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Abstract: Ulva pertusa (U. pertusa) is a benthic macroalgae in submerged conditions, and it is relatively
difficult to monitor with the remote sensing approaches for floating macroalgae. In this work, a novel
remote-sensing approach is proposed for monitoring the U. pertusa green tide, which applies a deep
learning method to high-resolution RGB images acquired with unmanned aerial vehicle (UAV). The
results of U. pertusa extraction from semi-simultaneous UAV, Landsat-8, and Gaofen-1 (GF-1) images
demonstrate the superior accuracy of the deep learning method in extracting U. pertusa from UAV
images, achieving an accuracy of 96.46%, a precision of 94.84%, a recall of 92.42%, and an F1 score
of 0.92, surpassing the algae index-based method. The deep learning method also performs well in
extracting U. pertusa from satellite images, achieving an accuracy of 85.11%, a precision of 74.05%, a
recall of 96.44%, and an F1 score of 0.83. In the cross-validation between the results of Landsat-8 and
UAV, the root mean square error (RMSE) of the portion of macroalgae (POM) model for U. pertusa is
0.15, and the mean relative difference (MRD) is 25.01%. The POM model reduces the MRD in Ulva
pertusa area extraction from Landsat-8 imagery from 36.08% to 6%. This approach of combining deep
learning and UAV remote sensing tends to enable automated, high-precision extraction of U. pertusa,
overcoming the limitations of an algae index-based approach, to calibrate the satellite image-based
monitoring results and to improve the monitoring frequency by applying UAV remote sensing when
the high-resolution satellite images are not available.

Keywords: Ulva pertusa; U-Net; deep learning; remote sensing; unmanned aerial vehicle

1. Introduction

Large-scale macroalgal blooms were observed to be increasing in world-wide oceans
in the past two decades [1,2]. The world’s largest green tide caused by the blooms of green
macroalgae Ulva prolifera (U. prolifera) happen every summer in the Yellow Sea since 2007 [3–5],
and a small scale of green tide in the Yellow Sea can be dated back to the summer of 1999
through satellite observations of Landsat-5 [6]. The world’s largest golden tide caused by
brown macroalgae of sargassum increased in the Atlantic Ocean and its marginal seas [7–9],
and their early satellite observations were in the summer of 2005 over the western portion
of the Gulf of Mexico [7].

Excessive macroalgae may cause a marine disaster by bringing damages to a marine
ecosystem and economic loss. In the coastal and nearshore waters of China, the green tide of
U. prolifera produced as biofoulings in seaweed cultivation in the Yellow Sea have received
world-wide concerns [3,10,11]. Additionally, floating Sargassum (Sargassum horneri) in the
Yellow Sea and the East China Sea during the winter and spring seasons have also attracted
attention since 2017 [12,13]. Different from the above-mentioned blooms caused by floating
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macroalgae in surface water, coastal benthic green macroalgae [14,15] are relatively hard
to monitor with satellite remote sensing; however, expanding blooms of benthic green
macroalgae also pose threats to the environment and cause pollution [6,16] due to their
wide distribution. Similar large-scale algal bloom disasters are also increasing in other
countries, such as the green algae in Brittany, France [17].

The use of satellite imagery allows for the wide-scale and synchronous monitor-
ing of the distribution and status of macroalgae on the sea surface, providing essential
prerequisites for the prevention and control of macroalgae blooms [18]. Microwave im-
agery was used to identify floating macroalgae on the sea surface based on roughness
information [19,20], and thermal infrared imagery could be also used to distinguish float-
ing macroalgae from seawater based on different thermal emissivity characteristics [21].
Macroalgae have similar spectral characteristics to terrestrial vegetation, exhibiting low re-
flectance in the visible wavelength range, absorption in the red and blue wavelength ranges,
and a reflection peak in the near-infrared range, and optical imagery is most commonly
used in monitoring macroalgae. Early remote sensing algorithms for identifying floating
macroalgae include the difference vegetation index (DVI), ratio vegetation index (RVI), and
normalized difference vegetation index (NDVI) [22], with NDVI being the most widely
used algorithm for extracting green algae from optical imagery [23]. To reduce the impacts
from sunglints, aerosols and so on, some specific indices were proposed for green algae
extraction, such as the floating algae index (FAI) [10,24] and the virtual-baseline floating
macroalgae height (VB-FAH) [6].

