Hydrocarbon Potential and Reservoir Characteristics of Lacustrine Shale: A Case of Lower Jurassic in the Western Qaidam Basin, NW China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Experimental Methods
4. Results and Discussion
4.1. Characteristics of Organic Geochemistry
4.1.1. TOC Content
4.1.2. Organic Matter Type
4.1.3. Organic Matter Maturity
4.2. Reservoir Characteristics
4.2.1. Mineral Composition
4.2.2. Pore Structure
4.2.3. Pore Size, Specific Surface Area, and Pore Volume
4.3. Factors Affecting Reservoir Porosity
5. Conclusions
- (1)
- The Lower Jurassic lacustrine shale in the western Qaidam Basin exhibits significant hydrocarbon generation potential. The TOC content ranges from 1.71% to 4.49%, with an average of 2.98%. The kerogen belongs to type II–III. The Ro value ranges from 1.05% to 1.95%, with an average of 1.62%. The organic matter in the shale samples has reached the high thermal maturity stage (gas window).
- (2)
- The mineral composition of shales in the study area primarily consists of clay minerals, quartz, feldspar, and carbonate minerals, which is similar to the shale mineral composition found in American Ohio shale. The pore structure is characterized by open parallel plate slit pores and inclined slit pores, which is favorable for the migration of shale gas. The pore size distribution curve exhibits unimodal and bimodal distributions, with the bimodal distribution further divided into two types. Micropores and mesopores with pore sizes lower than 50 nm contribute to the majority of the specific surface area, and mesopores account for the highest proportion of pore volume.
- (3)
- The micropore, mesopore, macropore, and total pore volumes of lacustrine shale in the study area show a negative correlation with TOC content, indicating that the organic matter of shale is likely still in the first pyrolysis stage. No significant correlation is observed between pore volume and clay mineral content or between pore volume and brittle mineral content due to the complex interplay of several geological factors.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Curtis, J.B. Fractured shale-gas systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar]
- Martineau, D.F. History of the Newark East field and the Barnett Shale as a gas reservoir. AAPG Bull. 2007, 91, 399–403. [Google Scholar] [CrossRef]
- Zou, C.N.; Zhao, Q.; Cong, L.Z.; Wang, H.Y.; Shi, Z.S.; Wu, J.; Pan, S.Q. Development progress, potential and prospect of shale gas in China. Nat. Gas Ind. 2021, 41, 1–14. [Google Scholar]
- Zou, C.N.; Zhu, R.K.; Dong, D.Z.; Wu, S.T. Scientific and technological progress, development strategy and policy suggestion regarding shale oil and gas. Acta Pet. Sin. 2022, 43, 1675–1686. [Google Scholar]
- Zou, C.N.; Zhao, Q.; Wang, H.Y.; Xiong, W.; Dong, D.Z.; Yu, R.Z. The main characteristics of marine shale gas and the theory & technology of exploration and development in China. Nat. Gas Ind. 2022, 42, 1–13. [Google Scholar]
- Lin, L.M.; Zhang, J.C.; Tang, X.; Jing, T.Y.; Zhu, L.L. Conditions of continental shale gas accumulation in China. Nat. Gas Ind. 2013, 33, 35–40. [Google Scholar]
- Zhang, J.C.; Shi, M.; Wang, D.S.; Tong, Z.Z.; Hou, X.D.; Niu, J.L.; Li, X.Q.; Li, Z.M.; Zhang, P.; Huang, Y.Q. Fields and directions for shale gas exploration in China. Nat. Gas Ind. 2021, 41, 69–80. [Google Scholar] [CrossRef]
