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Abstract: To mitigate the incidence of waterlogging to livelihoods and property security, a combi-
nation of management measures has been necessary to achieve optimal benefits, reducing the risk
caused by waterlogging to the development of the urban ecology. Thus, this study aims to analyze
the sensitivity and sensitivity range of management measures under different rainfall conditions,
focusing on establishing a foundation for their combined implementation. Based on different rainfall
scenarios, the modified Morris method is employed to assess the sensitivity of key factors and subse-
quently determine their respective sensitivity ranges. The findings reveal that the sensitivity rankings
for total overflow volume and maximum pipe flow are as follows: pipe volume per hectare (PV-H),
proportion of impervious area (P-Imperv), and slope. Additionally, analyzing the variation pattern of
sensitivity with factors highlight the high sensitivity ranges. As for total overflow volume, a very
high sensitivity is observed when the P-Imperv ranges from 36.8% to 82.7% (Niujiaolong community)
and from 82.7% to 94.5% (Zhuyuan community). Similarly, when PV-H is less than 148 (Niujiaolong
community) and 89.6 (Zhuyuan community), the sensitivity of PV-H to total overflow volume is
very high. Nevertheless, the slope had a lower influence on the sensitivity in the study areas. These
findings provide a complete analysis of the management measures sensitivity, which can be valuable
for creating optimal urban waterlogging management systems.

Keywords: waterlogging management; modified Morris method; sensitivity analysis; sensitivity
range

1. Introduction

The increase in city expansion and the development of flood-prone areas have created
an elevated number of regions that are vulnerable to waterlogging [1]. Moreover, frequent
occurrences of heavy rainfall have further exacerbated the incidence of waterlogging events,
e.g., from 2008 to 2018, a large amount of waterlogging incidents were reported annually
in over 150 cities across China. In 2018, urban waterlogging affected 55.77 million people,
generating CNY 16.15 billion (USD 2.347 billion) in economic losses [2]. Not confined to
China, waterlogging constitutes a threat in various countries worldwide [3]. As one of the
most severe urban disasters, waterlogging significantly impedes urban development [4].

In order to manage and mitigate urban waterlogging, two primary approaches are
commonly employed. Firstly, significant emphasis is placed on the renovation of drainage
systems, encompassing measures such as enlarging the pipe diameter of drainage networks,
constructing additional drainage networks, and dredging watercourses. Various studies
have proposed diverse renovation schemes for drainage networks, including those based
on waterlogging risks [5]. Through the construction of drainage network models and the
calculation of overflood depth and duration across different return periods, high-risk areas
of urban waterlogging can be identified, facilitating targeted system renovation. Proposing
new reconstruction methods based on the concept of urban drainage system resilience is
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also a focus of research [6]. The reconstruction of drainage systems must adhere to peak
flow discharge requirements. With the expansion of cities, the proportion of impervious
areas is increasing, thereby simultaneously amplifying runoff volume and reducing time
of concentration, consequently promoting elevated peak flow. To address these issues, it
becomes imperative to implement source control measures for rainfall runoff. The concept
of low impact development (LID) was initially proposed in the United States with the
objective of managing stormwater runoff and mitigating pollution through decentralized
and small-scale source control measures [7]. China has considered local conditions and
introduced the sponge city concept, which aims to achieve rainwater infiltration, stagnation,
storage, purification, utilization, and discharge [8,9]. Comparably, other countries have
proposed comparable concepts, such as sustainable urban drainage systems (SUDS) in the
United Kingdom and water-sensitive urban design (WSUD) in Australia. These concepts
aim to address surface runoff by reconstructing the underlying surface, and effectively
control waterlogging. Common reconstruction measures include the implementation of
rain gardens, permeable pavements, and grass swales [10–15]. The reconstruction of
underlying surfaces plays a crucial role in effectively managing urban waterlogging [4].

To optimize the management measures of waterlogging control, it is vital to prioritize
factors that demonstrate sensitivity to waterlogging when selecting appropriate reconstruct
measures. Several studies have examined the correlation between waterlogging events and
underlying surface factors to evaluate their impact on waterlogging [16,17]. However, it
should be noted that the underlying surface is subject to constant change, which implies
that the underlying surface during a waterlogging event may differ from the obtained un-
derlying surface information. In particular, existing research has focused on land-use, slope,
and drainage systems as the primary sensitive factors influencing urban waterlogging [18].
Nonetheless, the sensitivity of these factors may vary with changes in their characteristic
values. For instance, as the P-Imperv expands, the impact of land-use on runoff may
emerge as the dominant factor [19]. Current studies on reconstruction factor selection tend
to be rudimentary and often explore combined reconstruction schemes using methods of
scenario analysis to determine the optimal combination [20]. However, under diverse rain-
fall conditions, the factors sensitive to urban waterlogging may undergo changes, thereby
impacting the rationale behind reconstruct measures. Analyzing the sensitivity of factors
under different conditions enables a more precise assessment of suitable retrofit measures.
Moreover, alterations to underlying surface factors should remain within a reasonable
range. Beyond a certain threshold, modifying these factors becomes impractical as they
become less sensitive, rendering such changes inconsequential.

The impact of underlying surfaces on waterlogging is often investigated using both
qualitative and quantitative approaches. Qualitative studies analyze topographical fea-
tures, urban development, and urban drainage systems within the current urban context to
examine the inducements of urban waterlogging [21]. Correlation analysis is commonly
employed in qualitative studies to explore the relationship between underlying surface
factors and waterlogging, thereby identifying primary influencing factors [16,17]. The re-
search predominantly focuses on permeable pavements [22] and land use [23]. Quantitative
studies, on the other hand, typically rely on hydrodynamic process simulations to analyze
the extent to which underlying surface factors influence waterlogging. Approaches such
as system dynamics simulation [24] and machine learning [25] are also utilized to assess
the factors affecting waterlogging. Although some studies have analyzed the factors that
trigger waterlogging under various return periods, limited research has been conducted on
the sensitivity ranges of underlying surfaces. Understanding the sensitivity range of the
underlying surface is crucial for waterlogging management. Priority should be given to
improving the highly sensitive underlying surface factors. Once the underlying surface
factors have been improved to a certain extent and their sensitivity decreases, other factors
can be considered for improvement. Focusing on this approach, targeted waterlogging
control measures can be proposed, but also, considering their sensitivity, various combina-
tions of underlying surface factors can be explored in order to achieve the best economic
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benefits and ensure effective waterlogging control. Therefore, this study examines two
case study areas, utilizes The United States Environmental Protection Agency Storm Water
Management Model (EPA’s SWMM, abbreviated: ‘SWMM’ in the following) for simu-
lation, and employs the modified Morris method to analyze the sensitivity of land-use,
drainage network capacity, and slope under different rainfall conditions. Simultaneously,
the sensitivity ranges of these three factors are assessed to provide valuable insights for
waterlogging prevention and control.