The lower resolution of satellite imagery and the limitation of index-based methods
that primarily focus on spectral information have led to suboptimal performance in the fine
extraction of benthic algae. In contrast, unmanned aerial vehicles (UAVs) equipped with
imaging sensors offer a cost-effective and highly flexible solution, capable of providing
imagery with resolutions as fine as centimeters [25,26]. This is significantly higher than what
satellite sensors can achieve, enabling more accurate mapping [27]. On the other hand, deep
learning-based techniques can more effectively utilize the spectral and textural information
of images and offer a high degree of automation, demonstrating significant potential in
the analysis of features in marine remote-sensing imagery [28]. These technologies have
achieved remarkable success in the extraction of benthic algae species, showcasing high
precision and performance.

Ulva pertusa (U. pertusa), known as sea lettuce, is a common benthic green macroalgae
primarily found in the eutrophicated intertidal zone and shallow seas. U. pertusa can be
used as food and animal feed and can also be processed into pharmaceuticals and health
products [29]. It can grow in non-attached conditions, and it can suspend in a water column
or float on the sea surface. It grows rapidly and may form green tide due to outbreaks and
excessive accumulation. The ecological effects and resource management issues associated
with this macroalgae cannot be ignored, and an efficient remote sensing method is essential.

Since U. pertusa is a benthic macroalgae and is mostly found in submerged conditions,
the remote sensing approaches for floating macroalgae [3,6,10] may not be suitable any
more. In this study, with the aims of establishing useful remote sensing approaches for the
U. pertusa green tide, a deep-learning method is applied to high-resolution RGB imagery
acquired with an UAV to extract U. pertusa, and the results are analyzed together with the
semi-simultaneous high-resolution satellite imagery of Landsat-8 Operational Land Imager
(OLI) and Gaofen-1 (GF-1) Wide Field of View (WFV).

2. Study Area and Datasets
2.1. Study Area

The study area is situated in a small bay in the southern Bohai Sea, located at 119.89◦ E
and 37.30◦ N, and surrounded by aquaculture ponds, with an approximate area of 2.07 km2

(Figure 1). Massive green tide caused by U. pertusa often occurred in this area [30].
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Figure 1. (a,b) The study area overview and the location. (c) UAV and satellite image: the arrow
indicates the UAV image labeled as #1 (refer to Table 1), with a Landsat-8 OLI image as the base
map. (d) UAV and satellite image: the arrows indicate the UAV images labeled as #2 and #3 (refer
to Table 1), with a GF-1 image as the base map. (e–g) The in situ photos showing macroalgae of
U. pertusa. #1–#3 indicate three UAV image strips.

Table 1. Remote sensing data information.

Sensor/Source Data Level No. Capture Date Time/UTC+8 Spatial
Resolution

Landsat-8 OLI
GF-1 WFV

L2 - 24 October 2020 10:49 30 m
L1A - 11 November 2020 11:08 16 m

DJI Mavic2
FC2220

- #1 24 October 2020 11:08 0.17 m
- #2 11 November 2020 10:52 0.10 m
- #3 11 November 2020 11:23 0.12 m

2.2. Datasets

In view of the low cost, high spatial resolution and the larger swath of UAV RGB images,
compared to near-infrared cameras, this study employed two sets of quasi-synchronous UAV
RGB and satellite images as remote sensing data sources. The first set comprises an UAV
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image (labeled as #1) of the study area obtained from a DJI Mavic 2 drone equipped with
an FC2220 camera on 24 October 2020 and a Landsat-8 OLI image from the same day. The
second set comprises two UAV images (labeled as #2, #3) of the study area obtained from
a DJI Mavic 2 drone equipped with an FC2220 camera on 11 November 2020 and a GF-1
image from the same day. During the photography session, the UAV maintained a flight
altitude of 497 m. Table 1 provides detailed information about these images.

