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Abstract: The issue of sudden water pollution resulting from accidents is a challenging environmental
problem to address. The frequency of transport accidents involving hazardous materials over
tributary bridges is steadily rising due to rapid industrialization and urbanization processes. This
trend poses a significant threat to both the water’s ecological environment and human well-being.
To effectively mitigate the risks associated with water pollution caused by accidents during the
transportation of dangerous goods, this research focused on Baiyangdian Lake, the largest freshwater
lake in North China. Thid study employed the expert judgment fuzzy language method and Bayesian
network model as analytical tools to assess and analyze the potential risks associated with sudden
water pollution accidents caused by the transportation of hazardous materials on bridges spanning
tributaries. Through an examination of the various risk factors involved, the research identified
four primary indicators and ten secondary indicators. Additionally, an oil leakage accident scenario
was simulated, and recommendations for risk prevention and control measures were provided.
The findings of the study indicated that: (1) The likelihood of risk associated with driver factors,
vehicle emergency factors, fuel tank emergency factors, road factors, and lighting factors is elevated.
(2) The probability of a dangerous goods transportation accident occurring on the Baiyangdian cross-
tributary bridge is substantial, thereby presenting a potential hazard to both the water environment
and human health. (3) Vehicle emergency factors, vehicle wear factors, and weather factors exert a
significant influence on the incidence of accidents. (4) The highest likelihood of accidents is associated
with a combination of factors, including driver fatigue, vehicle and fuel tank deterioration, and
adverse weather conditions. (5) In instances where the vehicle and fuel tank are well-maintained,
the probability of accidents is greatest on the cross tributary bridge, particularly when the driver is
fatigued, weather conditions are unfavorable, and there is a lack of street lighting during nighttime.
Implementing emergency prevention and control measures proved to be an effective approach
in mitigating the risk of sudden water pollution accidents. This study offers valuable insights
into risk mitigation and management strategies for emergent water pollution incidents, and the
framework presented herein can be readily applied to other rivers worldwide confronting comparable
risk challenges.

Keywords: sudden water pollution accident; risk assessment; Bayesian network model; dangerous
goods transportation; Baiyangdian Lake
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1. Introduction

Sudden environmental risk refers to the leakage of environmental risk materials
caused by accidents in industrial production and transportation processes [1]. A sudden
water pollution incident is defined as an occurrence wherein a substantial quantity of
pollutants is rapidly released into a water body as a result of human activities, natural
calamities, or other unforeseen emergencies [2–4]. The pollutants involved in such incidents
primarily encompass hazardous substances such as petroleum, heavy metals, and toxic
organic compounds [5,6]. The emergence of sudden water pollution incidents presents an
escalating and pressing menace to water ecology, environmental quality, and overall water
security [7,8]. The unpredictability and uncertainty of sudden water pollution accidents are
attributed to the challenges in determining the characteristics, quantity, leakage mode, and
environmental impact capacity of pollutants during the incident, particularly in light of
changes in hydrometeorological conditions [9,10]. It is noteworthy that the construction of
bridges across tributaries in river network areas has experienced a substantial increase due
to the rapid development of industrialization and the expansion of cities. Consequently,
the proportion of cargo transport has consistently risen over the years. However, road
transport remains a prevalent method for transporting dangerous goods [11], leading to a
higher frequency of accidents involving the transportation of hazardous materials [12–14].
Consequently, these accidents contribute to the occurrence of frequent instances of sudden
water pollution [14–16]. Therefore, vehicles utilized for the transportation of dangerous
goods can be regarded as mobile hazard sources [17]. The occurrence of water pollution in-
cidents resulting from traffic accidents and unforeseen circumstances presents a significant
hazard to societal and economic progress, as well as human well-being [4,18]. Consequently,
conducting a risk assessment of hazardous material transportation accidents leading to
sudden water pollution is imperative in order to establish a foundation for appropriate
emergency prevention and mitigation measures [19,20].

Research on the risk assessment of dangerous goods transportation started early and
achieved many research advancements [21–23]. The American Chemical Company pro-
posed an evaluation index method for fire explosions in 1964 [24]. Previous scholars initially
focused on qualitative descriptions of the damage caused by sudden water pollution, but
now, research emphasis has shifted to establishing an index system and assessment model
to quantify the degree of risk [18]. Hou et al. [2] employed the Monte Carlo method to quan-
tify the likelihood of water pollution. Additionally, they incorporated expert experience
judgment and the risk matrix method to ascertain the level of risk associated with water
pollution. Tang et al. [25] utilized a Bayesian network model to assess the probability of
water pollution risks. Furthermore, they proposed a comprehensive risk prediction model
based on the integration of the Bayesian network and water quality models. Stojanovic
et al. [17] examined the underlying factors contributing to traffic accidents during the trans-
portation of hazardous materials. Additionally, the authors conducted an analysis on the
resultant environmental impact of such accidents and proposed measures to prevent them
and mitigate their consequences. Ren et al. [26] assessed the risk associated with managing
environmental pollution accidents in water quality emergency monitoring through the
development of a fuzzy Bayesian network risk assessment model. Liu et al. [27] conducted
a case study on the Weihe River, where they developed a water pollution risk assessment
model using fuzzy theory. They subsequently assessed the risk of water pollution in
the Weihe River. Li et al. [28] focused on the Yixing river network area and proposed a
comprehensive method for analyzing sudden water pollution risk. This method incorpo-
rated fuzzy logic, expert participation, and random simulation, thereby offering a valuable
approach for integrating the numerous uncertainties present in complex river network
systems. Zhang et al. [29] utilized the Yongding River as a case study to partition the
area into distinct units for the purpose of assessing sudden water pollution risks. They
subsequently established a prioritization framework for managing water environment risks
and employed the analytic hierarchy process and fuzzy comprehensive evaluation methods
to evaluate the levels of risk. Guan et al. [30] developed a cumulative risk assessment
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system specifically for the upstream rivers of Baiyangdian Lake; they then employed the
grid environmental risk analysis method to evaluate the risk of sudden water pollution in
these upstream rivers. In summary, there is a need for further enhancement in the precision
and feasibility of identifying and assessing water pollution risks during the transportation
of hazardous materials.

