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Abstract: In both the inorganic and organic worlds, carbon-based nanomaterials, such as benzene,
diamond, graphite, fullerene, and carbon nanotubes, are abundant. In science laboratories, carbon
is the focal point of activity. In this overview, the synthesis, characteristics, and several uses of
graphene—including energy conversion, energy storage, electronics, and biosensing—were explored
with a focus on ecologically friendly production techniques. This article also discusses recent
advancements in the detection and treatment of organic contaminants and heavy metals utilizing
nanomaterials. In this article, we outline some recent developments in the creation of innovative
nanomaterials and nanostructures and methods for treating organic contaminants and heavy metals
in water. The essay presents the current state of the field and, in our opinion, should be helpful to
anybody interested in nanomaterials and related materials.

Keywords: carbon-based nanomaterials; removal of pollutants; heavy metals; wastewater application

1. Introduction

Two-dimensional graphene has a hexagonal arrangement of carbon atoms, where
carbons hybridize to form three powerful C-C bonds that are 120◦ apart. The identical
p-orbitals are conjugated on additional carbon atoms so that they are parallel to the sp2

hybridization plane [1,2]. The electrical and mechanical characteristics of graphene are
distinctive. Graphene has an unusual zero-gap semiconductor capabilities with a charge
carrier mobility of >2 × 105 cm2/Vs at an electron density of 2 × 1011 cm−2 and a thermal
conductivity of >3000 W/mK because its valence band mirrors its conduction band, with the
two bands crossing at the Fermi level. Graphene has a potential surface area of >2500 m2/g
due to the carbon atoms being completely exposed in a planar manner [1,2]. In order to
create composites, graphene has been combined with metals, alloys, oxides, and other
polymeric materials [1,2]. The addition of heteroatoms to the graphitic plane can further
alter the characteristics of graphene. The electrical neutrality of the graphene network is
compromised when a carbon atom is swapped out for another one, which increases the
susceptibility of the 2D network to chemical reactions. In-depth research has been carried
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out on novel features of graphene and its hybrid structures for cutting-edge technological
applications in electronics, optics, catalysis, and energy storage. Graphene, which has
just emerged as a novel class of carbon nanostructures, has garnered a lot of attention
and is now a fast-growing field. It exhibits a wide range of features, including thermal
conductivity, charge carrier mobility, electrical and mechanical stability, magnetism, and
more. These characteristics, along with a high surface area, are essential in electrochemical,
optoelectronic, and medicinal applications. Recent attention on graphene as a generic
foundation for diverse composites has, most crucially, sparked a lot of potential in the fields
of energy and the environment [3,4]. However, due to (i) graphene’s poor light absorption
and low capacitance, (ii) its ease of stacking and agglomerating in solvent, and (iii) its
nature as a zero-gap semi-metal, two-dimensional graphene sheets are restricted in many
specialized domains. Growing efforts have been made to modify the graphene surface and
create dimension-tailored functional graphene structures, such as graphene quantum dots
(QD), graphene fibers (1D), graphene sheets/films (2D), and graphene gel (3D), in order to
increase the range of applications in areas such as quantum computing, catalysis, sensors,
and more [5–8].

Among these, macroscopic materials based on graphene with a three-dimensional
(3D) porous network have drawn more interest in the fields of energy and the environment.
Graphene-based 3D materials provide greater benefits than carbon-nanotube-based 3D de-
signs, including simple preparation, high efficiency, and affordability. 3D graphene-based
materials may be created by combining separate 2D graphene sheets that have undergone
chemical modification into monoliths that have 3D microporous features [8–11]. This study
aims to provide an overview of current advancements in graphene, doped graphene, and
its composites with nanoparticles (NPs) used in chemical, material, and energy applications.
Figure 1 demonstrates the conventional technologies used for wastewater treatment and
their shortcomings. Nevertheless, the adsorption method is advantageous because it is
flexible, economical, operational, and simple and no secondary contamination is generated
during the process. To emphasize the crucial elements of graphene chemistry and its differ-
ent uses, this article contains both the work of the authors’ groups and typical examples
from other fields. An appropriate setting is provided to explore the synergistic impact of
graphene and NPs on increased catalytic capabilities due to the more controlled production,
which results in high-quality graphene and its solutions in diverse solvents. The review
will concentrate on the uses of nanomaterials based on graphene in electrochemical energy
storage and conversion systems.
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onto the surface of the photocatalysts is enhanced by graphite materials. Additionally, 
heteroatoms such as B, N, and S are capable of being employed to change electronic char-
acteristics to increase photocatalytic operations, accelerate electron transport, and offer 
additional active sites. The presence of carboxylic, amino, hydroxyl, and thiol groups that 
function on the external layer of N/S-doping-based carbon aerogel aids in the elimination 
of organic contaminants from water. As a result of its surface polarization, graphene can 
react to substances such as antibiotics [1]. Graphene has just a single film of C-atoms, 
meaning that the atoms are entirely exposed to its surroundings and might potentially 
have an interaction with substances such as antibiotics. Given its larger surface area as 
well as porosity structure compared to normal adsorbents, graphene has recently been 
offered as a viable candidate for speedy binding to antibiotics, resulting in fast adsorption 
[2]. Many antibiotics may be degraded using graphene, including graphene composites. 
Zhang et al. [12] examined the effects of graphene with an Fe3O4 composite on the degra-
dation of tetracycline, an antibiotic, in aqueous solutions. It seems the mixture may be a 
deteriorating substance. Positive findings were seen for antibiotic destruction when a 
composite made up of MnFe2O4+C3N4+ graphene was used in another study. When testing 
the elimination of metronidazole from a combination of four (tetracycline, amoxicillin, 