The GF-1 WFV L1A data are a product of orthorectified and geometrically corrected
top-of-atmosphere (TOA) reflectance, which reflects the reflectance and scattering charac-
teristics of ground cover materials but without considering atmospheric effects. Landsat-8
Collection 2 L2 data are atmospherically corrected surface reflectance images, which can be
directly used for subsequent research. The orthoimages of the surveyed area were obtained
by orthorectification and mosaicking of the overlapping UAV aerial images [31].

3. U. pertusa Extraction and Quantification Workflow

In this study, we address the challenges of the restricted accuracy and real-time
performance of the algae index method for identifying U. pertusa in satellite and UAV
images. We propose an advanced approach for the automated extraction and analysis
of U. pertusa using the U-Net convolutional neural network. Specifically, the proposed
method consists of data preprocessing, model training and prediction, accuracy evaluation
as shown in Figure 2.
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Figure 2. Workflow for the automatic extraction and analysis of U. pertusa using images from both
the satellite (Landsat-8 and GF-1) and the UAV.

3.1. Data Preprocessing

This section describes the data preprocessing techniques and the process of construct-
ing datasets for training and testing the model. For high-resolution satellite remote sensing
images (GF-1 and Landsat-8), we performed orthorectification and atmospheric correction
on the images. Four specific bands, the near-infrared, blue, green, and red bands of satellite
images, were chosen as the input for model training and testing. For high-resolution UAV
remote-sensing images, this study applied orthorectification to the RGB image comprising
three bands and selected it as the model input.

To construct the training dataset, we selected a specific number of high-resolution
satellite and UAV images. This study accurately annotated U. pertusa through meticulous
visual interpretation. During the model training process, this study cropped the annotated
images into sub-images of dimensions 256 × 256. Moreover, to reduce the influence of
imbalanced positive and negative samples on classifier performance, this study excluded
sub-images with a pixel composition of background elements (non-Ulva pertusa pixels)
exceeding 90%. Subsequently, this study further augmented the dataset through brightness
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adjustment, mirroring, random rotation, and random translation operations, facilitating
the acquisition of enhanced U. pertusa datasets for both satellite and UAV data sources.
Finally, this study randomly partitioned the datasets into three distinct subsets, with 70%
designated for training, 20% for validation, and 10% for testing purposes.

3.2. Model Structure

In this study, a deep learning framework was designed to extract U. pertusa from
high-resolution satellite images and UAV images, combining the U-Net [32] with the VGG-
16 [33] encoder, as shown in Figure 3. Specifically, the encoder of the original U-Net was
modified to the VGG-16 to enhance its feature extraction capability. Transfer learning was
employed by pretraining the model on the high-resolution U. prolifera dataset to improve
the convergence speed and accuracy of the U-Net model for U. pertusa.
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Figure 3. The topology of the U-Net for U. pertusa extraction. It incorporates a contracting path on
the left side and an expansive path on the right side. The Rectified Linear Unit (ReLU) is employed
as the primary activation function throughout the model. To determine the segmentation results, the
sigmoid activation function is specifically chosen for the final output layer.

U-Net is a semantic segmentation model used for biomedical image analysis. It consists
of an encoder and a decoder, where the encoder path and the decoder path are symmetrical
and resemble a U-shape in morphology. This unique architecture reduces information loss
during feature extraction, performs multiscale feature fusion, and accurately localizes target
features. Therefore, it has been tested in feature detection tasks in remote-sensing images
and has demonstrated superior performance compared to traditional methods [28,34].

Compared with high-resolution remote sensing of floating green macroalgae of U. pro-
lifera, high-resolution U. pertusa remote-sensing data is relatively scarce, which can result in
model overfitting and diminished suitability of the model for different U. pertusa data. Both
U. pertusa and U. prolifera are classified as macroalgae, and the tasks of extracting U. prolifera
and U. pertusa using the U-Net model exhibit strong correlation. Thus, transfer learning can
be employed to train the model. Specifically, the pre-trained weights of the U-Net model,
trained on the U. prolifera datasets, are utilized as initial weights for the U-Net model to
facilitate U. pertusa extraction. This approach aims to expedite the convergence speed and
enhance the accuracy of U. pertusa extraction [28,35].