2. Materials and Method
2.1. Study Area

The study area is situated in Pingshan District, Shenzhen City, characterized by a
tropical monsoon climate with substantial rainfall. The average annual rainfall measures
2073.5 mm, with the majority occurring from April to September, constituting 84% of
the total precipitation. The average annual evaporation is 1345.7 mm, and the average
annual temperature stands at 22.3 ◦C. Two communities were selected as the study areas.
The Niujiaolong community (Figure 1a,b) spans a total area of 3.073 hectares. The terrain
exhibits a higher elevation at the center and lower elevation around the periphery. Due to
the presence of surrounding walls, the exchange of water with the external environment
is disregarded. The land-use in the community is predominantly in the impervious area,
accounting for 91.9%, followed by grassland (8.1%). The Zhuyuan community (Figure 1c,d)
covers a total area of 23.4 hectares. The terrain features higher elevations in the north and
south, with lower elevations in the middle. The eastern part of the community experiences
lower elevations, ranging from 0.01 to 0.87 m lower than the surrounding areas, making
it susceptible to water accumulation. Impervious area occupancy dominates the land-
use in the community, accounting for 93.5%, followed by grassland (6%) and forest land
(0.5%). As per the flood control and drainage plan of Pingshan District, the study area must
adhere to the rainfall control standard with a return period of 5 years. The high level of
urbanization has resulted in an increased proportion of impermeable surfaces, leading to
diminished surface infiltration and the discharge of excess rainwater through drainage
networks, thereby exacerbating waterlogging issues.
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Figure 1. The geographic location of study area. (a) Underlying surface and drainage pipe networks
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2.2. Rainfall Data

The Chicago hyetograph method, initially proposed by Keifer in 1957 [26], is a de-
signed storm method that determines the rainfall process for a specified intensity and
duration based on a storm intensity formula and rainfall peak coefficient [27]. In China, the
Chicago hyetograph method is widely employed in the planning and design of drainage
systems and is recommended as a design rainfall method in the “Outdoor Drainage Design
Standards” [28]. It has been extensively validated and is considered the most commonly
used design rainfall method in China [29]. To explore the sensitive factors of waterlogging
under various rainfall conditions, this study utilized the Chicago hyetograph method to
provide rainfall input data. He, Wang [30] pointed out that over 70% of the rainfall in Shen-
zhen follows a single-peak pattern. Consequently, this study focused solely on designing
single-peak rainfall patterns. By statistically analyzing 20 years (2001–2020) of minute-scale
measured rainfall in Pingshan District, the comprehensive rainfall peak coefficient was
calculated to be 0.512, basically falling within the widely accepted range of 0.3 to 0.5. The
recommended design rainfall formula from the “Shenzhen Rainstorm Intensity Formula
and Calculation Charts 2015 Edition” was employed (Equation (1)).

i =
8.701(1 + 0.594 lgP)

(t + 11.13)0.555 (1)

where i is rainfall intensity, mm/min; P is return period, year; t is time, min. Thirty
design rainfall events for 6 return periods (1, 2, 3, 5, 10, and 20 years) under 5 rainfall
durations (60, 90, 120, 150, and 180 min) are calculated. It is worth noting that previous
studies have indicated a decreasing influence of land-use on runoff as the return period
increases [20,31,32]. Therefore, the maximum return period was set to 20 years.

2.3. Model Construction

There are several drainage models available, such as the storm water management
model (SWMM), Infoworks ICM, MIKE, etc. While commercial software such as Infoworks
ICM and MIKE can simulate two-dimensional surface runoff processes, their adoption
may be constrained by high costs. To address this concern, this study employs the open-
source simulation SWMM mode. It has been extensively applied in various areas of urban
water disaster [33], feasibility studies for low-impact development [34], design of detention
ponds [35], and planning for drainage and flood prevention [36]. In this study, SWMM 5.1
was utilized to construct the drainage network models. For the Niujiaolong community, the
generalized drainage network comprised 100 pipes, 88 nodes, and 1 outfall. The Thiessen
polygon method was employed to delineate the sub-catchment, taking into account the
uniform distribution of manholes. Regarding the Zhuyuan community, the generalized
drainage network encompassed 40 pipes, 43 nodes, and 1 outfall. The initial delineation
of sub-catchment was based on remote sensing imagery and further refined through field
surveys. Parameter selection adhered to the standards for the design of outdoor wastewater
engineering [28] and the research findings of Wei, Chun-xin [37]. The roughness values
for grassland and impervious area were set at 0.2 and 0.012, respectively. Based on data
obtained from geographical surveys of pipe network inspection wells, the roughness of
the concrete pipes was determined as 0.013. Surface infiltration was calculated using the
Horton method. The parameters used are presented in Table 1.
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Table 1. The key parameters and value of the SWMM model.

Sub-Catchment Horton Model Outfall Pipe

Property Value Property Value Property Value Property Value

N-Imperv 0.012 Max.Infil.Rate 75 Tide gate NO N 0.013
N-Perv 0.2 Min.Infil.Rate 4 Type FREE

Dstore-Imperv 2 Decay
Constant 2

Dstore-Perv 7 Drying Time 7
%Zero-Imperv 25

2.4. Sensitivity Analysis
2.4.1. Sensitivity Analysis Method

Sensitivity analysis methods can be categorized into two types: global sensitivity
analysis and local sensitivity analysis. Global sensitivity analysis methods, such as Sobol’s
method, the extended Fourier amplitude sensitivity test (EFAST), and the generalized
likelihood uncertainty estimation (GLUE), are commonly utilized in hydrodynamic mod-
els [38–40]. These methods consider the coupling effects among parameters and provide
a comprehensive understanding of the results. However, they require extensive compu-
tations. Conversely, local sensitivity analysis methods involve fewer computations, with
the Morris screening method being the most commonly employed approach [41]. Mor-
ris screening method is a random one-factor-at-a-time design. Only one parameter xi is
changed, and induced onto the model outcome y = y(x1, x2, . . . xn), which can then be
attributed to such a modification by means of an elementary effect ei defined by:

ei = y∗ − y∆i (2)

where y∗ is the new outcome, y is the previous outcome, ∆i is the variation in the
parameter i.

Francos [42] demonstrated that the Morris screening method achieves relatively high
accuracy when the independent variables vary at a fixed step size. Considering the stochas-
tic nature of variable values in the Morris method, which can influence the results, this
study employs the modified Morris method [43]. The modified Morris method assesses
its sensitivity by analyzing the extent of variation in the dependent variable through an
independent variable with a fixed step size. When conducting sensitivity analysis, begin
by selecting a parameter xi from the study parameters and perturb it by a fixed percentage
step size. By applying different perturbation values, corresponding simulated results,
yi are obtained (refer to Equation (3)). The average value of the sensitivity coefficient
serves as the criterion for parameter sensitivity. Due to its simplicity and the ease of visu-
ally assessing sensitivity, the Morris method is widely utilized in sensitivity analysis of
rainfall–flood models.

SN =
1
n∑n−1

i=1
(Yi+1 −Yi)/Y0

(Pi+1 − Pi)/100
(3)

where Yi and Yi+1 are the output results of i and i + 1, respectively; Y0 is the initial result of
the parameters, Pi and Pi+1 are the change percentages of the parameter value when the
model of i and i + 1 run, respectively; and N is the number of model operations.