Figure 1. Scheme illustrating conventional wastewater treatment and its drawbacks.

2. Application of Graphene Materials in Antibiotic Removal

Graphene adsorbents are essential for the filtration of water. There are several forms
of graphene allotropes (Figure 2). Multiple studies have shown that pollutant adsorption
onto the surface of the photocatalysts is enhanced by graphite materials. Additionally,
heteroatoms such as B, N, and S are capable of being employed to change electronic
characteristics to increase photocatalytic operations, accelerate electron transport, and offer
additional active sites. The presence of carboxylic, amino, hydroxyl, and thiol groups that
function on the external layer of N/S-doping-based carbon aerogel aids in the elimination
of organic contaminants from water. As a result of its surface polarization, graphene can
react to substances such as antibiotics [1]. Graphene has just a single film of C-atoms,
meaning that the atoms are entirely exposed to its surroundings and might potentially
have an interaction with substances such as antibiotics. Given its larger surface area as well
as porosity structure compared to normal adsorbents, graphene has recently been offered
as a viable candidate for speedy binding to antibiotics, resulting in fast adsorption [2].
Many antibiotics may be degraded using graphene, including graphene composites. Zhang
et al. [12] examined the effects of graphene with an Fe3O4 composite on the degradation of
tetracycline, an antibiotic, in aqueous solutions. It seems the mixture may be a deteriorating
substance. Positive findings were seen for antibiotic destruction when a composite made
up of MnFe2O4+C3N4+ graphene was used in another study. When testing the elimination
of metronidazole from a combination of four (tetracycline, amoxicillin, and ciprofloxacin)
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medications, the MnFe2O4+C3N4+ graphene composite was around 3.5 times more effective
than the original g-C3N4. Table 1 shows different types of graphene-based nanomaterials,
antibiotics, and mechanisms of adsorption.
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Table 1. Different types of graphene-based nanomaterials, antibiotics, and mechanisms of adsorption.

S.No Type of Graphene-Based
Nanomaterial

Antibiotic/Heavy
Metal Mechanism References

1 Magnetic graphene oxide sponge tetracycline Adsorption [4]

2 Fe3O4@TiO2-GO Enrofloxacin Adsorption [5]

3 GO@Fe3O4/ZnO/SnO2 Azithromycin Photocatalytic
degradation [6]

4 rGO@nFe/Pd Rifampicin Fenton-oxidation [6]

5 CdS–Bi2MoO6/RGO Ciprofloxacin Photocatalytic
degradation [7]

6 Graphene-phase biochar Tetracycline Adsorption [10]

7 Graphene–chitosan (GO-CS) Chromium (VI) Adsorption [13]

8 GO-CS@MOF [Zn(BDC)(DMF)] Chromium (VI) Adsorption [14]

9 β-cyclodextrin-modified graphene
oxide (β-CD-GO) Cadmium Adsorption [15]

10 chitosan/graphene oxide
composite Chromium (VI) Adsorption [16]

As a variant of graphene oxide (GO), reduced graphene oxide (rGO) is classified as a
useful polymer-based filling composite substance because of its superior properties and
ease of use. Pristine graphene is demonstrated to be moderately dispersive in water-based
solutions because of its tiny gaps in between the layers and hydrophobic characteristic [2].
Its effectiveness and usefulness increase as it is reduced or oxidized. Ersan et al. agree that
graphene is the most promising of the next generation of adsorbents because of its high ad-
sorption selectivity for organic substances with open-up sheet form. Organic contaminants
and GO have been demonstrated to interact strongly with each other. Tetracycline has
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-NH2 groups, which have an exceptionally high electron density, making it a potent electron
giver. Several rGO composites have been shown to have antibiotic-remediating properties.
Antibiotic ineffectiveness is affected by several variables. The π-π interaction between rGO
and antibiotics has been hypothesized to improve antibiotic adsorption. Fewer antibiotics
may be absorbed by a material with a larger surface area as a greater number of sites for
adsorption is available. Shen et al. found that a composite weighing 0.005 gm made up of
Cu2O, rGO, and Bi2O3 degraded tetracycline at 80%. Antibiotic degradation uses nearly
double the quantity of rGO + Cu2O and quadruple the quantity of rGO + Bi2O3 [17].