For satellite images, the near-infrared, blue, green, and red bands are utilized as inputs
to the U-Net model. Conversely, for high-resolution UAV remote-sensing images, the blue,
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green, and red bands are employed as the model input. The output of the model is a binary
image, where the values of non-zero pixel indicate the presence of U. pertusa.

3.3. Model Training and Accuracy Evaluation

In this study, we used the cross-entropy function as the loss function for the model-
training process. The Adaptive Moment estimation (Adam) optimizer [36] was applied
for model optimization. The initial learning rate was set to 0.0001, and the learning rate
schedule followed the Cosine Annealing strategy. The dropout parameter was set to 0.5.
Specifically, the model-training process consisted of two stages: the frozen stage and the
unfrozen stage. During the frozen stage, the backbone network of the model was not trained.
This stage required lower GPU memory usage and addressed the issue of insufficient
computational resources. Additionally, the frozen training stage accelerated the training
process and preserved the weights of the pretrained backbone network in the initial stages
of training. The model underwent a total of 100 epochs, with epochs 1–50 corresponding
to the frozen backbone stage, where only a subset of the model parameters was trained.
Epochs 51–100 involved training all network parameters. During the frozen stage, the
model was trained with a batch size of 4, while during the unfrozen training stage, the
batch size was increased to 2.

In this paper, the hardware configuration consisted of an Intel(R) Xeon(R) Silver
4110 CPU @ 2.10GHz, an NVIDIA Quadro P2000 GPU and 32 GB of RAM. The operating
system employed was Windows 10. PyTorch was used as the deep learning development
framework for both training and testing purposes, and the programming language used
was Python 3.6. During the prediction phase, the Overlap-tile strategy [32] was adopted to
address the challenge of the boundary effect [34], which could potentially lead to a decrease
in the accuracy of edge predictions. This strategy aimed to enhance prediction accuracy by
overlapping tiles in images and combining their results to mitigate errors induced by the
tile boundaries.

To assess the reliability of the proposed method for U. pertusa extraction in this study,
four evaluation metrics, namely, accuracy, precision, recall, and F1 score, were employed.
These metrics served to evaluate the accuracy of U. pertusa extraction and measure its
performance on the validation dataset. The calculation formulas for four evaluation metrics
are as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

F1 score = (2 × Precision × Recall)/(Precision + Recall) (4)

where TP, TN, FP, and FN represent the number of true positive samples, true negative
samples, false positive samples, and false negative samples, respectively. It is important to
note that in the evaluation metrics of this study, the sample count refers to the number of
pixels, not the number of images.

To verify the efficacy of the proposed method for U. pertusa extraction, a comparative
analysis was performed using the dynamic thresholding technique. Specifically, since UAV
images comprise only red, green, and blue spectral bands without near-infrared bands,
the normalized green–blue difference index (NGBDI) [37] and a threshold in the red (R)
band were selected for U. pertusa extraction research. For satellite data, the normalized
difference vegetation index (NDVI) [22] and the virtual-baseline floating macroalgae height
(VB-FAH) [6] were employed for extraction testing. The calculation formulas for NGBDI,
NDVI, and VB-FAH are as follows:

NGBDI = (G − B)/(G + B) (5)
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NDVI = (NIR − R)/(NIR + R) (6)

VB − FAH = (NIR − G) + (G − R)(λNIR − λNIR)/(2λNIR − λR − λG) (7)

where NIR, R, G, and B represent the reflectance or Digital Number (DN) values of the near-
infrared, red, green, and blue spectral bands, respectively, while λ denotes the wavelength.

Finally, we measured the U. pertusa extraction results of the UAV and satellite imagery
using the root mean square error (RMSE, Equation (8)) and the mean relative difference
(MRD, Equation (9)).