- Wang, X.Z.; Zhang, J.C.; Cao, J.Z.; Zhang, L.X.; Tang, X.; Lin, L.M.; Jiang, C.F.; Yang, Y.T.; Wang, L.; Wu, Y. A preliminary discussion on evaluation of continental shale gas resources: A case study of Chang 7 of Mesozoic Yanchang Formation in Zhiluo-Xiasiwan area of Yanchang. Earth Sci. Front. 2012, 19, 192–197. [Google Scholar]
- Shao, L.Y.; Li, M.; Li, Y.H.; Zhang, Y.P.; Lu, J.; Zhang, W.L.; Tian, Z.; Wen, H.J. Geological characteristics and controlling factors of shale gas in the Jurassic of the northern Qaidam Basin. Earth Sci. Front. 2014, 21, 311–322. [Google Scholar]
- Du, Y.; Liu, C.; Gao, C.; Guo, C.; Liu, G.; Xu, J.; Xue, P. Progress, challenges and prospects of the continental shale gas exploration and development in the Yanchang exploration area of the Ordos Basin. China Pet. Explor. 2020, 25, 33–42. [Google Scholar]
- Kang, Z.H.; Zhou, L.; Ren, S.M.; Kong, J.S.; Chen, Y. Characteristics of shale of the 7th member of the Middle Jurassic Dameigou Formation in Northern Qaidam Basin. Earth Sci. Front. 2015, 22, 265–276. [Google Scholar]
- Jin, Z.J.; Zhu, R.K.; Liang, X.P.; Shen, Y.Q. Several issues worthy of attention in current lacustrine shale oil exploration and development. Pet. Explor. Dev. 2021, 48, 1276–1287. [Google Scholar] [CrossRef]
- Chen, P.; Wu, Z.H.; Ma, L.C.; Zhou, C.J. Underground resource exploiting and induced earthquake: State and progress. Geol. Rev. 2023, 69, 691–700. [Google Scholar]
- Zhang, J.; Kuang, W.H.; Zhang, X.; Mo, C.K.; Zhang, D.X. Global review of induced earthquakes in oil and gas production fields. Rev. Geophys. Planet. Phys. 2021, 52, 239–265. [Google Scholar]
- Foulger, G.R.; Wilson, M.P.; Gluyas, J.G.; Julian, B.R.; Davies, R.J. Global review of human-induced earthquakes. Earth-Sci. Rev. 2018, 178, 438–514. [Google Scholar] [CrossRef]
- Bao, X.; Eaton, D.W. Fault activation by hydraulic fracturing in western Canada. Science 2016, 354, 1406–1409. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.X.; Bao, S.J.; Kang, Z.H.; Zhang, Y.; Xu, Q.F.; Zhang, C. Shale-gas hydrocarbon generation and accumulation conditions of the Jurassic strata in southern Altun Mountains. Geol. Bull. China 2016, 35, 221–230. [Google Scholar]
- Zhou, L.; Kang, Z.H.; Tong, X.F.; Wang, C.; Yang, Y.D. The geological conditions for shale gas accumulation in the Lower-Middle Jurassic, the Frontal Areas of the Altun Mountains. Earth Sci. Front. 2016, 23, 54–63. [Google Scholar]
- Liu, B.Q.; Zhu, K.J.; Huang, X.H.; Chen, L.; Liu, D.C.; Shao, L.Y. Sequence stratigraphy and lithofacies paleogeography of the Lower Jurassic in southern Altyn Tagh, western Qaidam Basin. Acta Sedimentol. Sin. 2019, 37, 356–370. [Google Scholar]
- Lv, B.F.; Zhang, Y.Q.; Yang, S.Y. Characteristics of structural system and its implication for formation dynamics in Qaidam Basin. Geol. Rev. 2011, 57, 167–174. [Google Scholar]
- Feng, Q.; Fu, S.T.; Zhang, X.L.; Chen, Y.; Wang, L.Q.; Zhou, F.; Ni, J.L. Jurassic prototype basin restoration and hydrocarbon exploration prospect in the Qaidam Basin and its adjacent area. Earth Sci. Front. 2019, 26, 44–58. [Google Scholar]