The composite MoS2/Cu2O/rGO was synthesized by Selvamani et al. [18] for the aim
of tetracycline breakdown. Following 2 h of interaction, the TiO2-rGO nanocomposites
successfully decomposed ibuprofen, sulfamethoxazole, and carbamazepine. When com-
pared to raw TiO2, TiO2-rGO showed significantly increased degradation by photocatalytic
reactions. The degradation rate was very sensitive to the rGO content of the catalysts.
Biochar-based graphene substances [8] have shown promise for removing antibiotics from
water. Antibiotic adsorption was improved in biochar-based composites due to the pres-
ence of GNMs. Their techniques have been shown to be efficient by multiple studies.
Huang et al. investigated the effect of biochar derived from bamboo dust with GO on the
breakdown of sulfamethazine [9]. Sulfamethazine adsorption has been shown to be two
times greater with activated biochar compared to pure biochar. It is expected that both
the surface area and the amount of oxygen functional groups located on the surface of
the substance increase after incorporating GO. In an investigation evaluating different pH
levels and ionic strengths, it was discovered that antibiotic adsorption was enhanced by
lowering the ionic strength. The optimal range for adsorption was identified as 3–6 on
the pH scale. After four regeneration cycles, the adsorption capability of rGO + biochar
produced from maize stems for atrazine adsorption was 55 mg/g. Improved oxidation
systems will continue to evolve if they are both reusable and reliable [11]. Keeping an
impermeable barrier between the produced material and the liquid solution is essential at
this point [11].

Separation using magnetic substances saves time and money compared to the con-
ventional technique [19]. Magnetic composites can be utilized to get around the inherent
limitations of photocatalysts and adsorbents by facilitating quick separation after adsorp-
tion as well as the photocatalytic process and allowing further recycling. Magnetite (Fe3O4)
has been demonstrated to be the most likely nanoparticle that has been researched so far.
These nanoparticles are ideally suited for destroying or adsorbing their target molecules
due to their high surface area and strong magnetic properties [19]. Either as a catalyst or
an adsorbent, the synthetic magnetic composite is used to remove organic and inorganic
contaminants from water and wastewater [20]. The production of active photogenerated
entities, such as ozone, hydroxyl, and electrons, has resulted in excellent catalytic properties
and remarkable versatility when used for pesticide treatment in water-based solutions, as
is the case with magnetic composites [20]. The produced photocatalyst was used in a study
by Al-Kahtani [20] for up to seven cycles with constant catalytic activity. Thus, it has been
demonstrated that the photocatalyst/adsorbent value increases with the number of times it
may be reused.