However, sensitivity varies with changes in parameters, and sensitivity decreases
when parameter values exceed a certain range. In practical applications, the focus lies
on areas of higher sensitivity. Hence, this study conducts a further investigation into the
variation in Si, which is calculated as follows:

Si =
(Yi+1 −Yi)/Y0

(Pi+1 − Pi)/100
(4)
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Global sensitivity analysis methods are capable of considering the impact of multiple
factors on model output simultaneously and provide a comprehensive understanding
of the sensitivity levels of each factor [44]. As a result, they are particularly suitable for
hydrological models that involve numerous parameters [45]. However, since this study
focuses on only three factors, the modified Morris method is employed for sensitivity
analysis. To ensure accurate calculations, overflow is considered to occur only when the
maximum overflow volume exceeds 1 m3. This approach avoids significant errors in the
calculated Morris values when the overflow volume is minimal.

2.4.2. Sensitivity Analysis Indicators

Previous studies have shown that land-use, pipe capacity, and slope are recognized
as the primary factors influencing waterlogging [16]. In the field of waterlogging man-
agement, the three underlying surface factors are commonly regarded as the principal
aspects requiring improvement. Gaining a comprehensive understanding of the sensitivity
of these three factors enables us to formulate targeted waterlogging control measures, as
well as ascertain the required extent of improvement. The changes in land-use significantly
influence surface infiltration and surface roughness. As impervious areas increase, both
surface infiltration and ground roughness also increase, leading to reduced runoff and
a more gradual runoff process. Often, when impervious areas reach a certain threshold,
their proportionate influence on runoff diminishes. This phenomenon has been highlighted
in the study conducted by Zhang, Cheng [46]. Therefore, in this research, land-use is
represented by the proportion of impervious area (P-Imperv). The drainage capacity of
pipelines plays a critical role in influencing pipe runoff. In situations where the drainage
capacity of pipelines is insufficient, it has a significant impact on the runoff process and
the volume of node overflow. Adequately increasing the drainage capacity can have a
substantial effect on both the runoff process and the volume of node overflow. However,
when the drainage capacity of pipelines is sufficient, the amount of rainfall becomes a
more influential factor in the runoff process and node overflow. Increasing the drainage
capacity may have a lesser impact on the runoff process and node overflow. To quantify
the drainage capacity, this study introduces the pipe volume per hectare (PV-H), and the
specific calculation formula is provided in Formula (5). As for slope, it primarily affects
runoff processes in the surface, where steeper slopes lead to reduced runoff travel times,
thereby influencing the runoff process and overflow volumes. Investigating the impact
of slope on the runoff process and overflow volumes is a crucial aspect of this study. The
slope is characterized by mean slope and slope standard deviation (sd slope). In total, four
characteristics are considered for sensitivity analysis.

Land-Use

Impervious areas limit rainfall infiltration, leading to substantial surface runoff dur-
ing the runoff process. The low roughness of impervious areas results in shorter runoff
time, which, in turn, affects the runoff process and node overflow. Therefore, this study
employs the P-Imperv as a representative parameter to assess the sensitivity of land-use to
waterlogging.

Drainage Capacity

Areas with limited drainage capacity are susceptible to waterlogging and are primarily
influenced by pipe diameter and pipe network density. In order to examine the effect of
drainage capacity on waterlogging, this study combines these two factors into a single
parameter referred to as PV-H. This parameter represents the pipe volume per unit area
and serves as an indicator of the carrying and drainage capacity of the pipes within the
study area. The calculation equation for PV-H is as follows:

s =
1
At

∑n

i=1
AiLi (5)
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where Ai is the area of pipe i, m2; Li is the length of pipe i, m; At is the study area, ha.

Slope

Slope plays a significant role in influencing the runoff process, as gentler slopes result
in longer runoff times. In this study, both the mean slope and slope standard deviation are
chosen to characterize the overall variation in slope and topographical changes within the
study area. The calculations for these parameters are as follows:

Sm =
1
n∑n

i=1
Si (6)

Ssd =

√
1

n− 1∑
n

i=1
(Si−Sm)

2 (7)

where Sm is the mean slope, n is the total number of subcatchments, Si is the slope of
subcatchment i, and Ssd is the slope standard deviation.

Characteristics Parameters and Evaluation Criteria

The initial values of the actual parameters in the study area serve as the base values.
A fixed step size of 10% is then applied to perturb these parameters. In the case of the
P-Imperv, the perturbation range is set from −80% to 0% of the initial value, considering
that it cannot exceed 100%. For the remaining parameters, the perturbation range is set
from −80% to +80%, while keeping the other parameters constant. The ranges of values for
the four parameters under study are presented in Table 2.

Table 2. Disturbance results and step size of characteristics parameters for SWMM model.

Characteristics
Niujiaolong Community Zhuyuan Community

Range Step Base Value Range Step Base Value

P-Imperv 18.4~91.9% −10% 91.9% 18.9~94.5% −10% 94.5%
PV-H 22.8~227.6 ±10% 113.8 13.8~124.2 ±10% 68.9

Mean slope 0.04~0.38 ±10% 0.21 0.16~1.44 ±10% 0.8
Sd slope 0.04~0.36 ±10% 0.2 0.16~1.46 ±10% 0.81

This study adopts evaluation criteria from Lenhart, Eckhardt [47] for sensitivity indi-
cators, which are divided into four categories. The specific evaluation criteria are shown in
Table 3.

Table 3. Parameter sensitivity level classification.

Class Index Sensitivity

I 0.00 ≤ |Sn/Si| < 0.05 Small to negligible
II 0.05 ≤ |Sn/Si| < 0.20 Medium
III 0.20 ≤ |Sn/Si| < 1.00 High
IV |Sn/Si| ≥ 1.00 Very high

3. Results
3.1. Sensitivity Analysis of the P-Imperv
3.1.1. Sensitivity Changes with Rainfall Characteristics for the P-Imperv