Presently, research on water pollution emergencies primarily concentrates on sta-
tionary sources of risk, with limited attention given to mobile sources, such as vehicles
involved in the transportation of dangerous chemicals [31]. Additionally, scholars have
shown relatively less interest in investigating the risk assessment of abrupt water pollution
incidents in non-marine regions [18]. Bayesian networks, also known as belief networks,
are the product of the combination of artificial intelligence, probability theory, graph theory,
and decision-making analysis. They have been widely applied to describe uncertainty
and probability, which can intuitively express the interaction between various factors and
obtain an inference from incomplete or uncertain information [32]. Bayesian networks have
significant advantages for small sample events by using prior knowledge of probability
calculations [33]. The utilization of Bayesian network models for the identification and
analysis of sudden water pollution risks remains infrequent within the realm of research
methods. Moreover, the assessment of risk grades pertaining to sudden water pollution
serves as a manifestation of the potential risks associated with such events [29]. Despite
improvements in risk assessment for sudden water pollution accidents, there is a lack
of comprehensive consideration for the various types of risk sources in different regions.
The evaluation method that disregards the holistic assessment of risk sources and instead
isolates them may compromise the accuracy of the results. Consequently, it is imperative
to thoroughly consider the different types and sources of risk within a specific region
prior to the occurrence of sudden water pollution. Hence, this study employed the expert
evaluation fuzzy language method to discern and categorize the risk sources associated
with sudden water pollution events in Baiyangdian, considering various perspectives. Sub-
sequently, a Bayesian network model was employed to assess the likelihood of occurrence
for different types of risk factors; then, a one-dimensional water quality model was used to
simulate the results of oil leakage in the Nanliuzhuang section.

Baiyangdian Lake is an important part of Xiongan New Area in China and plays a
significant role in ecological and environmental protection [34].With the improvement of
urbanization and industrialization, the polluting enterprises are densely distributed around
the lake and the surrounding tributaries, and many sewage treatment stations with dense
drainage pipes are distributed in the area [35]. Furthermore, there are many cross-tributary
bridges between the nine rivers entering the lake and the roads, and the ships are trans-
ported frequently. Thus, the risk of sudden water pollution in Baiyangdian Lake is high
due to rollover, leakage, and ship accidents. The frequent occurrence of water pollution
accidents in the Baiyangdian Lake area poses serious threats to the safety and reliability
of water supply [30].Hence, it is imperative to conduct appropriate risk identification and
assessment, simulate potential water pollution incidents in the future, and implement
tailored emergency prevention and control measures to mitigate the adverse effects of
such incidents. However, as of now, no risk assessment for the Baiyangdian Lake sudden
water pollution accident has been reported. Therefore, this study chose Baiyangdian Lake
as the focal point to investigate and assess the risk factors associated with abrupt water
pollution incidents during the transportation of hazardous materials. It has simulated such
incidents occurring at tributary bridges and subsequently proposed pertinent recommen-
dations for the management of sudden water pollution risks in Baiyangdian Lake. These
recommendations encompass preventive measures and emergency response strategies.

The study encompasses the following components: (1) introduction of the overall
situation of Baiyangdian; (2) presentation of the structure and parameters of the Bayes
network model, along with the specific details of causal reasoning and diagnostic rea-
soning; (3) explanation of the process involved in calculating the conditional probability
of each node of the Bayes network using the expert evaluation fuzzy language method;
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(4) utilization of a one-dimensional water quality model to simulate the oil leakage in the
Nanliuzhuang section; (5) proposal of emergency prevention and control countermeasures
of the inter-regional water pollution accident in Baiyangdian.