3. Graphene-Based Adsorbents for the Sorption of Organic and Heavy Metal
Pollutants

Medications and aromatic compounds, pesticides and herbicides, and antibiotics are
just some of the organic pollutants that may be removed from water using adsorbents
based on graphene (Figure 3).
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Industrial activity, such as drug manufacturing, agrochemical processing, mining for
coal, and farming, all add to the contamination crisis. Such pollutants are harmful to the
endocrine system as well as the physicochemical properties of water [21], which can also
cause cancer. Here, further research is continuing to be carried out with the aim of eliminat-
ing additional organic pollutants with graphene composites, as has already been reported
by various researchers. Water contaminants such as carbamazepine (CBZ), bisphenol A
(BPA), acetaminophen (ACP), caffeine (CAFF), and triclosan (TCS) were eliminated with
the use of a composite made of activated carbon, GO, and chitosan [19]. The Langmuir
model provided a perfect match to the isotherms, which showed the highest absorption
values for such pollutants. Researchers discovered that a polar solvent resulted in ~70–80%
desorption of BPA, CAFF, and ACP, whereas a nonpolar solvent resulted in ~60% desorp-
tion of CBZ and TCS. Recently, researchers developed a noncovalent GO-based composite
functionalized using the ionic liquid 1-hexyl 3-decahexyl imidazolium for the uptake of car-
bamazepine (CBZ), sulfamethoxazole (SMZ), and ketoprofen (KET) [21–23]. The absorption
capabilities were 58, 89, and 84 mg/g after 10 min of absorption. The sorption results were
satisfactorily explained by this Langmuir model, suggesting that single-layer adsorption
took place. The researchers reported that the removal percentage was 63% for KET, 75% for
SMZ, and 58% for CBZ with seven cycles of desorption utilizing ethanol/methanol as the
dissolving solvent. Using a ternary compound composed of rGO, maltodextrin, and CuO2,
Moradi et al. were able to eliminate pharmaceuticals including amoxicillin and diclofenac,
with absorption efficiencies of 12.9 and 12.8 mg/g, respectively [24]. The authors concluded
that chemisorption along with monolayer adsorption of molecules occurred as their results
were consistent with the PSO as well as Langmuir models. After reusing the material as an
adsorbent with 1 M NaOH as the eluting agent, the research team found that the adsorption
capability for TC dropped from 306 to 227 mg/g [24]. A novel magnetic nanoadsorbent
consisting of Fe and Co nanoparticles paired with GO was employed by investigators at
the University of Brasilia to remove the pharmaceutical contaminant caffeine in water. The
maximum caffeine absorption was 29 mg/g at a starting dosage of 10 mg/L [24]. The
natural procedure generated heat and had a positive thermodynamic outcome [24]. The
researchers claimed that the main adsorption technique was the formation of hydrogen
bonds connecting the nitrogen atoms that make up the amino groups of the caffeine and
the hydrogen atoms of the hydroxyl groups containing -OH of the GO, with GO, Fe, and
Co also interacting with electrons that reside on the caffeine [24]. In order to efficiently
remove doxycycline from waterways, Xiong et al. created a charcoal-based GO composite
that is reusable, robust, and adaptable [25]. Its maximum absorption was 797 mg/g, and
the sorption data fit the Langmuir isotherm model. The researchers claimed that hydrogen
bonding, electrostatic attraction, and stacking were primary mechanisms in doxycycline
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adsorption on the BC-GO composite. Januário et al. synthesized adsorbents to facilitate
absorbent elimination in water containing COVID-19 treatment drugs such as dipyrone
and chloroquine [26]. The highest amounts of such drugs that could be taken up by the
BC-GO adsorbent were 62 and 37 mg/g. This research confirmed that adsorption is a
process that is endothermic according to the Langmuir model. In addition to testing, it as
an adsorbent on laboratory wastewater, researchers were able to remove pollutants from
wastewater with an 82% effectiveness rate. The authors hypothesized that adsorption is
controlled by π-π interactions and H-bonding because of ionic as well as pH variations [26].
De et al. [27] produced a unique membrane for absorbing propanol drugs with an accumu-
lation capability of 200 mg/g, which consisted of hydrolysis polyacrylo-nitrile, including
GO enhanced with safranin. Multilayered adsorption on a heterogeneous surface was
revealed by the data’s fit to the Freundlich model [27]. Adsorption was discovered to
include cation substitution, electrostatic connections, and π-π interactions. Liu and team
utilized a chitosan composite of GO magnetic adsorbent to remove sulfo-salicylic acid in
water [28]. This process was exothermic in nature and governed by entropy. The adsorbent
was utilized three times in 10 mmol/L. The solution of sodium hydroxide resulted in a rate
of removal of 96.89%. Many potential mechanisms were proposed, including differences
in skin color, hydrogen bonding, beta–gamma interactions, and even electrostatic forces.
By integrating beta-cyclodextrin-confined rGO by MW-CNTs, Feng et al. [29] developed
a novel adsorbent that allows effective elimination of naproxen in water. The outcomes
were compatible with multiple layers of adsorption and the Freundlich isotherm model,
with the highest absorption at 132 mg/g. The research team hypothesized that naproxen
adsorption within the pores of beta-cyclodextrin was due to the hydrophobic interface
among the adsorbent as well as electrostatic attraction, H-bonding, and π-π interactions.
Perfluorooctanoic acid (PFOA) was removed from water using GO aerogels [30]. The
aerogels had a PFOA removal efficiency of 1574.8 mg/g. The Freundlich model, which ac-
curately describes the phenomenon, anticipated the presence of a heterogeneous adsorbent
layer [30].