Land-use is represented by the P-Imperv, which significantly influences surface runoff
and consequently impacts waterlogging and flooding. Given the focus of waterlogging
management on overflow volume and maximum pipe flow, this study examines the sen-
sitivity of these two indicators to various factors. It is necessary to clarify that before
sensitivity analysis, the classification of sensitivity can be obtained from the legend, and for
cases of the same sensitivity, they are determined by the size of the points. A high sensi-
tivity means that small changes significantly affect both overflow volume and maximum
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pipe flow. As depicted in Figure 2, for the Niujiaolong community, the sensitivity of the
P-Imperv to total overflow volume and maximum pipe flow gradually diminishes with
increasing return period and rainfall duration. This decline can be attributed to rainfall
increases, which reduces the proportion of soil infiltration relative to the total rainfall and
consequently lowers the sensitivity of the P-Imperv. The sensitivity of the P-Imperv to total
overflow volume ranges from 0.58 to 1.11, signifying a high or very high sensitivity. When
rainfall is relatively decreased, the sensitivity of the P-Imperv to overflow is classified as
very high (class IV in Figure 2), aligning with the findings of Zhang, Cheng [46]. This
suggests that changing the P-Imperv is highly effective in waterlogging management. Simi-
larly, the sensitivity of the P-Imperv to maximum pipe flow demonstrates high sensitivity,
ranging from 0.2 to 0.78, peaking when the rainfall duration is 60 min and the return period
is 1 year. Similar to the total overflow volume, it exhibits a decreasing sensitivity trend with
higher rainfall. Reconstructing factors with lower sensitivity pose challenges in achieving
desired management outcomes in waterlogging control. Based on the aforementioned
observations, it can be concluded that the P-Imperv exhibits a high or very high sensitivity
to total overflow volume and maximum pipe flow. Decreasing the P-Imperv is an effective
measure for reducing node overflow and peak pipe flow. In comparison to the Zhuyuan
community (Figure S1), the sensitivity of the P-Imperv to total overflow volume is basically
classified as very high, and to maximum pipe flow as high. This distinction may arise
from the Zhuyuan community’s high vulnerability to waterlogging, resulting in a greater
sensitivity of the P-Imperv to total overflow volume and maximum pipe flow.
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Figure 2. Sensitivity of the P-Imperv in Niujiaolong communities under different rainfall conditions.
Due to the sensitivity classification criteria being based on absolute values, all figures in this study
have been plotted after taking the absolute values.

3.1.2. Patterns of Change in Sensitivity with P-Imperv Variations

The sensitivity of changes in the P-Imperv to total overflow volume and maximum
pipe flow was analyzed for multiple rainfall events (see Figure 3). Research findings
indicate that when the rainfall return period exceeds a certain threshold, the influence
of the P-Imperv on runoff significantly diminishes [48]. The present study demonstrates
that the sensitivity of the P-Imperv to total overflow volume and maximum pipe flow
exhibits instability for return periods of 10 and 20 years. This instability is likely attributed
to the substantial rainfall, which renders the P-Imperv‘s influence negligible and results
in unstable computational outcomes. Consequently, the sensitivity of the P-Imperv to
total overflow volume and maximum pipe flow during 10-year and 20-year rainfall return
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periods is not discussed under the analysis of factors changes in this study. The sensitivity
of the P-Imperv to total overflow volume initially increases and then decreases with
the increase in the P-Imperv. It exhibits a very high sensitivity when P-Imperv ranges
from 36.8% to 82.7%. However, as the P-Imperv continues to increase, the sensitivity
significantly decreases. Regarding the maximum pipe flow, as the P-Imperv increases, the
sensitivity gradually decreases. At a relatively low P-Imperv, the sensitivity to maximum
pipe flow is classified as high. Once the P-Imperv exceeds 82.7%, the sensitivity decreases
to the medium. Similar to the total overflow volume, when the P-Imperv exceeds 82.7%,
the increase in the P-Imperv has a significantly reduced impact on the sensitivity to the
maximum pipe flow. Comparing the Zhuyuan community (Figure S2), the sensitivity of the
P-Imperv to total overflow volume exhibits a similar increasing and then decreasing trend.
Overall, a very high sensitivity is reached when the P-Imperv exceeds 56.7%. However,
the sensitivity of the P-Imperv to maximum pipe flow shows a decreasing trend with the
increase in the P-Imperv. It reaches a very high level when the P-Imperv is below 37.8%,
and when the P-Imperv increases to 94.5%, the sensitivity decreases to medium. Both study
areas exhibit similar patterns, but it is worth noting that a different P-Imperv is required to
achieve a very high sensitivity. The difference can be attributed to the poorer pipe network
conditions in the Zhuyuan community compared to the Niujiaolong community, making
it more prone to node overflow. Consequently, this results in the observed discrepancy
between the two areas. In regions liable to waterlogging, increasing the P-Imperv has a
greater impact on node overflow.

Water 2023, 15, x FOR PEER REVIEW 10 of 18 
 

 

observed discrepancy between the two areas. In regions liable to waterlogging, increasing 
the P-Imperv has a greater impact on node overflow. 

 
Figure 3. The patterns of change in sensitivity with the P-Imperv in Niujiaolong community. 

3.2. Sensitivity Analysis of PV-H 
3.2.1. Sensitivity Changes with Rainfall Characteristics for PV-H 

The parameter PV-H is utilized in this study to represent the length and diameter of 
pipes in the study area. Figure 4 clearly demonstrates that for longer rainfall durations 
and smaller return periods, PV-H exerts a significant impact on total overflow volume. 
The sensitivity of PV-H to total overflow volume is overall classified as very high, 
highlighting that improving the pipe network is a key measure for controlling overflow. 
The highest sensitivity occurs when the rainfall duration is 180 min and the return period 
is 1 year, with a sensitivity value of 24.4. However, a different trend is observed for the 
maximum pipe flow. The sensitivity of PV-H to the maximum pipe flow ranges from 0.63 
to 0.82, all falling within the high sensitivity classification. When the return period is small, 
the sensitivity of PV-H to the maximum pipe flow is relatively low. As the return period 
increases, the sensitivity of PV-H to the maximum pipe flow also increases. This can be 
attributed to the fact that with a larger return period, inadequate pipe capacity leads to 
pipes operating at full capacity. Increasing the pipe diameter significantly enhances their 
drainage capacity, resulting in a higher sensitivity. Similar patterns are observed in the 
Zhuyuan community (Figure S3), with a very high sensitivity of PV-H to total overflow 
volume and a high sensitivity to the maximum pipe flow. Based on these results, it can be 
concluded that increasing PV-H is a crucial measure, whether to reduce node overflow 
volume or decrease the maximum pipe flow. 

Figure 3. The patterns of change in sensitivity with the P-Imperv in Niujiaolong community.

3.2. Sensitivity Analysis of PV-H
3.2.1. Sensitivity Changes with Rainfall Characteristics for PV-H

The parameter PV-H is utilized in this study to represent the length and diameter of
pipes in the study area. Figure 4 clearly demonstrates that for longer rainfall durations and
smaller return periods, PV-H exerts a significant impact on total overflow volume. The
sensitivity of PV-H to total overflow volume is overall classified as very high, highlighting
that improving the pipe network is a key measure for controlling overflow. The highest
sensitivity occurs when the rainfall duration is 180 min and the return period is 1 year, with
a sensitivity value of 24.4. However, a different trend is observed for the maximum pipe
flow. The sensitivity of PV-H to the maximum pipe flow ranges from 0.63 to 0.82, all falling
within the high sensitivity classification. When the return period is small, the sensitivity
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of PV-H to the maximum pipe flow is relatively low. As the return period increases, the
sensitivity of PV-H to the maximum pipe flow also increases. This can be attributed to the
fact that with a larger return period, inadequate pipe capacity leads to pipes operating at
full capacity. Increasing the pipe diameter significantly enhances their drainage capacity,
resulting in a higher sensitivity. Similar patterns are observed in the Zhuyuan community
(Figure S3), with a very high sensitivity of PV-H to total overflow volume and a high
sensitivity to the maximum pipe flow. Based on these results, it can be concluded that
increasing PV-H is a crucial measure, whether to reduce node overflow volume or decrease
the maximum pipe flow.
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3.2.2. Patterns of Change in Sensitivity with PV-H Variations