Overall, the aim of this study was to: (i) identify and determine the risk factors of
dangerous goods transportation accidents on cross-tributary bridges around Baiyangdian
Lake by field investigation and the expert evaluation fuzzy language method; (ii) establish
the Bayesian network, that is, the probability of a dangerous goods transportation accident
is calculated by causal reasoning, and the cause of the accident is analyzed by diagnostic
reasoning; (iii) simulate the sudden water pollution accidents on Baiyangdian Lake by using
the one-dimensional water quality model, and the corresponding emergency prevention
and control measures are put forward Figure 1 to show the schematic diagram of this paper.
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2. Study Area

Baiyangdian Lake is the largest freshwater shallow lake in North China (113◦400′~116◦480′

E, 38◦100~40◦30′ N), as shown in Figure 2. It plays an important role in flood mitigation,
drought prevention, regional microclimate improvement, and biodiversity protection [34].
In addition, it supports water resources for hundreds of thousands of people and enjoys
the reputation of “Pearl of North China” and “the End of Nine Rivers” in China. The
climate belongs to continental monsoon, with means annual precipitation of 554 mm and
temperature of 7~12 ◦C. Additionally, over 60% of the rainfall is concentrated during
shorter periods between June and August. Wetlands, arable cropland (e.g., paddy fields
and dry lands), forestland, grassland, and residential and industrial land are the main
land-use types in this basin. Baiyangdian Lake receives water from nine rivers, including
Baigouyin River, Bao River, Cao River, Fu River, Zhulong River, Ping River, Qingshui River,
Tang River, and Xiaoyi River. Moreover, the water body of the Baiyangdian Basin is partly
maintained by the water diversion from the Yellow River and the South-to-North Water
Diversion Project [30], thereby increasing the water resources and improving the water
quality. Baiyangdian Lake Basin rapidly developed, as it has been included in the Xiongan
New Area of China since 2017. As a result, there exists numerous cross-tributary bridges
due to dense river networks, abundant water compensation projects, and high-intensity



Water 2023, 15, 2993 5 of 19

human activities. Therefore, there is a high occurrence frequency of sudden water pollution
accidents associated with dangerous goods transportation on the cross-tributary bridges of
Baiyangdian Lake [36–38].
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3. Materials and Methods
3.1. Bayesian Network Model

Bayesian networks, alternatively referred to as causal probability networks or causal
networks [39], are acyclic-directed graph models that depict the probabilistic interdepen-
dence among random variables. They serve as network structure diagrams commonly
employed for reasoning and analysis purposes [40]. Once the probabilities of certain
variables (typically input variables) are established, Bayesian network reasoning can be
accomplished by employing basic probability operations and Bayesian theory to calculate
the probabilities of all or specific nodes. In the absence of empirical evidence to establish
the occurrence of event A, the utilization of a Bayesian network model enables the analysis
and estimation of the probability of event A based on the interrelation between event B
and event A [41].

3.1.1. Bayesian Network Composition

(1) The Bayesian network structure
The Bayesian network comprises three primary node categories (Figure 3): (i) the target

node, which represents the risk level of sudden water pollution accidents and serves as the
ultimate outcome of the Bayesian network in this study, offering guidance for subsequent
decision-making; (ii) the evidence node, also known as the parent node, which plays a
crucial role in providing supporting information for the Bayesian network analysis; (iii) the
intermediate node, which plays a linking role between target nodes and evidence nodes. In
this study, the fundamental unit of a Bayesian network consists of identified risk factors for
sudden water pollution accidents. The connecting lines with directivity between each node
indicate the relationships between them [42].
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The structure and reasoning process of a Bayesian network exhibit characteristics that
are suitable for risk assessment modeling and analysis [43]. The structure of a Bayesian
network allows for the expression of uncertainty relationships and polymorphism charac-
teristics among variables. The causal reasoning of the system can be utilized to compute the
joint probability of system risk occurrence under different fault conditions for the purpose
of risk assessment. Additionally, the diagnostic reasoning of the system involves calcu-
lating the conditional probability of each component state when the system risk occurs,
facilitating system diagnosis and targeted risk management [34].

(2) The Bayesian network parameter
The Bayesian network parameter pertains to the conditional probability table, which

encompasses the conditional probability of each node. The single conditional probability
within this table signifies the impact of one node variable on another node variable [44].
Each node within the system possesses a distinct state, and the initial likelihood of evidence
nodes is typically established based on empirical knowledge and monitoring data [25]. In
this study, the notation P(A) was employed to denote the evidence node, signifying the
probability of event A transpiring without accounting for the pertinent factors associated
with event B. Conversely, intermediate and target nodes are typically expressed in terms of
conditional probability, denoting the posterior probability that elucidates the relationship
between two nodes interconnected by a directed edge [45]. In this study, the notation
P(A|B) was utilized to represent this conditional probability, indicating the probability of
event A transpiring given the occurrence of event B.

P(A|B) = P(B|A)P(A)

P(B)
(1)

3.1.2. Causal Reasoning

Causal reasoning involves the process of reasoning from the evidence node to the target
node. In the analysis of inference using Bayesian networks, an initial subjective probability
estimation is conducted for the prior probability of the evidence node. Subsequently,
the estimated probability values are inserted into the formula to compute the posterior
probability of the final target event. Scientific decisions are then made based on this output,
which is theoretically derived from the well-known Bayesian formula [46]:

P(Ai|B) =
P(B|Ai)P(Ai)

∑n
i=1 P(B|Ai)P(Ai)

(2)
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The risk frequency interval division standards established by the International Tunnel
Association (ITA) are presented in Table 1 [47]. The natural probability PN of the occurrence
of a risk event obtained by Bayesian network inference is related to the log probability P as:

P = 5 + logPN (3)

Table 1. The probability level and risk level of natural probability (PN) and logarithmic probability (P).