Industrial polluting sources, such as plating, painting, mining, metal smelting, auto-
mobiles, refineries, and many more, contaminate numerous bodies of water with heavy
metal ions, including Cr, Fe, Pb, Ni, Hg, Cd, As, etc. Overexposure to these harmful metal
ions impact humans as well as aquatic creatures. Graphene is often used to remediate
heavy-metal-contaminated wastewater [30]. Madadrang and others [31] improved GO
by EDTA–silane for Pb (II) absorption. The highest ability was 524.5 mg/g based on PSO
kinematics as well as the Langmuir isotherm model. Another researcher, Verma [32], copre-
cipitated magnetic hybrids of GO (GO@MnFe2O4) to increase absorption of As (V), Pb (II),
and As (III) from water. The removal process was highly dependent on the outside tem-
perature and concentration, and results showed the absorption was best at pH 5. The PSO
and Langmuir models of adsorption agreed with maximum absorption rates of 207, 672.8,
and 146.2 mg/g for As (V), Pb (II), and As (III), respectively [32]. A novel adsorbent was
created through the integration of Fe3O4 nanoparticles on top of a GO–chitosan composite
to remove ions of Cu (II) and Cr (VI) from water-based solutions. Their absorption capaci-
ties were 143 and 111 mg/g, respectively. The solid-solution interface was endothermic
and stochastic. Cr (VI) sorption was strongest at pH 3 because larger pH values enable
more hydroxyl (OH) ions in the solution itself and compete with the positively charged
interface for sorption [32]. Kong and the research team created a triad GO-NH2-HBP-CMC
nanocomposite to enable removal of heavy metals from water [33]. The Langmuir model
matched the real adsorption, suggesting monolayer sorption. Pb2+ and Cu2+ showed the
greatest sorption capabilities with 153 and 137 mg/g, respectively. The authors suggested
that external and pore diffusion had influenced sorption. The main chemical reactions were
metal ion exchange involving O groups and complexation with N groups. By encapsulating
silica on GO along with functionalizing using chitosan, the newly designed composite
GO-Si-CS adsorbed Pb (II) from a water-based solution [33]. The study further claimed
that both multilayer adsorption and chemisorption occurred during the procedure. The
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Langmuir model showed 256 mg/g as the maximum capacity for absorption. GO-Si-CS
with interaction surface functional groups were essential for Pb (II) removal [33]. Recent
research showed that polypyrrole-based cobalt oxide GO could eliminate Pb(II) from an
aqueous solution. Batchwise sorption tests showed maximum Pb (II) and Cd (II) absorption
of 780 and 794 mg/g, respectively [34]. The optimal batch adsorption parameters were
pH of 5.4 for Pb (II) and pH of 6.0 for Cd (II) at 50 ◦C, 0.33 g/L of adsorbent, and 250 or
150 min. of contact time. The Langmuir isotherm as well as the PSO model suggested
single-layer adsorption along with chemisorption. Thermodynamic studies proved the
processes were spontaneous and endothermic. With acidic pH, the composite with GO
+ OH + COOH were protonated and positively charged, pushing out positive Pb2+ ions
and reducing adsorption. Deprotonation increased pollutant adsorption on the surfaces.
However, above pH of 5.4 and 6.0, the abovementioned ions precipitated as Pb(OH)2
and Cd (OH), thereby lowering the efficiency. Attia et al. developed an antimicrobial
graphene + polypyrrole nanocomposite for pH-dependent aqueous Mn2+ absorption [35].
The Langmuir model was well satisfied, revealing that monolayer adsorption occurred at
56 mg/g at pH of 5.5. Ranjan Rout [36] developed a graphene composite to remove Cr
(VI) from water using an adsorbent weighing 5 mg in a 50 mL solution (i.e., 100 mg/L)
with Cr (VI) concentration of 1321 mg/g and pH 1. The adsorption results fit the Langmuir
isotherm and the PSO kinetic model. Perlova et al. (2020) [37] studied a composite based
on zirconium hydrophosphate, which allowed practically complete removal of U(VI) from
water in the presence of hardness ions; the highest regeneration degree was also achieved.