- Li, J.L.; Xiao, Y.J.; Wang, D.H.; Lin, W.; Chai, X.P.; Zhang, J.F.; Tian, L.Y. Jurassic prototype basin reconstruction in east part of Qaidam Basin. Earth Sci. Front. 2016, 23, 11–22. [Google Scholar]
- Liu, B.Q.; Wang, W.C.; Zhang, W.L.; Huang, M.; Sun, Y.Q.; Shao, L.Y. Source-to-sink system budget analysis of continental fluvial-lacustrine sedimentary association: A case study from the Middle Jurassic in the northern Qaidam Basin. Acta Sedimentol. Sin. 2022, 40, 1494–1512. [Google Scholar]
- Liu, B.Q.; Shao, L.Y.; Wang, X.T.; Li, Y.N.; Xu, J. Application of channel-belt scaling relationship to Middle Jurassic source-to-sink system in the Saishiteng area of the northern Qaidam Basin, NW China. J. Palaeogeogr. 2019, 8, 75–91. [Google Scholar] [CrossRef]
- Zhang, F.D.; Tong, H.K. Discussion of plants fossils and its geological ages of the Lower-Middle Jurassic in Mangya Area, Qinghai Province. Northwestern Geol. 2012, 45, 86–93. [Google Scholar]
- Brunauer, S.; Emmet, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, G.; Halenda, P.P. The determination of pore volume and area distribution in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Li, W.Q.; Kang, Z.H.; Zhou, L.; Tong, X.F.; Huangpu, J.J. Geological characteristics of the Jurassic shale gas play in the frontal area of the southern Altun Tagh. Pet. Geol. Exp. 2016, 38, 178–182. [Google Scholar]
- Cao, Q.Y. Identification of microcomponents and types of kerogen under transmitted light. Pet. Explor. Dev. 1985, 12, 14–23. [Google Scholar]
- Dai, J.X.; Ni, Y.Y.; Zhou, Q.H.; Yang, C.; Hu, A.P. Significances of studies on natural gas geology and geochemistry for natural gas industry in China. Pet. Explor. Dev. 2008, 35, 513–525. [Google Scholar] [CrossRef]
- Zou, C.N.; Dong, D.Z.; Wang, S.J.; Li, J.Z.; Li, X.J.; Wang, Y.M.; Li, D.H.; Cheng, K.M. Geological characteristics, formation mechanism and resource potential of shale gas in China. Pet. Explor. Dev. 2010, 37, 641–653. [Google Scholar] [CrossRef]
- Shao, L.Y.; Zhang, L.; Zhang, J.K.; Wang, D.W.; Shi, B.; Fu, Y.F.; Xu, L.L.; Song, J.J. Accumulation conditions of shale gas in transitional marine-continental coal measures of the Carboniferous-Permian in Henan Province. J. Min. Sci. Technol. 2016, 1, 209–221. [Google Scholar]
- Chen, P.; Tang, X.Y. The research on the adsorption of nitrogen in low temperature and micro-pore properties in coal. J. China Coal Soc. 2001, 26, 552–556. [Google Scholar]
- Han, S.B.; Zhang, J.C.; Yang, C.; Lin, L.M.; Zhu, L.L.; Chen, Y.C.; Xue, B. The characteristics of nanoscale pore and its gas storage capability in the Lower Cambrian shale of southeast Chongqing. J. China Coal Soc. 2013, 38, 1038–1043. [Google Scholar]
- Tang, S.H.; Zhang, J.P.; Wu, M.J. The pore structure characteristic about the sapropelic coal. Nat. Gas Geosci. 2013, 24, 247–251. [Google Scholar]
- Broekhoff, J.C.P.; Boer, J.H.D. Studies on pore systems in catalysts: XIII. Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores B. Applications. J. Catal. 1968, 10, 377–390. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1982, 54, 2201–2218. [Google Scholar] [CrossRef]
- Luo, C.; Liu, S.G.; Sun, W.; Ran, B.; Wang, S.Y.; Yang, D.; Bai, Z.Q.; Ye, Y.H.; Zhang, X.; Deng, B. Pore structure characterization of black shale in the lower Cambrian Niutitang formation in western Hubei and eastern Chongqing area. J. Northeast Pet. Univ. 2014, 38, 8–17. [Google Scholar]