Figure 5 provides further insights into the impact of PV-H variations on sensitivity. It
is observed that as PV-H increases, both the sensitivity to total overflow volume and the
sensitivity to the maximum pipe flow exhibit a decreasing trend. Smaller PV-H values are
associated with more severe node overflow, and increasing PV-H effectively reduces node
overflow, resulting in a mean sensitivity value of 61.6, reaching up to very high sensitivity.
However, as PV-H continues to increase, the sensitivity gradually decreases and reaches a
high level when PV-H is 148. This is primarily because increased drainage capacity reduces
the variation in node overflow. In some cases, node overflow even disappears during
smaller rainfall events, leading to a decrease in sensitivity. The sensitivity of the maximum
flow in the pipeline to the parameter PV-H exhibits a zigzag curve. It is speculated that
a small PV-H can significantly enhance the flow in the pipeline, resulting in an upward
trend in sensitivity. Nevertheless, as the drainage capacity of the pipeline approaches the
rainfall intensity, the fluctuations in maximum flow become relatively smaller, leading to
a decline in sensitivity. As PV-H continues to increase, the upstream water conveyance
capacity improves, resulting in a substantial increase in the flow in the downstream pipeline.
Consequently, the sensitivity exhibits a second increasing trend. However, when PV-H
exceeds a certain threshold, its influence on the flow diminishes, resulting in a gradual
decline in sensitivity. With sensitivity decreases, when PV-H reaches 79.7, sensitivity
decreases to high. Similar patterns are observed in the Zhuyuan community (Figure S4),
where the sensitivity of PV-H to total overflow volume reaches the high level when PV-H
is increased to 89.6, and the sensitivity of PV-H to the maximum pipe flow reaches the
high level when PV-H is increased to 20.7. Different study areas have distinct underlying
surfaces, resulting in varying thresholds for sensitivity ranges. However, the general trend
remains consistent: as PV-H increases, the sensitivity decreases.
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3.3. Sensitivity Analysis of Slope
3.3.1. Sensitivity Changes with Rainfall Characteristics for Slope

This study examines the sensitivity of waterlogging to ground slope by analyzing the
mean slope and slope standard deviation of sub-catchments. Ground slope is a crucial
factor influencing the runoff process [49], which subsequently impacts node overflow and
pipe flow. Therefore, it is selected as a key indicator for analysis. As illustrated in Figure 6,
the sensitivity of the mean slope to total overflow volume is generally classified as medium,
gradually decreasing to small or negligible as rainfall increases. This decline in sensitivity
can be attributed to the diminishing influence of slope on the runoff process under heavier
rainfall, resulting in a reduced impact on waterlogging. However, the sensitivity of the
mean slope to the maximum pipe flow is generally considered small or negligible. Thus,
it can be concluded that ground slope has little effect on the maximum pipe flow. Given
that the sensitivity of the slope standard deviation to both total overflow volume and maxi-
mum pipe flow is similar to that of the mean slope (see Figure S5), further discussion on
slope standard deviation is omitted. Comparing these findings with those of the Zhuyuan
community (see Figures S6 and S7), the sensitivity of slope to total overflow volume is
classified as high, with sensitivity values ranging from 0.22 to 0.86. However, the sensi-
tivity to the maximum pipe flow is classified as medium, with sensitivity values ranging
from 0.05 to 0.17. Therefore, adjusting the ground slope may not be useful to prevent
node overflow.

3.3.2. Patterns of Change in Sensitivity with Slope Variations

In the presence of heavy rainfall, the influence of slope on runoff appears to be
insignificant [50]. Therefore, this study does not explore the sensitivity of slope to total
overflow and maximum pipe flow for a 10-year and 20-year rainfall return period under
the analysis of factors changes, given the observed instability. The sensitivity to both
total overflow volume and maximum pipe flow decreases as the mean slope increases, as
depicted in Figure 7. When the mean slope reaches 0.07, the sensitivity to total overflow
volume declines to a medium level, while the sensitivity to the maximum pipe flow is
always below the medium. Similar patterns are observed for the slope standard deviation
(see Figure S8). In comparison to the Zhuyuan community, when the mean slope increases
to 1.05, the sensitivity of the mean slope to total overflow volume decreases to a medium
level. Additionally, for relatively small mean slope values, the sensitivity can reach a very
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high level (Figure S9), which is consistent with the findings for the slope standard deviation
(Figure S10). These results indicate that in areas prone to waterlogging, appropriate
measures can be implemented to mitigate the effects of the mean slope and ensure the
attenuation of the runoff process.
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4. Discussion
4.1. Selection of Key Factors for Urban Waterlogging Management

Surface modifications are crucial in mitigating urban waterlogging issues.
Understanding the sensitivity of surface factors to various rainfall conditions allows

for tailored improvement strategies in different regions. Previous studies have highlighted
inadequate drainage capacity and high impervious area as major contributors to water-
logging [17,23,24,51]. However, determining the most effective factor in different rainfall
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conditions to address different causes remains unclear. In this study, the effects of the P-
Imperv, PV-H, and slope on total overflow volume and maximum pipe flow were analyzed
under different rainfall conditions. The findings indicate that pipe capacity is the primary
factor requiring reconstruction. The sensitivity of PV-H to total overflow volume is consis-
tently classified as very high, followed by the P-Imperv. For areas prone to waterlogging,
the P-Imperv demonstrates a very high sensitivity to total overflow volume, making it
a significant factor in waterlogging management. However, the impact of changing the
impervious area may be limited in regions with intense rainfall, as the P-Imperv exhibits
higher sensitivity under smaller rainfall events. On the other hand, the influence of slope
on total overflow volume and maximum pipe flow is relatively low, making it less suitable
as a factor for waterlogging management.

4.2. Sensitivity Thresholds of Factors

Understanding the sensitivity patterns of factors based on their parameter values is
essential for analyzing the thresholds for modifying factors in waterlogging management.
Traditionally, increasing drainage capacity is considered the primary measure for control-
ling waterlogging [52]. However, when the sensitivity reaches a certain level, alternative
factors can be explored for reconstruction. For example, in the Zhuyuan community, when
the PV-H is less than 117.1, increasing the pipe diameter or building new pipelines to
improve the drainage capacity of the area should be considered. However, when the PV-H
is higher than 117.1, its sensitivity to total overflow volume decreases to a middle level. If
the P-Imperv exceeds 56.7% at this time, i reducing the P-Imperv to achieve control of the
total overflow volume should be considered. Having a clear understanding of sensitivity
patterns is valuable in identifying more suitable combinations of measures for effective
waterlogging management while minimizing investment costs.