Probability Level PN Interval P Interval Description Risk Level

5 0.3–1 5.0–4.5 Probably High
4 0.03–0.3 4.5–3.5 May Higher
3 0.003–0.03 3.5–2.5 Occasionally Medium
2 0.0003–0.003 2.5–1.5 Not too possible Lower
1 <0.0003 <1.5 Impossible Low

3.1.3. Diagnostic Reasoning

The diagnostic reasoning function of a Bayesian network is employed to analyze the
primary factors and combinations of factors that contribute to accidents. Specifically, the
probability of each risk factor is assessed assuming a 100% probability for node A being
“1”, and the extent of change is compared to the impact of each risk factor on accidents [48].

The Bayesian network risk assessment model must address numerous instances of in-
complete and inaccurate data and information during inference, necessitating the execution
of inference processes in various states. In order to enhance the precision of logical deduc-
tions, it is imperative to employ Netica, a specialized tool for graphical decision theory [49],
which facilitates the graphical representation of node states. This graphical depiction
enhances the intuitiveness and accuracy of the reasoning process. Consequently, this study
primarily utilized Netica to reason with risks associated with social security incidents.

3.2. Conditional Probability Calculation
3.2.1. The Evaluation Level Establishment

Describing risk factors pertaining to accidents in the transportation of hazardous ma-
terials is a significant challenge, prompting the introduction of language evaluation levels
to effectively characterize variables [47,50]. Table 2 shows seven natural language variables
expressed as risk levels, as well as their corresponding triangular fuzzy numbers and
probability range. This paper divided the risk degree of dangerous goods transportation
accidents into seven levels: very low (VL), low (L), flat low (FL), medium (M), high (FH),
flat high (H), and very high (VH).

Table 2. The relationship of risk level and triangular fuzzy numbers.

Risk Level Triangular Fuzzy Number Probability Range

Very low (VL) (0.0, 0.0, 0.1) <1%
Low (L) (0.0, 0.1, 0.3) 1~10%

Flat low (FL) (0.0, 0.1, 0.3) 10~33%
Medium (M) (0.3, 0.5, 0.7) 33~66%

Flat high (FH) (0.5, 0.7, 0.9) 66~90%
High (H) (0.7, 0.9, 1.0) 90~99%

Very high (VH) (0.9, 1.0, 1.0) >99%

3.2.2. Fuzzy Language Acquisition

Due to the limited availability of data and clear guidelines for classifying and assessing
various risk factors, the direct and accurate determination of conditional probability for
each evidence node was also a challenge [51,52]. Consequently, this study employed the
Delphi method as a means to compensate for the lack of data [53], thus establishing the
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probabilities of evidence nodes. Through an anonymous questionnaire survey, experts
were invited to evaluate and predict the evidence nodes until a consensus was reached [54].
Given that expert judgment relied on personal knowledge and experience and the results
were expressed in a vague language, it was imperative to employ defuzzification techniques
to enhance the clarity of expert language.

3.2.3. Expert Language Defuzzification

The commonly used defuzzification methods are trapezoidal fuzzy numbers [55],
triangular fuzzy numbers [56], and LR-type fuzzy numbers [57]. Considering the attributes
and suitability of these methods, the triangular fuzzy number was chosen as the member-
ship function for defuzzifying expert language, which was proposed by Vanlaarhoven and
Pedrycz [58] for fuzzy judgment.

Fuzzy numbers typically encompass upper and lower limits, as well as intermediate
potential values. Assuming that the risk assessment membership set is denoted as A, the
triangular fuzzy number’s upper and lower limits are represented by a and b, respectively.
When the membership degree of set A is 1 and the value is m, the triangular fuzzy number

A is denoted as
∼
A = (a, m, b), with the membership function expressed as follows:

∼
A =


x−a
m−a a ≤ x ≤ m
b−x
b−m m ≤ x ≤ b

0 x ≤ a, x ≥ b
(4)

where a and b signify the degree of fuzziness (a ≤ m ≤ b). The greater the difference
between b and a, the higher the degree of fuzziness.