RMSE =

√√√√ 1
N

N

∑
i=1

(Ai − Fi)
2 (8)

MRD =
100%

N

N

∑
i=1

∣∣∣∣Ai − Fi
Ai

∣∣∣∣ (9)

where n is the number of sample points, Ai is the U. pertusa value of UAV sample point i,
and Fi is the U. pertusa value of satellite sample point i.

4. Results and Discussion
4.1. Ulva pertusa Extraction Performance from the UAV Images

To assess the effectiveness of the proposed U. pertusa extraction method in high-
resolution UAV imagery, a comparative analysis was conducted against threshold-based
extraction methods utilizing NGBDI and the R band on the test dataset. Table 2 provides an
overview of the accuracy evaluation metrics employed for U. pertusa extraction, including
the U-Net model, NGBDI, and the R band threshold-based method. The U-Net-based
extraction method, as proposed in this study, yields the highest values for three evalua-
tion metrics: accuracy (96.46%), precision (94.84%), recall (92.42%), and F1 score (0.92).
These results underscore the superior performance of the U-Net-based approach in
U. pertusa extraction.

Table 2. The accuracy of Ulva pertusa (U. pertusa) extraction on unmanned aerial vehicle (UAV) images
using different methods.

Method Accuracy (%) Precision (%) Recall (%) F1-Score

R 87.38 79.76 93.27 0.83
NGBDI 57.97 64.11 55.55 0.54
U-Net 96.46 94.84 92.42 0.92

Five representative images were selected to demonstrate the effectiveness of the U. per-
tusa extraction method using the U-Net model, NGBDI, and the R band threshold-based
method, as visually depicted in Figure 4. The comprehensive analysis of the extraction
results in Figure 4a,b, reveals that the R band, NGBDI index, and U-Net approach yield
favorable outcomes for U. pertusa extraction. However, it is observed that the extraction re-
sults using the R band and NGBDI index deteriorate in the presence of high-intensity glare,
as evidenced from the depiction in Figure 4c. This degradation can be primarily attributed
to the utilization of a fixed threshold applied uniformly across the entire image, leading to
suboptimal extraction performance. Furthermore, in low-light conditions characterized
by reduced exposure time, both the R band and NGBDI index methods fail to accurately
identify U. pertusa information, resulting in the presence of significant salt-and-pepper
noise within the extraction results. The in-depth analysis underscores the effectiveness
of the U. pertusa extraction method based on the U-Net model, which capitalizes on the
extraction of multi-scale texture features [38]. This approach demonstrates remarkable ro-
bustness against variations in lighting conditions, including challenging low-light scenarios.
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Consequently, the proposed method exhibits exceptional capability in accurately extracting
U. pertusa from high-resolution UAV imagery, even in complex environmental conditions.
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Figure 4. Comparing U. pertusa extraction results from R band, NGBDI, and the U-Net model applied
to UAV images. (a–e) depict five test images, with (d) representing a low-light image. A 5% linear
stretch enhances the visibility of U. pertusa distribution in image (d), producing image (e).

This study employed the U-Net model to extract U. pertusa from UAV images in the
study area. Manual visual corrections refined the extraction results and determined the
U. pertusa distribution in the study area, as illustrated in Figure 5. Then, based on statistical
analysis, this study quantified the area of U. pertusa in the UAV images with identifiers
#1–#3 as 0.52 km2, 0.22 km2, and 0.39 km2, respectively.
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4.2. Ulva pertusa Extraction Performance from the Satellite Images

The U-Net model, as an effective image segmentation method, has been widely
employed in satellite remote sensing. Figure 6 illustrates the classification results of the U-
Net model for GF-1 and Landsat-8. Table 3 provides an overview of the accuracy evaluation
metrics employed for U. pertusa extraction from satellite images, including the U-Net model,
NDVI, and VB-FAH.
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Figure 6. The results of U. pertusa extraction from GF-1 and Landsat-8 images. (a) displays the results
of U. pertusa extraction from Landsat-8 images using NDVI, VB-FAH, and U-Net. (b) displays the
results of U. pertusa extraction from GF-1 images using NDVI, VB-FAH, and U-Net.
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Table 3. The accuracy of U. pertusa extraction on satellite images using different methods.