4.3. Prospects and Limitations of Research

With the increasing attention to urban waterlogging, the management and cost control
of waterlogging remain constant concerns. Concepts such as LID and sponge cities can
help control waterlogging to some extent by reducing surface runoff; however, they are
often limited to smaller rainfall events. As rainfall intensity increases, the focus shifts to the
capacity of drainage systems. When formulating waterlogging management policies, it is
essential to fully utilize the advantages of various improvement measures and explore the
feasibility of combining different strategies to reduce engineering investments and achieve
effective waterlogging control. The study primarily analyzes the sensitivity of surface
factors to total overflow volume and maximum pipe flow. Exploring the high-sensitivity
intervals can determine the extent of waterlogging management, i.e., if the sensitivity
decreases after reaching a certain level of reconstruction, it indicates the need to switch to
alternative waterlogging management measures. However, this approach has limitations;
it cannot solely analyze waterlogging management measures. It could serve as a constraint
condition for multi-objective optimization algorithms when exploring combinations of
waterlogging control strategies. Additionally, the method should be validated in different
regions to assess its applicability.

5. Conclusions

Using the modified Morris method, this study analyzed the sensitivity of three main
factors—P-Imperv, PV-H, and slope—that affect waterlogging under different rainfall
conditions. Additionally, the study investigated sensitivity patterns based on parame-
ter variations, providing valuable insights and methods for proposing comprehensive
waterlogging management measures. The following noteworthy conclusions were drawn:

(1) PV-H demonstrates the highest sensitivity to total overflow volume and maximum
pipe flow, followed by the P-Imperv, while mean slope and sd slope exhibit the lowest
sensitivity. The sensitivity of PV-H to total overflow volume consistently remains very high
and decreases with increasing rainfall, emphasizing its significance as a primary factor
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in waterlogging management. Conversely, the sensitivity of PV-H to the maximum pipe
flow increases with rainfall and maintains a high level. For the P-Imperv, the sensitivity to
both total overflow volume and maximum pipe flow gradually decreases with increasing
rainfall. In the Niujiaolong community, the P-Imperv exhibits a very high sensitivity
to total overflow volume, while in the Zhuyuan community, due to its vulnerability to
waterlogging, the sensitivity is higher compared to the Niujiaolong community. As for
slope, both mean slope and sd slope yield similar results. In the Niujiaolong community, the
sensitivity to total overflow volume is generally classified as medium, while the sensitivity
to the maximum pipe flow is small to negligible. In the Zhuyuan community, the sensitivity
to total overflow volume is basically high, while the sensitivity to the maximum pipe flow
is medium. The order of sensitivity factors remains consistent in both study areas: PV-H,
P-Imperv, and slope;

(2) Exploring the sensitivity patterns with respect to factor values reveals that the
sensitivity of the P-Imperv to total overflow volume exhibits an increasing and then
decreasing trend. When the P-Imperv ranges from 36.8% to 82.7% (Niujiaolong community)
and from 82.7% to 94.5% (Zhuyuan community), the sensitivity is classified as very high.
However, the sensitivity of the P-Imperv to the maximum pipe flow decreases with an
increasing P-Imperv. Different study areas have different sensitivity ranges, and analyzing
the threshold values of sensitivity ranges is beneficial for combining various waterlogging
management measures. The sensitivity of PV-H to total overflow volume decreases with
increasing PV-H. When PV-H decreases to 148 (Niujiaolong community) and 89.6 (Zhuyuan
community), the sensitivity to total overflow volume decreases to a high level. However,
the sensitivity of slope to both total overflow volume and maximum pipe flow remains
lower than the very high level and should be considered to a lesser extent in waterlogging
management.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15173131/s1, Figure S1: Sensitivity of the P-Imperv in Zhuyuan
communities under different rainfall conditions; Figure S2: The patterns of change in sensitivity with
the P-Imperv in Zhuyuan community; Figure S3: Sensitivity of the PV-H in Zhuyuan communities
under different rainfall conditions; Figure S4: The patterns of change in sensitivity with the PV-H
in Zhuyuan community; Figure S5: Sensitivity of the sd slope in Niujiaolong communities under
different rainfall conditions; Figure S6: Sensitivity of the mean slope in Zhuyuan communities
under different rainfall conditions; Figure S7: Sensitivity of the sd slope in Zhuyuan communities
under different rainfall conditions; Figure S8: The patterns of change in sensitivity with the sd
slope in Niujiaolong community; Figure S9: The patterns of change in sensitivity with the mean
slope in Zhuyuan community; Figure S10: The patterns of change in sensitivity with the sd slope in
Zhuyuan community.

Author Contributions: Y.L.: writing—original draft, model, data curation, and writing—review
and editing. X.Q.: writing—original draft and methodology. Y.W.: model and data analysis. M.W.:
writing—review and editing. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by National Key R&D Plan of China, grant number 2021YFC3001400.

Data Availability Statement: Please contact the corresponding author for data.

Acknowledgments: We also thank the anonymous reviewers and the associated editor for providing
insightful comments that helped to improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ziegler, A.D. Water management: Reduce urban flood vulnerability. Nature 2012, 481, 145. [CrossRef] [PubMed]
2. Zhou, M.; Feng, X.; Liu, K.; Zhang, C.; Xie, L.; Wu, X. An Alternative Risk Assessment Model of Urban Waterlogging: A Case

Study of Ningbo City. Sustainability 2021, 13, 826. [CrossRef]
3. Markolf, S.A.; Chester, M.V.; Helmrich, A.M.; Shannon, K. Re-imagining design storm criteria for the challenges of the 21st

century. Cities 2021, 109, 102981. [CrossRef]

https://www.mdpi.com/article/10.3390/w15173131/s1
https://www.mdpi.com/article/10.3390/w15173131/s1
https://doi.org/10.1038/481145b
https://www.ncbi.nlm.nih.gov/pubmed/22237099
https://doi.org/10.3390/su13020826
https://doi.org/10.1016/j.cities.2020.102981


Water 2023, 15, 3131 15 of 16

4. Xia, J.; Zhang, Y.Y.; Xiong, L.H.; He, S.; Wang, L.F.; Yu, Z.B. Opportunities and challenges of the Sponge City construction related
to urban water issues in China. Sci. China Earth Sci. 2017, 60, 652–658. [CrossRef]

5. Yazdi, J.; Mofrad, H.H.; Mofrad, M.H. Development of a risk-based optimization approach to improve the performance of urban
drainage systems. Hydrol. Sci. J. 2022, 67, 689–702. [CrossRef]

6. Mohammadiun, S.; Yazdi, J.; Neyshabouri, S.A.A.; Sadiq, R. Development of a stochastic framework to design/rehabilitate urban
stormwater drainage systems based on a resilient approach. Urban Water J. 2018, 15, 167–176. [CrossRef]

7. Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions
for Future Research. Water Air Soil Pollut. 2012, 223, 4253–4273. [CrossRef]

8. Liu, H.; Jia, Y.; Niu, C. “Sponge city” concept helps solve China’s urban water problems. Environ. Earth Sci. 2017, 76, 473.
[CrossRef]

9. Yin, D.; Chen, Y.; Jia, H.; Wang, Q.; Chen, Z.; Xu, C.; Li, Q.; Wang, W.; Yang, Y.; Fu, G.; et al. Sponge city practice in China: A
review of construction, assessment, operational and maintenance. J. Clean. Prod. 2021, 280, 124963. [CrossRef]