3.2.4. Calculation of the Conditional Probability

After obtaining expert opinions and transforming them into triangular fuzzy numbers,
the quantized triangular fuzzy numbers underwent processing to compute the probabil-
ity information for each evidence node. The processing procedure primarily involves
averaging, defuzzification, and normalization [59]. The expert opinions were calculated
and averaged based on the number of invited experts, thereby eliminating outliers and
enhancing the rationality of the fuzzy probability value in the judgment. The formula is
as follows:

∼
P =

p1 + p2 + . . . + pn

n
=

(
∼
a ,
∼
m,
∼
b
)

(5)

The defuzzification of the average triangular fuzzy number was conducted by utilizing
the mean area method, resulting in the conversion into the precise probability P′ of the
node [60]. This formula is expressed as follows:

P′ =
∼
a + 2

∼
m +

∼
b

4
(6)

Ultimately, the probability information of each node was normalized, thereby achiev-
ing a sum of probability values equal to 1 across various risk levels. Consequently, the
obtained probability value was used for subsequent inference calculations, as follows:

Pi =
P′

∑2
i=1 P′

(7)

The Bayesian network was established to assign values to each node, and the calculated
probability value was then substituted into the Bayesian network. The Netica data analysis
software was utilized for reasoning calculations [61]. On the node definition screen, State 0
represented non-occurrence, while State 1 signified occurrence.
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3.3. Simulation of Sudden Water Pollution Accidents

The Fuhe River flows into Baiyangdian Lake, located in the north of Jianchang Village,
Anxin County, passing through Baoding City and Qingyuan County. It has a total length
of 30.83 km, a drainage area of 643.2 km2, and an average water depth ranging from 1.5
to 3 m. The distance between the Baiyangdian Lake Bridge and Shaochedian along the
Fuhe River measures 3750 m. Situated within the Baiyangdian Lake Baojing Line, the
region is susceptible to sudden water pollution incidents. The bridge spans a total length
of 1203.88 m and possesses a width of 19.5 m, as depicted in Figure 4.
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An oil vehicle overturning on the Fuhe River Bridge would cause direct oil leakage
into the river. Therefore, a one-dimensional water quality model was employed to simulate
the longitudinal dispersion of pollutants along the river [62]. It can be calculated as follows:

C(x) = C0exp(−k·x) (8)

where C(x) represents the measured pollutant concentration of the control section (kg/L),
C0 represents the measured pollutant concentration of the initial section (kg/L), k is the
comprehensive self-purification coefficient of pollutants (1/d), and x is the river section
distance downstream of the sewage outlet (km). The k of pollutants can be assumed as
0.0213 [63]. The scenario settings and fundamental parameters for the simulation of oil
transportation accidents on the cross-tributary bridges of Baiyangdian Lake are presented
in Table 3.

Table 3. Scenario setting parameters.

Scene Setting Oil Spill (T) Density (kg/m3) Leak Time (h)

Scenario 1 10 722 0.5
Scenario 2 25 722 0.5

3.4. The Proposed Emergency Indicator System

An emergency prevention index system for sudden water pollution accidents was
proposed, including the following treatment stages: (1) reporting phase, (2) detection
phase, (3) forecasting phase, and (4) processing phase. According to these four stages,
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targeted emergency prevention and control measures should be implemented to provide
decision support for mitigating the hazards of accidents [64]. This recommendation is
in accordance with the guidelines outlined in the National Emergency Plan for Public
Emergencies (8 January 2006), the Dangerous Chemicals Safety Management Regulations,
the General Technical Requirements for Transport and Packaging of Dangerous Goods
(GB12463), and the Signs of Vehicles for Road Transport of Dangerous Goods (GB13392).
The Ministry of Communications has developed risk prevention management measures
and emergency plans for dangerous goods transportation accidents on bridges across
tributaries in accordance with the Road Dangerous Goods Transportation Management
Regulations, Automotive Dangerous Goods Transportation Regulations (JT3130), and other
relevant regulations [65,66]. All of them were taken into consideration in this study.

4. Results and Discussion
4.1. Risk Factors Identification

The present study employed a comprehensive approach, including literature analysis,
field investigation, and the Delphi method, to gather data on water pollution incidents
caused by the transportation of hazardous materials on the cross-tributary bridges of
Baiyangdian Lake between 2000 and 2020 [67–71]. Consequently, the factors influencing
these accidents were identified and summarized in Figure 5.
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It was found that driver risk and escort risk factors constituted the largest proportion
of these accidents, accounting for a total of 65%. Additionally, tank risk factors accounted
for 20% of the accidents on the cross-tributary bridges, surpassing the average level of road
transportation accidents involving hazardous materials, which stands at 18% [72].

The weather risk, road risk, time risk, and lighting risk belonged to unpredictable
force majeure factors; thereby, it was necessary to consider these accidental factors in
transportation distance and time arrangement, so as to reduce the possibility of sudden
water pollution accidents [73]. Unforeseeable force majeure elements encompassed the
hazards of weather, road conditions, time, and lighting. Therefore, it was imperative to
account for these incidental factors when planning transportation distance and time in
order to minimize the likelihood of unexpected water pollution incidents. Additionally,
after analyzing the factors that contribute to sudden water pollution accidents during the
transportation of hazardous materials on the cross-tributary bridges of Baiyangdian Lake,
four types of risk factors were identified: personnel, vehicle, tank risks, and environmental
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risk. Overall, four first-grade indices and 10 s-grade indices are shown in Table S1 (it can
be found in the supplementary material).

4.2. Conditional Probability

Based on the risk factor system and assessment standards, a panel of seven experts
was assembled to assess the occurrence probability of each evidence node in the Bayesian
network. The evaluation outcomes are presented in Table 4.