4. Applications of Graphene Based Membranes in Water Purification

Covalent crosslinking through esterification methods increases the permeability of GO
membranes. By employing aqueous solutions containing equal parts KCl, CaCl2, MgCl2,
and NiCl2, the linked GO membranes exhibit higher fluxes during permeation compared to
the pure GO membrane. Jia and Wang [38] measured a K+/Mg2+ sensitivity of 6 using this
membrane. CG membranes (crosslinked graphene) as well as traditional UF membranes
made of polymers were used to segregate organics, with a purity of 99.9% and a flow rate
of 225 LMH (L/h/m2). The RGO membrane improved the water permeability to 61.7 LMH
under partial reduction environments. Nevertheless, by creating an RGO membrane that
had higher than normal reduction circumstances, an elevated salt rejection percentage
was achieved (81% of Na2SO4). A new membrane of GO + crosslinked polyimide was
created using simple pressure-assisted filtration for utilization in organic solvents [39]. The
resulting GO/CLPI membrane increased the filtering ability for Rose Bengal salt molecules
to >94%, with an increase in solvent flow of 11, 4.9, and 1 LMH for water, IPA, and DMF,
respectively. Adding warmth enabled the GO film to contract completely, producing a
membrane with a high fouling resistance (FRR) of >63. Following that, Li et al. [40] created
a solvent-resistant (SRNF) membrane based on thin-film nanocomposites (TFNs) containing
amino-functionalized graphene-based quantum dots (a-GQDs). The generated membrane
had an increased ethanol permeation of 32 LMH, or 44% above the pure membrane, due to
the flaking morphology of the a-GQDs, which can provide greater openings for solvent
absorption. In contrast, the percentage of cells that opposed rhodamine-B (RDB) was
not altered over time. The resulting Rose Bengal membrane was 99% pure after 768 h,
demonstrating remarkable resistance to the solvent. The antifouling performance was
improved by developing a borate inorganic crosslinked long-lasting GO membrane [40].
Extensive washing tests with NaOH + sodium dodecyl sulfate revealed that the resulting
inorganic crosslinked GO membrane maintained its rejection percentage, flow, and overall
structure. Organic fouling was successfully decreased by the inclusion of trace -OH radicals.
Therefore, a novel, long-lasting crosslinked GO membrane was demonstrated for fouling
prevention during the treatment of wastewater. The antimicrobial membrane of dopamine
with polyethyleneimine crosslinked GO showed over 99% antibacterial efficiency while
illuminated with a 795 nm NIR laser [41]. The photothermal response and the antibacterial
potency of the GO-PDA-PEI membrane were also unchanged during five cycles of reuse
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and recycling. At just 1 bar, the PPD NF membrane was able to extract 99.9% of methylene
blue (MB). As pointed out by Pandey et al., the PPD crosslink additionally enhanced the
longevity, reuse ability, and sturdiness of the GO membrane [42,43]. In spite of the porosity
of the hydrogel created by the crosslink, the three-dimensional hydrogel GO membranes
demonstrated an average water flow of 111.5 LMH, which was 14 times larger compared to
that of an untreated GO membrane. The rejection rate for MB in GOMHs was 98%, which
was greater than that of the pure GO membrane due to the enhanced interconnection of
the tiny pores combined with the ability to adsorb the hydrogel structure. Further NaCl
was rejected by the PEI crosslinked GO membrane compared to the pristine GO membrane.
The EDA-GO membrane was shown to have a significant rate of retention of >95% in
dye soaking in methanol. It could let 14 LMH of water through it (pure GO allowed
9 LMH). An MXDA crosslinked GO sheet partially interpenetrating the PSf substrate
exhibited comparable dye rejection of >99% as well as a permeance of 4 LMH [43]. The
copper crosslinked GO membrane’s two-dimensional nanochannels were clearly defined
and stable, allowing effective molecular segregation. Using a K+ infiltration efficiency of
0.174 mol m−2 h−1 and a K+/Mg2+ extraction factor of 68, this membrane demonstrated
outstanding results for mono/multivalent metal ions sifting. The amino acids in crosslinked
membranes had a permeability of 12 LMH at room temperature and pressure. The removal
coefficient of this membrane was 94% for alkali metals and 96% for alkaline earth metals.
Furthermore, the composite membranes’ excellent antibacterial properties against E. coli
could be attributed to the razor-sharp edges of the sheets of graphene, which encouraged
membrane strain for structural deterioration of the cell membrane. Na2SO4 rejection
percentages of 58%, 74%, and 82% were achieved by the pure GO, GO-EDA-V, and GO-
EDA membranes, respectively. The water absorption rates were 11, 2.2, and 2.3 LMH.
Because EDA’s covalent crosslinking prevents the hydrating of nanosheets made of GO
and restricts the growth of interfacial space, EDA-GO membranes allow less penetration
and more rejection. EDA membranes have been proven to exhibit rejection rates of more
than 99% in optimum separating conditions. Furthermore, the rejection rate for Cr (VI) by
GO/EDA membranes was greater than 99% in acidic environments due to the reduced
d-space and increasing ion size [43]. Compared to organic nanofiltration, the present
GO-based membranes, and two-dimensional MoS2-based membranes, the salt rejection
(NaCl) of GOF membranes crosslinked with TU was 96% [41]. Regarding the process of
treatment of the modeled oilfield wastewater, TA + GO membranes lowered chemical
oxygen demand by 91.7% and rejected total dissolved solids and turbulence with high
efficacy while not affecting their mechanical strength. The PDA-GO membrane had better
flow performance despite having a biofilm layer that was 45% lower compared to that
of the pure membrane [44,45]. After 48 h of operation, the PDA-GO membrane lowered
the flux by 33%, whereas the unmodified membrane lowered the flux by 55%. PDA-GO’s
powerful antibacterial activities can be attributed to the membrane’s aqueous and smooth
outer layer. The separating factor of GO-PVAm-silica membranes for butanol dehydration
reached 1189, which was approximately 2.5 times greater compared to that of GO-PVAm
membranes, whereas the flow rate was ~13 kg m−2 h−1 [41]. According to research, the
modified membrane was able to eliminate NaCl at a rate above 99.99%. The Zm-PEI-
GO@PDA/PESn NF membrane demonstrated a flow rate of 49.55 LMH and a deletion
amount of 100% for Congo Red, 83% for Orange G, and 66% for methyl orange [46]. By
forming a dense hydration barrier and preventing protein adhesion, the patched zwitter-
ionic polymer enhanced the membrane’s ability to resist fouling resistance [39]. Na2SO4
removal efficiency was 71.8% at an average flux of 33 LMH through a PDA-GO/-CD-EDA
membrane. Drugs such as carbamazepine were rejected more effectively at lower pH and
tighter d-space. Oil–water mixtures with a maximum flow rate of 119,425 LMH were
found to have a removal effectiveness higher than 99% [47]. Recent research by experts
showed that carbon aerogels are a fascinating three-dimensional (3D) monolithic porous
material that can be widely applied in environmental chemistry for removing pollutants
such as oils, toxic organic solvents, dyes, and heavy metal ions in aquatic environments [48].
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Researchers have shown that rGO/CuO nanocomposites can be used for dye degradation
of organic pollutants in wastewater remediation [49]. Efficient removal of heavy metals
and organic pollutants from aqueous solutions can be carried out using graphene oxide
nanocomposite [11,13–15,50–54].