- Yang, N.; Tang, S.H.; Zhang, S.H.; Wang, S.B.; Yi, J.J. Structure Characteristics and accumulation significance of pores in Longtan Shale, central and south Hunan. Sci. Technol. Eng. 2015, 15, 66–73. [Google Scholar]
- Bustin, R.M. Shale gas and shale oil petrology and petrophysics. Int. J. Coal Geol. 2012, 103, 1–2. [Google Scholar] [CrossRef]
- Philip, H.N. Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bull. 2009, 93, 329–340. [Google Scholar]
- Curtis, M.E.; Cardott, B.J.; Sondergeld, C.H. Development of organic porosity in the Woodford Shale with increasing thermal maturity. Int. J. Coal Geol. 2012, 103, 26–31. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation. AAPG Bull. 2008, 92, 87–125. [Google Scholar] [CrossRef]
- Shao, L.Y.; Liu, L.; Wen, H.J.; Li, Y.H.; Zhang, W.L.; Li, M. Characteristics and influencing factors of nanopores in the Middle Jurassic Shimengou shale in well YQ-1 of the northern Qaidam Basin. Earth Sci. Front. 2016, 23, 164–173. [Google Scholar]
- Chen, S.B.; Zhu, Y.M.; Wang, H.Y.; Liu, H.L.; Wei, W.; Fang, J.H. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin. J. China Coal Soc. 2012, 37, 438–444. [Google Scholar]
- Zhang, L.H.; Guo, J.J.; Tang, H.M.; Liu, J.; Li, Q.R.; He, J.Y. Pore structure characteristics of Longmaxi shale in the southern Sichuan Basin. Nat. Gas Ind. 2015, 35, 22–29. [Google Scholar]
- Zhao, P.; Li, X.Q.; Tian, X.W.; Su, G.P.; Zhang, M.Y.; Guo, M.; Dong, Z.L.; Sun, M.M.; Wang, F.Y. Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the southern Sichuan Basin. Nat. Gas Geosci. 2014, 25, 947–956. [Google Scholar]
- Liu, Z.B.; Hu, Z.Q.; Liu, G.X.; Liu, Z.J.; Liu, H.T.; Hao, J.Y.; Wang, P.W.; Li, P. Pore characteristics and controlling factors of continental shale reservoirs in the Lower Jurassic Ziliujing Formation, northeastern Sichuan Basin. Oil Gas Geol. 2021, 42, 136–145. [Google Scholar]
- Jiang, Z.X.; Li, X.; Wang, X.M.; Wang, G.Z.; Qiu, H.Y.; Zhu, D.Y.; Jiang, H.Y. Characteristic differences and controlling factors of pores in typical South China shale. Oil Gas Geol. 2021, 42, 41–53. [Google Scholar]
Sample No. | Depth/m | TOC/% | Ro/% | Tmax/°C | Liptinite/% | Vitrinite/% | Inertinite/% | TI |
---|---|---|---|---|---|---|---|---|
CX-1 | 5.50–6.50 | 2.25 | 1.75 | 437 | 75 | 12 | 13 | 15.5 |
CX-2 | 6.50–7.50 | 3.29 | - | - | - | - | - | - |
CX-3 | 7.50–8.50 | 1.92 | - | 442 | 75 | 8 | 17 | 14.5 |
CX-4 | 8.50–9.50 | 2.44 | - | - | - | - | - | - |
CX-5 | 9.50–10.50 | 3.10 | 1.89 | 516 | 77 | 9 | 14 | 17.8 |
CX-6 | 10.50–11.50 | 2.62 | - | - | - | - | - | - |
CX-7 | 11.50–12.50 | 2.83 | - | 499 | 76 | 10 | 14 | 16.5 |
CX-8 | 12.50–13.50 | 3.36 | 1.54 | 408 | 74 | 11 | 15 | 13.8 |
CX-9 | 13.50–14.50 | 2.85 | - | - | - | - | - | - |
CX-10 | 14.50–15.50 | 2.97 | 1.26 | 485 | 76 | 10 | 14 | 16.5 |
CX-11 | 15.50–16.50 | 2.89 | - | - | - | - | - | - |
CX-12 | 16.50–17.50 | 3.29 | - | 473 | 77 | 8 | 15 | 17.5 |
CX-13 | 17.50–18.50 | 2.71 | 1.80 | 479 | 77 | 8 | 15 | 17.5 |
CX-14 | 18.50–19.50 | 2.59 | - | - | - | - | - | - |
CX-15 | 19.50–20.50 | 3.61 | - | 528 | 72 | 12 | 16 | 11.0 |
CX-16 | 20.50–21.50 | 3.69 | 1.95 | 580 | 75 | 11 | 14 | 15.3 |
CX-17 | 21.50–22.50 | 3.74 | - | - | - | - | - | - |