Table 4. Possibility of evidence node occurrence by the expert fuzzy language method.

Evidence Node Expert Advice

X1 FH H M FH FH FH H
X2 L VL VL L L L L
X3 M VH M M M H M
X4 FL L M L FL M FL
X5 FL M VH FH H FH M
X6 VL L L L L VL L
X7 FL L M FL M L FL
X8 FH VH M H L FH H
X9 L M L FH H H FH

X10 H M FH M M H M

By utilizing the relationship between the evaluation level and the triangular fuzzy
number, the statistical analysis of the experts’ ratings of the triangular fuzzy number was
conducted, as demonstrated in Table 5.

Table 5. Statistical table of triangular fuzzy numbers appraised by experts.

Risk Level Triangular Fuzzy Number X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Very low (VL) (0.0, 0.0, 0.1) / 5 / / / 2 / / / /
Low (L) (0.0, 0.1, 0.3) / 2 / 2 / 5 2 1 2 /

Relatively low (FL) (0.0, 0.1, 0.3) / / / 3 1 / 3 / / /
Medium (M) (0.3, 0.5, 0.7) 1 / 5 2 2 / 2 1 1 4

Relatively high (FH) (0.5, 0.7, 0.9) 4 / / / 2 / / 2 2 1
High (H) (0.7, 0.9, 1.0) 2 / 1 / 1 / / 2 2 2

Very high (VH) (0.9, 1.0, 1.0) / / 1 / 1 / / 1 / /

Subsequently, the expert opinion results were subjected to arithmetic averaging in
order to eliminate any anomalous values, thereby rendering the fuzzy probability value of
the judgment more rational. The defuzzification process involved applying the averaging
calculation formula. For instance, in the case of the evidence node, the following calculation
outcomes were obtained:

PX1 = (0.3 + 0.5 × 4 + 0.7 × 2, 0.5 + 0.7 × 4 + 0.9 × 2, 0.7 + 0.9 × 4 + 1.0 × 2)/7 = (0.53, 0.73, 0.90)

The occurrence probability of the evidence nodes was determined using the arith-
metical average method, resulting in triangular fuzzy numbers. These average triangular
fuzzy numbers were subsequently employed in the mean area method for defuzzification.
The normalization of the conditional probability for each node was conducted, and the
corresponding results are presented in Table 6.
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Table 6. Average triangular fuzzy numbers and the conditional probability of evidence nodes.

Evidence Node Average Triangular Fuzzy Number N (Does Not Happen) Y (Happen)

X1 (0.53, 0.73, 0.90) 0.28 0.72
X2 (0.0, 0.03, 0.16) 0.94 0.06
X3 (0.44, 0.63, 0.79) 0.38 0.62
X4 (0.09, 0.21, 0.41) 0.77 0.23
X5 (0.47, 0.66, 0.81) 0.35 0.65
X6 (0.0, 0.03, 0.16) 0.94 0.06
X7 (0.09, 0.21, 0.41) 0.77 0.23
X8 (0.51, 0.69, 0.83) 0.32 0.68
X9 (0.39, 0.56, 0.73) 0.44 0.56

X10 (0.44, 0.64, 0.81) 0.37 0.63

For instance, the calculation of the conditional probability for node X1 was performed
as follows:

PX1 = (0.53 + 2 × 0.73 + 0.90)/4 = 0.72

It can be found from the results of conditional probability calculation in Table 7 that the
likelihood of the driver factor, vehicle emergency factor, tank emergency factor, road factor,
and lighting situation occurring was high. Consequently, driver, vehicle, tank, road, and
lighting were deemed essential components in the transportation of hazardous materials.
Once these factors are present, adverse conditions can easily lead to accidents during the
transportation process, resulting in incidents of water pollution.

Table 7. Prediction of pollutant concentration in the Nanliuzhuang section.

Scenario Setting Oil Leakage Volume (T) Density (kg/m3) Leakage Time (h)

Scenario 1 10 668 0.5
Scenario 2 25 668 0.5

Machado et al. [74] conducted a monitoring and counting study on the 050 highway
in Brazil, revealing that 14 accidents occurred. The distribution of these accidents was
as follows: 35.71% in the morning, 28.57% in the afternoon, 21.43% at night, and 14.29%
in the early morning. Furthermore, the probability of accidents during the rainy season
(64.29%) was higher compared to periods with little or no rain (35.71%), occurring five
times. Notably, a significant proportion (28.57%) of the accidents took place on sections of
the road with steep slopes, specifically between km 77 and km 83.

This study did not incorporate the temporal duration of the accident, specifically the
seasonal and regional aspects. It was observed that adverse weather conditions during the
rainy season contribute to an elevated risk of road-related factors, while the presence of
steep slopes further exacerbates road conditions, thereby increasing the probability of risk
during the transportation of hazardous materials. These findings align with the outcomes
of the present study. Notably, the lighting factors examined in this research solely pertain
to the nighttime period. No analysis of the accident in different periods was conducted
due to the significantly lower transportation intensity of the bridge entering Baiyangdian
compared to the 050 expressway in Brazil.