10. William, R.; Gardoni, P.; Stillwell, A.S. Predicting rain garden performance under back-to-back rainfall conditions using stochastic
life-cycle analysis. Sustain. Resilient Infrastruct. 2019, 6, 143–155. [CrossRef]

11. Li, J.K.; Liu, F.; Li, Y.J. Simulation and design optimization of rain gardens via DRAINMOD and response surface methodology.
J. Hydrol. 2020, 585, 124788. [CrossRef]

12. Li, J.; Li, F.; Li, H.; Guo, C.; Dong, W. Analysis of rainfall infiltration and its influence on groundwater in rain gardens. Environ.
Sci. Pollut. Res. 2019, 26, 22641–22655. [CrossRef] [PubMed]

13. de Graaf-van Dinther, R.; Leskens, A.; Veldkamp, T.; Kluck, J.; Boogaard, F. From Pilot Projects to Transformative Infrastructures,
Exploring Market Receptivity for Permeable Pavement in The Netherlands. Sustainability 2021, 13, 4925. [CrossRef]

14. Yu, T.; Liu, D.; Zhang, H.; Wang, H. Influence of pore water phase change on service performance for permeable pavement in
Sponge City. Water Sci. Technol. 2021, 84, 3769–3779. [CrossRef] [PubMed]

15. Shafique, M.; Kim, R.; Kyung-Ho, K. Evaluating the Capability of Grass Swale for the Rainfall Runoff Reduction from an Urban
Parking Lot, Seoul, Korea. Int. J. Environ. Res. Public Health 2018, 15, 537. [CrossRef]

16. Zhang, Q.; Wu, Z.; Zhang, H.; Fontana, G.D.; Tarolli, P. Identifying dominant factors of waterlogging events in metropolitan
coastal cities: The case study of Guangzhou, China. J. Environ. Manag. 2020, 271, 110951. [CrossRef]

17. Liu, F.; Liu, X.; Xu, T.; Yang, G.; Zhao, Y. Driving Factors and Risk Assessment of Rainstorm Waterlogging in Urban Agglomeration
Areas: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area, China. Water 2021, 13, 770. [CrossRef]

18. Jiao, S.; Hu, X.; Han, Z. A study on quantitative evaluation of effect factors of urban waterlogging under multiple scales: Taking
five internal zones in changsha as an example. Ecol. Econ. 2020, 36, 222–229.

19. Kong, F.; Ban, Y.; Yin, H.; James, P.; Dronova, I. Modeling stormwater management at the city district level in response to changes
in land use and low impact development. Environ. Model. Softw. 2017, 95, 132–142. [CrossRef]

20. Bai, Y.; Zhao, N.; Zhang, R.; Zeng, X. Storm Water Management of Low Impact Development in Urban Areas Based on SWMM.
Water 2019, 11, 33. [CrossRef]

21. Ma, M.; Wang, H.; Jia, P.; Liu, R.; Hong, Z.; Labriola, L.G.; Hong, Y.; Miao, L. Investigation of inducements and defenses of flash
floods and urban waterlogging in Fuzhou, China, from 1950 to 2010. Nat. Hazards 2018, 91, 803–818. [CrossRef]

22. Chen, W.; Zheng, M.; Gao, Q.; Deng, C.; Ma, Y.; Ji, G. Simulation of surface runoff control effect by permeable pavement. Water
Sci. Technol. 2021, 83, 948–960. [CrossRef]

23. Yu, H.; Zhao, Y.; Fu, Y.; Li, L. Spatiotemporal Variance Assessment of Urban Rainstorm Waterlogging Affected by Impervious
Surface Expansion: A Case Study of Guangzhou, China. Sustainability 2018, 10, 3761. [CrossRef]

24. Chen, W.; Dong, J.; Yan, C.; Dong, H.; Liu, P. What Causes Waterlogging?-Explore the Urban Waterlogging Control Scheme
through System Dynamics Simulation. Sustainability 2021, 13, 8546. [CrossRef]

25. Tong, J.; Gao, F.; Liu, H.; Huang, J.; Liu, G.; Zhang, H.; Duan, Q. A Study on Identification of Urban Waterlogging Risk Factors
Based on Satellite Image Semantic Segmentation and XGBoost. Sustainability 2023, 15, 6434. [CrossRef]

26. Keifer, C.J.; Chu, H.H. Synthetic storm pattern for drainage design. J. Hydraul. Div. 1957, 83, 1332-1–1332-25. [CrossRef]
27. Liao, D.; Zhu, H.; Zhou, J.; Wang, Y.; Sun, J. Study of the natural rainstorm moving regularity method for hyetograph design.

Theor. Appl. Clim. 2019, 138, 1311–1321. [CrossRef]
28. GB 50014-2021; Standard for Design of Outdoor Wastewater Engineering. MOHURD: Beijing, China, 2021.
29. Liao, D.; Zhang, Q.; Wang, Y.; Zhu, H.; Sun, J. Study of Four Rainstorm Design Methods in Chongqing. Front. Environ. Sci. 2021,

9, 51. [CrossRef]
30. He, S.; Wang, Z.; Wang, D.; Liao, W.; Wu, X.; Lai, C. Spatiotemporal variability of event-based rainstorm: The perspective of

rainfall pattern and concentration. Int. J. Clim. 2022, 42, 6258–6276. [CrossRef]
31. Yao, L.; Wei, W.; Chen, L. How does imperviousness impact the urban rainfall-runoff process under various storm cases? Ecol.

Indic. 2016, 60, 893–905. [CrossRef]
32. Zheng, P.; Jinyan, K.; Wenbin, P.; Xin, Z.; Yuanbin, C. Effects of Low-Impact Development on Urban Rainfall Runoff under

Different Rainfall Characteristics. Pol. J. Environ. Stud. 2019, 28, 771–783.
33. Zhao, L.; Zhang, T.; Fu, J.; Li, J.; Cao, Z.; Feng, P. Risk Assessment of Urban Floods Based on a SWMM-MIKE21-Coupled Model

Using GF-2 Data. Remote Sens. 2021, 13, 4381. [CrossRef]

https://doi.org/10.1007/s11430-016-0111-8
https://doi.org/10.1080/02626667.2022.2039661
https://doi.org/10.1080/1573062X.2018.1424218
https://doi.org/10.1007/s11270-012-1189-2
https://doi.org/10.1007/s12665-017-6652-3
https://doi.org/10.1016/j.jclepro.2020.124963
https://doi.org/10.1080/23789689.2019.1660549
https://doi.org/10.1016/j.jhydrol.2020.124788
https://doi.org/10.1007/s11356-019-05622-z
https://www.ncbi.nlm.nih.gov/pubmed/31168716
https://doi.org/10.3390/su13094925
https://doi.org/10.2166/wst.2021.459
https://www.ncbi.nlm.nih.gov/pubmed/34928842
https://doi.org/10.3390/ijerph15030537
https://doi.org/10.1016/j.jenvman.2020.110951
https://doi.org/10.3390/w13060770
https://doi.org/10.1016/j.envsoft.2017.06.021
https://doi.org/10.3390/w11010033
https://doi.org/10.1007/s11069-017-3156-0
https://doi.org/10.2166/wst.2021.027
https://doi.org/10.3390/su10103761
https://doi.org/10.3390/su13158546
https://doi.org/10.3390/su15086434
https://doi.org/10.1061/JYCEAJ.0000104
https://doi.org/10.1007/s00704-019-02890-0
https://doi.org/10.3389/fenvs.2021.639931
https://doi.org/10.1002/joc.7588
https://doi.org/10.1016/j.ecolind.2015.08.041
https://doi.org/10.3390/rs13214381