CX-18 | 22.50–23.50 | 3.62 | - | 570 | 76 | 10 | 14 | 16.5 |
CX-19 | 23.50–24.50 | 3.24 | 1.75 | 516 | 75 | 13 | 12 | 15.8 |
CX-20 | 24.50–25.50 | 1.71 | - | - | - | - | - | - |
CX-21 | 25.50–26.50 | 3.27 | - | 560 | 80 | 10 | 10 | 22.5 |
CX-22 | 26.50–27.50 | 4.49 | - | - | - | - | - | - |
CX-23 | 27.50–28.50 | 4.02 | 1.62 | 506 | 78 | 9 | 13 | 19.3 |
CX-24 | 28.50–29.50 | 3.02 | - | 504 | 77 | 8 | 15 | 17.5 |
CX-25 | 29.50–30.50 | 1.75 | - | - | - | - | - | - |
CX-26 | 30.50–31.50 | 2.24 | 1.05 | 471 | 73 | 11 | 16 | 12.3 |
Sample No. | Depth/m | Quartz/% | K-Feldspar/% | Plagio-Clase/% | Calcite/% | Dolomite/% | Pyrite /% | Clay Mineral/% | Halite/% | Anhydrite/% |
---|---|---|---|---|---|---|---|---|---|---|
CX-1 | 5.50–6.50 | 27 | 0 | 2 | 3 | 0 | 0 | 55 | 10 | 3 |
CX-2 | 6.50–7.50 | 17 | 2 | 6 | 0 | 0 | 0 | 62 | 7 | 6 |
CX-3 | 7.50–8.50 | 22 | 0 | 5 | 2 | 0 | 0 | 58 | 5 | 8 |
CX-4 | 8.50–9.50 | 22 | 0 | 5 | 2 | 1 | 0 | 63 | 4 | 3 |
CX-5 | 9.50–10.50 | 28 | 0 | 3 | 2 | 2 | 0 | 54 | 4 | 7 |
CX-6 | 10.50–11.50 | 30 | 0 | 4 | 0 | 3 | 0 | 41 | 13 | 9 |
CX-7 | 11.50–12.50 | 30 | 1 | 2 | 1 | 1 | 0 | 57 | 4 | 4 |
CX-8 | 12.50–13.50 | 24 | 0 | 4 | 2 | 1 | 0 | 60 | 6 | 3 |
CX-9 | 13.50–14.50 | 21 | 0 | 5 | 0 | 0 | 0 | 69 | 1 | 4 |
CX-10 | 14.50–15.50 | 29 | 1 | 8 | 2 | 1 | 0 | 44 | 6 | 9 |
CX-11 | 15.50–16.50 | 22 | 0 | 5 | 1 | 1 | 0 | 62 | 4 | 5 |
CX-12 | 16.50–17.50 | 24 | 0 | 7 | 4 | 1 | 0 | 57 | 5 | 2 |
CX-13 | 17.50–18.50 | 25 | 0 | 7 | 0 | 0 | 0 | 61 | 3 | 4 |
CX-14 | 18.50–19.50 | 29 | 0 | 5 | 1 | 0 | 0 | 63 | 0 | 2 |
CX-15 | 19.50–20.50 | 30 | 0 | 4 | 0 | 0 | 0 | 56 | 3 | 7 |
CX-16 | 20.50–21.50 | 23 | 0 | 5 | 0 | 0 | 1 | 71 | 0 | 0 |
CX-17 | 21.50–22.50 | 37 | 0 | 6 | 0 | 0 | 1 | 56 | 0 | 0 |
CX-18 | 22.50–23.50 | 32 | 1 | 5 | 0 | 1 | 0 | 57 | 0 | 4 |
CX-19 | 23.50–24.50 | 28 | 0 | 8 | 0 | 0 | 0 | 62 | 1 | 1 |
CX-20 | 24.50–25.50 | 23 | 0 | 6 | 0 | 0 | 0 | 68 | 1 | 2 |
CX-21 | 25.50–26.50 | 17 | 0 | 4 | 1 | 1 | 0 | 40 | 0 | 37 |
CX-22 | 26.50–27.50 | 34 | 2 | 5 | 0 | 0 | 3 | 56 | 0 | 0 |
CX-23 | 27.50–28.50 | 28 | 0 | 4 | 0 | 0 | 0 | 56 | 1 | 11 |
CX-24 | 28.50–29.50 | 35 | 0 | 4 | 0 | 0 | 0 | 60 | 1 | 0 |
CX-25 | 29.50–30.50 | 21 | 0 | 2 | 0 | 0 | 0 | 67 | 1 | 9 |
CX-26 | 30.50–31.50 | 19 | 0 | 2 | 0 | 0 | 0 | 68 | 1 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Wang, M.; Cao, Y.; Yan, Z. Hydrocarbon Potential and Reservoir Characteristics of Lacustrine Shale: A Case of Lower Jurassic in the Western Qaidam Basin, NW China. Water 2023, 15, 3104. https://doi.org/10.3390/w15173104
Liu B, Wang M, Cao Y, Yan Z. Hydrocarbon Potential and Reservoir Characteristics of Lacustrine Shale: A Case of Lower Jurassic in the Western Qaidam Basin, NW China. Water. 2023; 15(17):3104. https://doi.org/10.3390/w15173104
Chicago/Turabian StyleLiu, Bingqiang, Min Wang, Yupeng Cao, and Zhiming Yan. 2023. "Hydrocarbon Potential and Reservoir Characteristics of Lacustrine Shale: A Case of Lower Jurassic in the Western Qaidam Basin, NW China" Water 15, no. 17: 3104. https://doi.org/10.3390/w15173104
APA StyleLiu, B., Wang, M., Cao, Y., & Yan, Z. (2023). Hydrocarbon Potential and Reservoir Characteristics of Lacustrine Shale: A Case of Lower Jurassic in the Western Qaidam Basin, NW China. Water, 15(17), 3104. https://doi.org/10.3390/w15173104