4.3. Risk Assessment Based on Bayesian Network Model

This study employed a Bayesian network model with a two-way reasoning function
to establish the occurrence probability, main causes, and their combinations of danger-
ous goods transportation accidents on the cross-tributary bridges of Baiyangdian Lake.
Specifically, the study employed causal reasoning and diagnostic reasoning [75].
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4.3.1. Causal Reasoning Results

According to the Bayesian network structure and probability table, the probability of
“Yes” at node A (PA) was determined to be 0.115, as depicted in Figure 6. Additionally, by
considering the relationship between natural probability, logarithmic probability, and risk
level from Table 1, the value of P was calculated to be 4.061. This value indicates a high risk
level for the transportation of dangerous goods, suggesting a probable occurrence with a
high probability.
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4.3.2. Diagnostic Reasoning Results

According to the Bayesian diagnostic reasoning, the probability of each risk factor
is illustrated in Figure S1a (it can be found in the supplementary material), assuming an
occurrence probability of 1 for the target node A.

The variations of X3, X4, and X7 exhibited a significantly greater magnitude compared
to other factors, suggesting that the vehicle emergent factor, vehicle wear factor, and
weather factor exerted a more substantial influence on the occurrence of accidents. The
combination of X1, X4, X6, and X7 was identified as the most probable state combination
leading to accidents, with an occurrence probability of 0.142, as depicted in Figure S1b
(it can be found in the supplementary material). This finding indicates that hazardous
goods transportation accidents are most likely to transpire on cross-tributary bridges when
the driver is in a compromised state, the vehicle and tank exhibit signs of wear, and the
weather conditions are unfavorable.

Based on the assumption of the vehicles and tanks being in optimal condition, the acci-
dent is most likely to occur due to a combination of states X1, X7, X9, and X10. Specifically,
the accident has the highest probability of occurrence on cross-tributary bridges, where
drivers have poor status, weather conditions are unfavorable, and there are no street lights
at night, with a value of 0.117 in Figure S1c (it can be found in the supplementary material).
Consequently, implementing risk prevention measures prior to accidents can effectively
decrease the likelihood of such incidents.

Hua et al. [16] conducted a systematic analysis of the causes of dangerous goods
explosion accidents at Tianjin Port using the FTA method. This findings indicated that
management factors and human factors held a prominent position within the overall
causal framework of such accidents, while environmental factors, goods, and facilities also
exerted a discernible influence on their occurrence. The study conducted by Khan et al. [76]
utilized Bayesian networks to analyze 348 accident reports spanning from 1990 to 2018,
revealing the intricate nature of causes contributing to dangerous goods explosion accidents
in ports. The findings indicated that, in typical conditions, there is a 59.8% likelihood of
major accidents occurring, with human factors and management factors being the primary
contributors to such incidents. Moreover, in the context of environmental and pollution
accidents, the probability of management factors exacerbating the occurrence of accidents
increases by 7.06%.
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Within the scope of this investigation, driver factors, vehicle factors, tank factors, and
lighting factors are classified as human factors and management factors, respectively, and
they significantly contribute to water pollution accidents during the transportation of haz-
ardous materials on the Baiyangdian bridge, aligning with the aforementioned conclusions.

4.4. Accident Simulation Results, Emergency Prevention and Control Measures
4.4.1. Accident Simulation

The selection of the Nanliuzhuang section as a simulation case was based on its signif-
icant role in the entry of the Fuhe River into Baiyangdian Lake. The average concentration
of pollutants in this section was determined through various setting scenarios, as presented
in Table 7. To exemplify the transportation of dangerous goods across the tributary bridges
of Baiyangdian Lake, an oil leakage accident was chosen as a case study.

The results indicated that, without proper prevention and control measures, the oil
concentration in the Nanliuzhuang section reached extremely high levels. The absence
of additional treatment would result in a direct discharge into Baiyangdian Lake, thereby
significantly compromising its water quality. Consequently, efforts were made to specifi-
cally address the issue of oil leakage into the river. In order to simulate potential accident
scenarios and mitigate associated risks, appropriate preventive management measures
must be implemented.

4.4.2. Risk Emergency Prevention and Control

The risk management approach for transportation accidents involving hazardous ma-
terials on the cross-tributary bridges of Baiyangdian Lake should prioritize prevention. To
facilitate emergency preparedness for sudden water pollution incidents, a comprehensive
index system was developed and is presented in Table 8. More details can be seen in our
previous study [77].

Table 8. Emergency prevention index system for sudden water pollution incidents.

Target Layer First Level Index Second Level Index

Emergency prevention
index system

Warning source index
Accident type
Pollutant type

Occurrence region

Early warning index

Affected population
Affected area

Influence duration
Region sort

The maximum exceeding multiple of water quality

As can be seen from the classification of the index system in Table 8, the first level index
was divided into warning source index and early warning index. The second level index of
the warning source index was divided into accident type, pollutant type, and occurrence
region. The second level index of the early warning index was divided into affected
population, affected area, influence duration, region sort, and the maximum exceeding
multiple of water quality. Risk emergency prevention and control measures were proposed
on this basis.