Method Accuracy (%) Precision (%) Recall (%) F1-Score

NDVI 82.54 71.42 90.80 0.80
VB-FAH 85.05 74.59 92.96 0.83

U-Net 85.11 74.05 96.44 0.83

Figure 6 and Table 3 demonstrate that U-Net and VB-FAH have similar accuracy and
outperform NDVI. Despite the slight advantage of the U-Net model in accuracy, it has a
higher degree of automation, obviating the need for manual threshold selection. These
results highlight the continued advantage of the U-Net-based approach for U. pertusa
extraction from satellite images.

Table 4 presents the areas of U. pertusa extracted using the U-Net model from the
satellite image regions corresponding to UAV images #1–#3, which are 0.70 km2, 0.12 km2,
and 0.33 km2, respectively. These areas differ significantly from those extracted from the
UAV images, with relative errors of 36.08%, 44.69%, and 13.25%. The analysis suggests that
the following factors contribute to the discrepancy between the estimates of the satellite
images and UAV images of U. pertusa areas:

(1) The lower-resolution satellite images contain mixed pixels that overestimate the
U. pertusa areas in the regions corresponding to UAV images #1 and #3.

(2) U. pertusa, as a benthic macroalgae, is sensitive to water depth. In the region corre-
sponding to UAV image #2, the deeper water hinders the detection of U. pertusa with
satellite remote sensing, resulting in a smaller area.

(3) Furthermore, both index-based and U-Net model extractions only provide binary
information on the presence or absence of U. pertusa (0 for non-Ulva pertusa pixels and
1 for U. pertusa pixels), without quantifying the U. pertusa content within each pixel.

Table 4. Areas of U. pertusa extracted from satellite images in the regions corresponding to UAV
images (label #1–#3).

Method Region#1 of Landsat-8 Region#2 of GF-1 Region#3 ofGF-1

NDVI 0.62 km2 0.16 km2 0.40 km2

VB-FAH 0.59 km2 0.14 km2 0.37 km2

U-Net 0.70 km2 0.12 km2 0.33 km2

To enhance the accuracy of U. pertusa extraction in satellite images, we employed
the portion of macroalgae (POM) model proposed by Li, Meng et al. [23,30] for Landsat-8
to estimate the U. pertusa content in the corresponding image. The results are illustrated
in Figure 7.

However, due to the incomplete temporal synchronization and inherent geometric
registration errors between the UAV and satellite imagery, there is a lack of perfect point-to-
point correspondence among the data. To address these challenges, this study applied a
3 × 3 mean filter to reduce noise and smooth the data. Subsequently, this study generated
scatter plots and conducted statistical analysis to examine the POM model, as shown in
Figure 8.

As shown in Figure 8, the simulated POM of Landsat-8 and the calculated POM from
UAV data show a strong linear correlation in the scatter plot, with an RMSE of 0.15 and an
MRD of 25.01%. The simulated POM calculation estimates the coverage area of U. pertusa
in the Landsat-8 image corresponding to the UAV image (label as #1) as 0.49 km2, with a
6% error from the actual area. However, the distribution of macroalgae coverage, as shown
in Figure 8b, exhibits a slight underestimation of U. pertusa coverage for some pixels near
the coastline. It provides a good representation of the overall macroalgae distribution and
can be utilized for estimating the coverage area of U. pertusa in this region.
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The number of bins in the x-axis and y-axis was 50. N represents the number of sample points.
(b) is the binned scatter plots of UAV and Landsat-8 POM distribution images with a 3 × 3 window
mean filtering.

4.3. Discussion
4.3.1. Strengths and Weaknesses for U. pertusa Extraction Based on UAVs and the
U-Net Model

On the basis of deep learning techniques, accurate information about U. pertusa is
successfully extracted from high-resolution UAV RGB images taken from nearshore waters.
This method of the extraction of U. pertusa green tide based on UAVs and deep learning
has important advantages in two aspects.