5. Application of Graphene-Based Materials in EMs

Fireworks, explosives, propeller fluid all make use of energetic materials (EM) [55,56],
which are a category of mixtures that contain chemicals that are flammable with a significant
chemical interaction and generation of energy. There are several forms of graphene oxide
and its derivatives (Figure 4).
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High-energy oxidants, substances known as plasticizers, adhesives, ignition catalysts,
etc. make up the constituent parts of solid propellants, which are a type of composite EM.
Since it has a substantial amount of energy and combustible capability, thermite is used as
an energetic addition in ammunition and weapons [57]. However, due to its high degree
of reactivity, Al oxidizes quickly in the presence of air. As particles aggregate, however,
they exhibit poor ignition and combustion qualities, sluggish rate of reaction, decrease in
energy discharge, and decreased interaction of reductant with the oxidant. Electrospinning,
chemical vapor deposition (CVD), and atomic layer deposition (ALD) have been used to
produce core–shell systems, while layer etching and encasing Al with polymer/surfactant
have been used to boost the metal’s surface responsiveness. In addition to acting as a
crosslinker to keep Al in place without increasing becoming unnecessarily bulky, GO can
boost mechanical durability and nanoparticle dispersibility [58]. The optimal reaction
efficiency with energy production may depend on the total mass proportions of GO, the
metal oxide, and Al. By incorporating Bi2O3 along with Al into the GO framework via a
self-assembly strategy, researchers were able to produce thermite GO/Bi2O3/Al in the form
of a colloidal suspension stage and, eventually, as a macrostructure exhibiting ultrahigh
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concentration and high reactivity [58]. Nanocomposite GO/Bi2O3/Al was produced by
covalent bonding between GO and Al and noncovalent bonding between Bi2O3, GO and
Al. The amount of energy production increased from 739 to 1421 J/g for the self-assembled
GO/Bi2O3/Al compared to randomized mixing. Consequently, the thermal efficiency of
the thermite was highly affected by how the oxidants and fuel were distributed within
it. The direct self-assembly of GO to GO/Bi2O3/Al enhanced ignition productivity and
decreased susceptibility to electrical discharge [59]. The primary roles that binders made
from polymers play in EM are those of fuel, plasticizing agent, curing agent, bonding agent,
and ignition catalyst. As a result, the binder ratio has a significant impact on the properties
of the propellants. Binders are frequently made of polysulfide rubber (PSR), polyurethane
(PU), polyvinyl chloride (PVC), polybutadiene (PBD), and various other compounds [59].
PU’s strength, elasticity, and flexibility make up for the material’s poor resistance to heat.
By using fillers, the thermal endurance and resistance to corrosion can be improved. The
thermal endurance as well as structural durability of polymer materials can be improved
by adding graphene. The isocyanate units in isophorone diisocyanate (IPDI) can react
with the -OH and -COOH of GO sheets. As the resulting IPDI-GO reacts to the -OH at
the end of the molecule, the HTPB-GO compound is produced. When IPDI reacted with
the -OH remaining in HTPB [60], a graphene + PU composite (MGO + PU) with double
crosslinking was formed. The MGO/PU composites outperformed pure PU in terms of
CET, tensile reconstruction rate, and stability in dimension. This mixture of IPDI-modified
graphene (MGO) and n-butyl acetate displayed a strong dispersal behavior. The tensile
strength of 5% MGO + PU was 5.3 percentage points lower compared to that of pure PU,
while the 50% elasticity was 31.9% higher. Substituting MGO for inorganic fillers in PU
improved the material’s resistance to corrosion while decreasing its residual rate. Zhang
et al. found that adding Al2O3/graphene to PU made it much more durable. The Al2O3
surface, with its positive charges, attracted the negatively charged GO by the process of
electrostatic adsorption [61]. After that, Al2O3/graphene infiltrated the HTPB solution,
forming an interlocking structure. Particles of aluminum oxide plus sheets of graphene
were placed hierarchically in the matrix of PU after the construction procedure. The final
Al2O3/graphene/PU composites had superior tensile and thermal characteristics over pure
PU in all the domains tested: tensile force, compressing modulus, and heat conductivity.
Because it has an inherent strain hardening effect, Al2O3 is resistant to distortion and can
be fixed by adding sheets of graphene on top of it. Chemical activities, such as electrophilic
modification, nucleophilic modification, condensing reaction, and additive reaction, can
form covalent bonds involving GO defects as well as functional groups [62]. Because of
sp3 hybridization, GO edges and faces have hydroxyl functional groups. Esters of various
kinds can undergo functional modification by reactions with isocyanate or acids such as
carboxylic acid. Derivatizing the -OH to create carbamate esters yields isocyanate-treated
GO, the degree of functionalization of which is controllable by varying the responsiveness
of the isocyanates or the amount of reaction time [62]. Isocyanates can react with the
carboxyl group -COOH to produce an amide. Carboxyl groups get located on the surface
of GO through sp2 hybridization. -COOH groups are often utilized to alter a substance’s
properties by creating an amide/ester through a reaction with -NH2/-OH. To begin with,
inactive intermediates are formed by treating -COOH with acyl halides, which include
SOCl2/SOBr2 or carbodiimides [63]. The by-product is subsequently converted into the
desired ester or amide by an interaction with either -OH or -NH2. To attach additional
groups onto GO, epoxy-based processes ought to be initially investigated given that sp3-
hybridized epoxy groups prevail on the GO surface relative to -OH and -COOH [63].
Regarding the nucleophilic ring opening interaction involving -NH2 and the epoxy group,
alkalis (which include NaOH, KOH, and NaH) are effective catalysts. Alkali causes -NH2
to give up an H atom and target the active C, which results in positive -NH2 bonding to
the GO surface. The addition of heteroatom additives [64] to graphene changes the spin
distribution as well as charge density of the substance and creates novel sites of activity
(substitution including vacancy gaps), allowing the fine-tuning of graphite’s mechanical,
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electronic, electrical, optical, and magnetic characteristics. CVD, hydro- and solvothermal
approaches, arc-discharge techniques, thermal processing processes, and others are all
common ways for preparing doped graphene [65].

