Large Greenspace in Mitigating London’s Nocturnal Urban Heat Island. Sci. Total Environ. 2014, 493, 662–671. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Rötzer, T.; Pauleit, S. Within Canopy Temperature Differences and Cooling Ability of Tilia Cordata Trees Grown in Urban Conditions. Build Environ. 2017, 114, 118–128. [Google Scholar] [CrossRef]
- Hashim, B.M.; Al Maliki, A.; Sultan, M.A.; Shahid, S.; Yaseen, Z.M. Effect of Land Use Land Cover Changes on Land Surface Temperature during 1984–2020: A Case Study of Baghdad City Using Landsat Image. Nat. Hazards 2022, 112, 1223–1246. [Google Scholar] [CrossRef]
- Du, H.; Cai, W.; Xu, Y.; Wang, Z.; Wang, Y.; Cai, Y. Quantifying the Cool Island Effects of Urban Green Spaces Using Remote Sensing Data. Urban Urban Green 2017, 27, 24–31. [Google Scholar] [CrossRef]
- Sun, X.; Tan, X.; Chen, K.; Song, S.; Zhu, X.; Hou, D. Quantifying Landscape-Metrics Impacts on Urban Green-Spaces and Water-Bodies Cooling Effect: The Study of Nanjing, China. Urban Urban Green 2020, 55, 126838. [Google Scholar] [CrossRef]
- Wang, C.; Ren, Z.; Dong, Y.; Zhang, P.; Guo, Y.; Wang, W.; Bao, G. Efficient Cooling of Cities at Global Scale Using Urban Green Space to Mitigate Urban Heat Island Effects in Different Climatic Regions. Urban Urban Green 2022, 74, 127635. [Google Scholar] [CrossRef]
- Chang, C.R.; Li, M.H.; Chang, S.D. A Preliminary Study on the Local Cool-Island Intensity of Taipei City Parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Völker, S.; Baumeister, H.; Classen, T.; Hornberg, C.; Kistemann, T. Evidence for the Temperature-Mitigating Capacity of Urban Blue Space—A Health Geographic Perspective. Erdkunde 2013, 67, 355–371. [Google Scholar] [CrossRef]
- Inamdar, P.M.; Sharma, A.K.; Cook, S.; Perera, B.J.C. Evaluation of Stormwater Harvesting Sites Using Multi Criteria Decision Methodology. J. Hydrol. 2018, 562, 181–192. [Google Scholar] [CrossRef]
- Joshi, J.; Magal, A.; Limaye, V.S.; Madan, P.; Jaiswal, A.; Mavalankar, D.; Knowlton, K. Climate Change and 2030 Cooling Demand in Ahmedabad, India: Opportunities for Expansion of Renewable Energy and Cool Roofs. Mitig. Adapt. Strat. Glob. Change 2022, 27, 44. [Google Scholar] [CrossRef] [PubMed]
- Telangana Cool Roof Policy 2023–2028; Government of Telangana: Hyderabad, India, 2023.
- Executive Summary 1998. Available online: www.cprindia.org (accessed on 20 June 2023).
- Knowlton, K.; Kulkarni, S.P.; Azhar, G.S.; Mavalankar, D.; Jaiswal, A.; Connolly, M.; Nori-Sarma, A.; Rajiva, A.; Dutta, P.; Deol, B.; et al. Development and Implementation of South Asia’s First Heat-Health Action Plan in Ahmedabad (Gujarat, India). Int. J. Environ. Res. Public Health 2014, 11, 3473–3492. [Google Scholar] [CrossRef] [PubMed]
- Hess, J.J.; Sathish, L.M.; Knowlton, K.; Saha, S.; Dutta, P.; Ganguly, P.; Tiwari, A.; Jaiswal, A.; Sheffield, P.; Sarkar, J.; et al. Building Resilience to Climate Change: Pilot Evaluation of the Impact of India’s First Heat Action Plan on All-Cause Mortality. J. Environ. Public Health 2018, 2018, 7973519. [Google Scholar] [CrossRef] [PubMed]
- Jodhpur Heat Action Plan 2023. Available online: https://www.mahilahousingtrust.org/ (accessed on 25 May 2023).
- Ozone Cell Ministry of Environment, Forest & Climate Change Government of India. India Cooling Action Plan; Ministry of Environment, Forest & Climate Change: New Delhi, India, 2019.
Landscape Indices | Min | Max | Mean | Std Dev. |
---|---|---|---|---|
NDVI | −0.21 | 0.71 | 0.35 | 0.10 |
MNDWI | −0.51 | 0.66 | −0.28 | 0.94 |
NDBI | −0.72 | 0.31 | −0.08 | 0.11 |
MODIS LST Product | Resampled Landsat-Estimated LST | |
---|---|---|
Min | 33.97 | 30.95 |
Max | 43.89 | 47.02 |
Mean | 39.15 | 37.44 |
Std dev. | 1.81 | 2.36 |
Min | Max | Mean | Std Dev. | |
---|---|---|---|---|
Blue-green Spaces | 23.87 | 38.07 | 31.97 | 1.53 |
Non-blue-green Spaces | 24.62 | 40.38 | 34.12 | 1.34 |
Min | Max | Mean | Std Dev. | |
---|---|---|---|---|
Blue-green spaces | 27.04 | 36.00 | 31.86 | 1.31 |
Non-blue-green spaces | 28.73 | 37.26 | 34.08 | 1.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pritipadmaja; Garg, R.D.; Sharma, A.K. Assessing the Cooling Effect of Blue-Green Spaces: Implications for Urban Heat Island Mitigation. Water 2023, 15, 2983. https://doi.org/10.3390/w15162983
Pritipadmaja, Garg RD, Sharma AK. Assessing the Cooling Effect of Blue-Green Spaces: Implications for Urban Heat Island Mitigation. Water. 2023; 15(16):2983. https://doi.org/10.3390/w15162983
Chicago/Turabian StylePritipadmaja, Rahul Dev Garg, and Ashok K. Sharma. 2023. "Assessing the Cooling Effect of Blue-Green Spaces: Implications for Urban Heat Island Mitigation" Water 15, no. 16: 2983. https://doi.org/10.3390/w15162983
APA StylePritipadmaja, Garg, R. D., & Sharma, A. K. (2023). Assessing the Cooling Effect of Blue-Green Spaces: Implications for Urban Heat Island Mitigation. Water, 15(16), 2983. https://doi.org/10.3390/w15162983