Water 2023, 15, 3131 16 of 16

34. Jeffers, S.; Garner, B.; Hidalgo, D.; Daoularis, D.; Warmerdam, O.; Diagnostics, G.R. Insights into green roof modeling using
SWMM LID controls for detention-based designs. J. Water Manag. Model. 2022. [CrossRef]

35. Wang, M.; Sun, Y.; Sweetapple, C. Optimization of storage tank locations in an urban stormwater drainage system using a
two-stage approach. J. Environ. Manag. 2017, 204, 31–38. [CrossRef]

36. Ji, M.; Bai, X. Construction of the sponge city regulatory detailed planning index system based on the SWMM model. Environ.
Technol. Innov. 2021, 23, 101645. [CrossRef]

37. Wei, Z.; Chun-xin, Z.; Han-hai, Y. Experimental study on hydraulic roughness of revetment with grass cover. Adv. Water Sci. 2007,
18, 483.

38. Zhang, W.; Li, T.; Dai, M. Uncertainty assessment of water quality modeling for a small-scale urban catchment using the GLUE
methodology: A case study in Shanghai, China. Environ. Sci. Pollut. Res. 2015, 22, 9241–9249. [CrossRef]

39. Kobarfard, M.; Fazloula, R.; Zarghami, M.; Akbarpour, A. Evaluating the uncertainty of urban flood model using glue approach.
Urban Water J. 2022, 19, 600–615. [CrossRef]

40. Sarrazin, F.; Pianosi, F.; Wagener, T. Global Sensitivity Analysis of environmental models: Convergence and validation. Environ.
Model. Softw. 2016, 79, 135–152. [CrossRef]

41. Morris, M. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 1991, 33, 161–174. [CrossRef]
42. Francos, A.; Elorza, F.; Bouraoui, F.; Bidoglio, G.; Galbiati, L. Sensitivity analysis of distributed environmental simulation models:

Understanding the model behaviour in hydrological studies at the catchment scale. Reliab. Eng. Syst. Saf. 2003, 79, 205–218.
[CrossRef]

43. Lin, J.; Huang, J.-L.; Du, P.-F.; Tu, Z.-S.; Li, Q.-S. Local sensitivity analysis for urban rainfall runoff modelling. Huan Jing Ke Xue
2010, 31, 2023–2028. [PubMed]

44. Chen, Y.; Liu, G.; Huang, X.; Chen, K.; Hou, J.; Zhou, J. Development of a surrogate method of groundwater modeling using
gated recurrent unit to improve the efficiency of parameter auto-calibration and global sensitivity analysis. J. Hydrol. 2021, 598,
125726. [CrossRef]

45. Iman, R.L.; Helton, J.C. An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models. Risk Anal.
1988, 8, 71–90. [CrossRef]

46. Zhang, H.; Cheng, J.; Wu, Z.; Li, C.; Qin, J.; Liu, T. Effects of Impervious Surface on the Spatial Distribution of Urban Waterlogging
Risk Spots at Multiple Scales in Guangzhou, South China. Sustainability 2018, 10, 1589. [CrossRef]

47. Lenhart, T.; Eckhardt, K.; Fohrer, N.; Frede, H.-G. Comparison of two different approaches of sensitivity analysis. Phys. Chem.
Earth Parts A/B/C 2002, 27, 645–654. [CrossRef]

48. Zhang, Q.; Lv, X.; Ni, Y.; Ma, L.; Wang, J. Slope Runoff Process and Regulation Threshold under the Dual Effects of Rainfall and
Vegetation in Loess Hilly and Gully Region. Sustainability 2023, 15, 7582. [CrossRef]

49. Cheng, Y.; Sang, Y.; Wang, Z.; Guo, Y.; Tang, Y. Effects of Rainfall and Underlying Surface on Flood Recession-The Upper Huaihe
River Basin Case. Int. J. Disaster Risk Sci. 2021, 12, 111–120. [CrossRef]

50. Zhao, Q.; Li, D.; Zhuo, M.; Guo, T.; Liao, Y.; Xie, Z. Effects of rainfall intensity and slope gradient on erosion characteristics of the
red soil slope. Stoch. Environ. Res. Risk Assess. 2015, 29, 609–621. [CrossRef]

51. Xu, Z.; Chen, H.; Ren, M.; Cheng, T. Progress on disaster mechanism and risk assessment of urban flood/waterlogging disasters
in China. Adv. Water Sci. 2020, 31, 713.

52. Ning, Y.-F.; Dong, W.-Y.; Lin, L.-S.; Zhang, Q. Analyzing the causes of urban waterlogging and sponge city technology in China.
IOP Conf. Series Earth Environ. Sci. 2017, 59, 012047. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.14796/JWMM.C484
https://doi.org/10.1016/j.jenvman.2017.08.024
https://doi.org/10.1016/j.eti.2021.101645
https://doi.org/10.1007/s11356-015-4085-7
https://doi.org/10.1080/1573062X.2022.2053865
https://doi.org/10.1016/j.envsoft.2016.02.005
https://doi.org/10.1080/00401706.1991.10484804
https://doi.org/10.1016/S0951-8320(02)00231-4
https://www.ncbi.nlm.nih.gov/pubmed/21072919
https://doi.org/10.1016/j.jhydrol.2020.125726
https://doi.org/10.1111/j.1539-6924.1988.tb01155.x
https://doi.org/10.3390/su10051589
https://doi.org/10.1016/S1474-7065(02)00049-9
https://doi.org/10.3390/su15097582
https://doi.org/10.1007/s13753-020-00310-w
https://doi.org/10.1007/s00477-014-0896-1
https://doi.org/10.1088/1755-1315/59/1/012047

	Introduction 
	Materials and Method 
	Study Area 
	Rainfall Data 
	Model Construction 
	Sensitivity Analysis 
	Sensitivity Analysis Method 
	Sensitivity Analysis Indicators 


	Results 
	Sensitivity Analysis of the P-Imperv 
	Sensitivity Changes with Rainfall Characteristics for the P-Imperv 
	Patterns of Change in Sensitivity with P-Imperv Variations 

	Sensitivity Analysis of PV-H 
	Sensitivity Changes with Rainfall Characteristics for PV-H 
	Patterns of Change in Sensitivity with PV-H Variations 

	Sensitivity Analysis of Slope 
	Sensitivity Changes with Rainfall Characteristics for Slope 
	Patterns of Change in Sensitivity with Slope Variations 


	Discussion 
	Selection of Key Factors for Urban Waterlogging Management 
	Sensitivity Thresholds of Factors 
	Prospects and Limitations of Research 

	Conclusions 
	References