(1) Using high-resolution RGB digital cameras, UAV can achieve centimeter-level
resolution, which can significantly reduce the influence of factors such as illumination,
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water color, and waves on the extraction accuracy of U. pertusa green tide, compared with
the GF-1 and landsat-8 images with 16m and 30m resolution, respectively. This enables
more refined monitoring of U. pertusa distribution.

(2) The deep learning U-Net model has the advantages of being data-driven and strong
in learning ability. By fully utilizing the spectral and texture information in the remote
sensing images, the U-Net model shows excellent performance in complex environments.
In the UAV images, the accuracy, precision, F1-Score are improved by 10%, 19%, and 11%,
respectively. In the satellite images, the accuracy is comparable to VB-FAH, and compared
with NDVI, the accuracy, precision, recall, F1-Score are improved by 2%, 4%, 5%, and
4%, respectively. In addition, the U-Net model has an absolute advantage in automatic
extraction. With the support of a large number of high-resolution images obtained with an
UAV, it is a reliable solution for extracting U. pertusa green tide information.

Despite the advantages of using UAV and deep learning models for monitoring
U. pertusa green tide, there are also some challenges and limitations. One of them is that the
deep learning U-Net model used lacks explainability; that is, it is difficult to understand
how the model makes its decisions and what features it learns from the images. Another
challenge is that the deep learning U-Net model requires a large amount of high-quality and
accurately annotated data for training, which is the key to improving the model’s accuracy.
Moreover, compared with the index threshold method, the deep learning approach is more
complex in terms of operation, and it needs certain computer hardware resources to carry
out model training, which can increase the cost and difficulty of implementation.

4.3.2. Improving the Accuracy of Monitoring U. pertusa in Satellite Remote Sensing Based
on POM Analysis

Different from the quantitative sub-pixel estimation of floating microalgae [9,22,39,40]
or zooplankton [41] on the basis of satellite images, the estimation of the sub-pixel coverage
of underwater macroalgae (U. pertusa) is impacted by the variations in both the water
constituents and water depth, and, thus, the POM estimated from satellite imagery may
have uncertainty, which is why the POM calculated from the Landsat-8 image is not strictly
consistent with the real coverage monitored with UAV. However, the UAV images with
super high resolution to identify every individual U. pertusa thallus can provide accurate
coverage of underwater U. pertusa. Moreover, UAV remote sensing tends to provide
information when the satellite image is not available due to the limited revisit frequency or
cloud coverings. The POM model further improved the monitoring accuracy of U. pertusa in
satellite images, providing data support for biomass and other research. However, applying
the POM model to the GF-1 satellite data results in large errors, and the applicability of the
POM model to other satellites also needs further research.

5. Conclusions

In this study, we developed an advanced approach for detecting Ulva pertusa (U. per-
tusa) green tides by integrating the U-Net model, a VGG16 backbone network, and transfer
learning. The proposed method aims to extract submerged U. pertusa from high-resolution
UAV images. The accuracy analysis on a validation dataset indicates that the U-Net-based
method achieves an accuracy of 96.46%, precision of 94.84%, recall of 92.42%, and F1 score
of 0.92 for high-resolution UAV images. This method also performs well in extracting
U. pertusa from satellite images, achieving an accuracy of 85.11%, precision of 74.05%, recall
of 96.44%, and F1 score of 0.83. This method enables accurate and automated extraction of
U. pertusa under challenging conditions, such as varying lighting conditions and low-light
environments, demonstrating robustness and feasibility for operational U. pertusa green
tide monitoring.

A portion of macroalgae (POM) model based on the green band reflectance is pro-
posed to estimate the subpixel coverage of green algae in Landsat-8 satellite images. In the
validation images, the root mean square error (RMSE) of the POM model for U. pertusa is
0.15, with a mean relative difference (MRD) of 25.01%. The POM model reduces the MRD
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in U. pertusa area extraction from Landsat-8 imagery from 36.08% to 6% when applied to
the entire study area. In the remote sensing detection of submerged aquatic vegetation
from U. pertusa, high-resolution UAV images can detect smaller patches and provide
more information in mixed pixels of low-resolution satellite images, thus improving the
estimation of the portion of macroalgae in low-resolution satellite image pixels.
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