The primary risk mitigation measures for emergency prevention and control encom-
pass the following seven aspects [78–80]: (1) it is recommended to enforce an inspection
system for vehicles involved in the transportation of hazardous materials; (2) the velocity
of hazardous materials transportation by vehicles should be restricted on cross-tributary
bridges; (3) engineering protective measures, such as reinforcing and elevating guardrails,
can be implemented on both sides of the bridges; (4) the installation of pollutant discharge
collection devices in the vicinity of the bridges is advisable; (5) it is suggested to imple-
ment real-time monitoring systems for transportation vehicles, hazardous materials, and
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transportation routes; (6) an auxiliary decision-making system should be developed to
facilitate emergency response procedures; (7) legislation pertaining to water environment
risk management should be enhanced and refined. It is crucial to promptly report the
occurrence time and location, pollutant type and source, potential consequences, and other
preliminary information regarding sudden water pollution incidents in order to devise
targeted measures for risk prevention and control [81].

Based on the categorization of abrupt water pollution incidents, as well as the geo-
graphical, topographical, and meteorological factors, the extent and velocity of pollutant
migration and dispersion are established. Subsequently, the identification and assessment
of pollution sources and their consequential impacts are continuously monitored [82].
During the forecasting stage, the utilization of a water quality early warning model be-
comes imperative in predicting the likelihood of accidents, the concentration, dynamics,
and extent of pollutants, as well as potential hazards. During the processing phase, it
is imperative for all pertinent departments to adhere strictly to the emergency division
of labor, to promptly investigate the extent of impact and level of harm, to evaluate the
resulting losses, to report to higher authorities, and to disclose the findings [83].

This study had certain limitations that should be acknowledged. Firstly, the catego-
rization of the role of each node in accident causality did not include various states such as
negligible, low, medium, high, and severe. Incorporating these states could enhance the
comprehension of accident causality aspects and factor levels. Additionally, the lack of data
and knowledge hinders the further subdivision of environmental pollution risks based on
type and severity. Nevertheless, the findings of this study hold significant implications
for enhancing the comprehension of risk assessment pertaining to sudden water pollution
incidents, as well as the corresponding measures for prevention and control.

5. Conclusions

This study explored the potential risk of sudden water pollution accidents associated
with dangerous goods transportation on the cross-tributary bridges of Baiyangdian Lake.
The conclusions are as follows:

(1) This research divided the risk degree of dangerous goods transportation accidents
into seven levels: very low (VL), low (L), flat low (FL), medium (M), flat high (FH), high (H),
and very high (VH). (2) According to the results of the conditional probability calculation,
the probability of the driver factor, vehicle emergency factor, tank emergency factor, road
factor, and lighting situation occurring was high. (3) The dangerous goods transportation
accidents on the cross-tributary bridges of Baiyangdian Lake were possible events, with a
node A (PA) value of 0.115 and logarithmic probability P value of 4.061. The risk level was
relatively high, indicating that accidents posed a potential threat to water environment and
human health. (4) Vehicle emergent factors, vehicle wear factors, and weather factors had a
greater impact on the occurrence of accidents, with the decreasing order of X4 > X3 > X7.
(5) The combination of X1, X4, X6, and X7 contributed to an accident the most. This showed
that the highest probability (0.142) of an accident occurred in the region where the driver
was not in good condition, the vehicle and tank were worn, and the weather was bad. (6)
When the vehicle and the tank were in good condition, the most likely combination of
conditions leading to the accident was: X1, X7, X9, X10. This indicated that the probability
of an accident was the highest (0.117) on the cross-tributary bridges with poor driver status,
bad weather conditions, and no street lighting at night. (7) Emergency prevention and
control measures proved to be effective approaches to mitigating the risk of sudden water
pollution accidents.

The identification and assessment of sudden water pollution risk in Baiyangdian
Lake are influenced by numerous uncertain variables. Further research is required in the
following areas:

(1) To successfully build a flawless Bayesian network structure, the chosen factors
for constructing the model must be refined further. Collaborative discussions among
experts are necessary for the perfect determination of the Bayesian network structure. The
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quantitative analysis of accidents relies on accurately determining the probability of each
factor in the network. This study utilized the expert consultation method to acquire the
probability of each parameter. The constant revision and updating of the network should
be performed by incorporating historical traffic accident data in future research.

(2) With the ongoing advancements in geographic information system technology, future
studies can utilize a GIS visual operating system to establish an emergency plan GIS system
for sudden water pollution incidents in Baiyangdian Lake. This system will offer spatial
auxiliary decision support for the management of sudden water pollution in Baiyangdian
Lake and the development of emergency measures for water pollution accidents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15162993/s1, Table S1. Main risk factors and their distribution
states of accident A. Figure S1. (a) Bayesian diagnosis reasoning results of dangerous goods trans-
portation accidents 1 (b) Bayesian diagnosis reasoning results of dangerous goods transportation
accidents 2 (c) Bayesian diagnosis reasoning results of dangerous goods transportation accidents 3.
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