The most effective approach for incorporating heteroatoms into the graphene structure
is to search for an extra atom that has an electrical structure similar to C. Nitrogen is
frequently used in the creation of heteroatom-doped graphene because of its extreme
proximity to carbon. Graphite–nitrogen, pyridinic–nitrogen, and pyrrolic–nitrogen are
the three most common coupling topologies for N atoms in nitrogen-doped graphene
(NGO). The generated activating region on the material graphene surface can participate
directly in catalytic reactions. Ammonia, urea, hydrazine hydrate, and amide are all
viable dopants for NGO formation [66]. Researchers have generated an NGO utilizing
the hydrothermal method [66], with urea providing the nitrogen supply. Recrystallization
in ethyl acetate allowed the formation of NGO composite + CL-20. When compared to
undoped graphene, NGO’s catalytic efficiency in the thermal decomposition of CL-20 was
much higher. The lower temperature and evident activation energy of NGO’s exothermic
breakdown compared to those of related compounds may be explained by its increasing
surface defects along with its active sites. The catalytic decomposition of HMX also provides
a little enhancement. Metal catalysts have catalytic active sites on their surfaces; therefore,
the particle size of the catalyst has a direct correlation with the amount of catalyst loaded.
With regard to catalytic efficiency or selection, a single atom may be superior to a micro,
nano, or sub-nano catalyst. Consequently, there has been a lot of interest in doped graphene
using single-atom elements such Al and Fe [67]. Theoretical investigations [68] show
that the poor physical absorption of certain gas species on pure graphene is replaced by
chemisorption. It is possible that this means Al-doped graphene can be used to identify rare
gasses. When propellant is burned, these gas molecules are the most common by-products,
and propellants rely heavily on Al as their major fuel source. One can expect a huge
increase in propellant ignition efficiency if monoatomic-metals-doped graphene is used
instead of the standard catalyst [68].

6. Conclusions

Graphene is a brand-new carbon nanomaterial that has exceptional mechanical, optical,
and thermal capabilities and a sizable specific surface area. Because of this, it is useful
as an additive in energetic materials (EMs). In addition to serving as a catalyst, binder,
and desensitizer, graphene improves the mechanical qualities of EMs and ensures security
during creation, transportation, and storage. In order to broaden the use of graphene, there
has been a lot of interest lately in functionally altering it. Selectively grafting active groups
onto the graphene surface is one method that works well to increase the operability of
the material. The catalytic activity of graphene is greatly improved by adding energetic
groups or molecules. Additionally, adding heteroatom doping modifies the electrical
characteristics of graphene, changing the charge distribution and causing activation zones
on its surface. Because the use of graphene-based composites to create active composite EMs
is a very effective technology, expanding the usability of graphene through modifications is
a crucial step. This research also highlights the value of using graphene-based adsorbents to
remove hazardous organic and inorganic contaminants from wastewater. These graphene
compounds outperform other carbonaceous materials in their ability to effectively remove
a variety of contaminants. Even if there are still difficulties in employing graphene-based
adsorbents to treat water and wastewater, further study is necessary before commercializing
graphene-based materials for actual water and wastewater treatment. New materials made
of graphene are proving to be very promising candidates for the treatment of wastewater
and water.
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