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Abstract: Crafting a comprehensive strategy to mitigate the impact of droughts, a complex geo-hazard
profoundly affecting socio-economic aspects, entails the creation of a drought vulnerability map as
a primary step. This study harmonizes geospatial techniques and the Fuzzy Analytical Hierarchy
Process (fuzzy AHP) to formulate such a map for northwestern Odisha, India. From six principal
drought-induced vulnerability parameters, namely physical attributes, water demand and usage,
agriculture, land use, groundwater and population/development, 22 sub-parameters were selected.
Spatial layers were generated for each sub-parameter, followed by their fuzzification using a fuzzy
membership approach. Subsequently, AHP was employed to establish parameter weights through
pair-wise comparisons. By applying the weighted overlay method, drought vulnerability maps were
generated, classifying regions into five vulnerability levels: very high, high, moderate, low, and
very low. The outcomes indicate that roughly 33% of the area is classified as having high drought
vulnerability. Validation of the approach using statistical metrics, including accuracy, root mean
square error and mean absolute error, demonstrates its efficacy in gauging drought vulnerability,
thereby aiding planners in devising effective drought mitigation strategies.

Keywords: drought vulnerability; fuzzy membership; analytical hierarchical process (AHP); validation

1. Introduction

The frequency and severity of natural hazards are on the rise, necessitating enhanced
resilience among communities to effectively manage these hazardous circumstances. En-
vironmental hazards are causing escalating losses, with global economic damage from
natural disasters tripling between the 1960s and 1980s, reaching USD 120 billion [1]. Subse-
quently, in the 1990s, economic losses surged to USD 400 billion [2]. Drought, a prominent
climatic hazard, profoundly affects a substantial global population, often exceeding the
impact of other disasters [3]. Despite its significance, drought remains a dynamically
complex and poorly comprehended environmental crisis, impacting more individuals
than any other hazard [4]. With the advent of global warming, drought occurrences are
escalating, bearing consequences for millions worldwide [5]. In India, over 50% of the
territory is susceptible to severe drought [6], and climate change is anticipated to reshape
the nation’s vulnerability profile to drought [7]. According to Community Response to
Extreme Drought (2016), nearly 1.3 billion people in India have been affected by drought
between 1900 and 2016. The intensification of drought events in terms of severity and
duration poses a direct threat to water availability and food security in the country [8].
In the present era, effective water resource management faces a significant challenge in
the form of water scarcity, exacerbated by the imbalance in rainfall patterns and rising
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temperatures associated with climate change [9]. The escalating frequency and intensity
of drought events pose a potential threat to both food security and water resources in
the country. This underscores the critical importance of delineating drought-prone areas,
particularly within India’s agro-economic context, with a specific focus on the monsoon
season. Projections indicate a projected increase of approximately 32% in India’s overall
water consumption by 2050 [10], with half of the agricultural land relying on rainfall for
cultivation once the maximum irrigation capacity is reached [11]. The growing risk of
drought jeopardizes the availability of freshwater resources and rain-fed agriculture [12].

The notion of vulnerability is intricate, encompassing elements such as exposure,
sensitivity to external stresses and adaptive capacity [13]. The Intergovernmental Panel
on Climate Change (IPCC) explains that vulnerability to climate-induced disasters hinges
on factors such as the scale, speed of climate change and the system’s responsiveness and
adaptability [14]. This multifaceted perspective of vulnerability also incorporates consider-
ations of inequality and poverty [15]. The IPCC’s fifth assessment defines vulnerability as
the inclination to experience adverse effects, particularly highlighting societal risks associ-
ated with disasters. This is influenced by the population’s ability to cope, encompassing
their resource endowments and exemptions. The vulnerability and risk associated with
drought are anticipated to amplify in the coming decades [16]. Given the evolving climatic
circumstances, an effective approach is imperative to counter the increasing susceptibil-
ity, emphasizing a proactive stance across various levels [17]. Owing to an unforeseen
escalation in global drought severity, there has been a noticeable surge in recent years in
the recognition of the need for drought risk reduction and preparedness [18]. The extent
of drought severity is contingent on the duration of prolonged arid conditions over a
region and is gauged using diverse index thresholds [19]. Consequently, a comprehensive
understanding of both drought severity and vulnerability is indispensable for devising
impactful management strategies. Within this context, ‘vulnerability assessment’ emerges
as a pivotal component of any drought mitigation scheme, serving as the foundation for
identifying affected parties and underlying causes.

Over time, a diverse range of indices has been employed for analysing drought condi-
tions, with their application varying across different regions. Various methods, including
temperature, rainfall, vegetation index and soil moisture, have been utilized to model
drought scenarios in distinct geographical areas [20,21]. As the nature of drought differs
based on climatic conditions in different regions, measurement techniques also vary ac-
cordingly [22]. Drought parameters can exhibit both linear and nonlinear relationships
with each other [23,24]. The probability density functions (PDFs) of drought indices have
successfully demonstrated drought frequency and intensity [25–27]. Ref. [28] utilized
geometric probability distribution to define drought conditions spanning a specific num-
ber of consecutive years with insufficient water supply. Ref. [29] introduced time series
analysis and run theory to predict drought occurrences. Ref. [30] employed the Palmer
Drought Index (PDI) and stochastic models to characterize the stochastic nature of monthly
and yearly drought conditions. Ref. [31] employed probability distribution and relevant
equations for forecasting drought duration and average length. Ref. [32] developed dis-
tribution functions for the probability of critical drought conditions and predicted their
duration. Ref. [30] utilized an alternating renewal reward model for drought event pre-
diction. Ref. [26] used PDSI and an early warning system, applying a non-homogeneous
chain model to characterize the stochastic behaviour of draughts. Ref. [33] utilized low-
order discrete autoregressive moving average (DARMA) models to estimate drought event
probabilities. Ref. [34] applied PDSI in the Conchos River basin of Mexico for drought
forecasting. Various aspects of drought, such as severity, intensity and duration, have been
predicted in diverse models, employing indices such as the Soil Moisture Index (SMI),
Standardized Precipitation Evapo-Transpiration Index (SPEI), Standardized Precipitation
Index (SPI), Normalized Difference Vegetation Index (NDVI), and Moisture Adequacy
Index [35–38]. Ref. [29] critically assessed various drought indices and their predictive
capabilities, while [27] introduced the Integrated Drought Index (IDI) for drought mon-
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itoring and prediction in India. Physically based models utilizing the Palmer Drought
Severity Index, ARMA model and pattern recognition techniques have also been utilized
to assess and forecast drought vulnerability [39]. These research efforts have contributed
valuable models and indices to mitigate the consequences of short-term hydrological and
agricultural drought conditions.

A significant volume of research has been dedicated to predicting and forecasting
drought conditions in various regions globally [40–42] with relatively fewer studies ad-
dressing the broader aspect of overall drought vulnerability. Limited efforts have focused
on evaluating drought prediction within specific states [43,44]. The state of Odisha, India,
is notably susceptible to drought, affecting approximately 50% of its areas [30]. Given
this vulnerability and the densely populated nature of the region being heavily reliant on
agriculture, assessing drought vulnerability is crucial for effective livelihood management.
Notably, studies by [28,31,43] utilized the Analytical Hierarchical Process (AHP) to create
drought risk maps, yielding favourable outcomes. However, research specifically focusing
on drought vulnerability remains limited.

This study focused on evaluating drought vulnerability in Odisha, India, and consid-
ered various factors. The assessment employed a Fuzzy Analytical Hierarchical Process
(fuzzy AHP) methodology, effectively producing a drought vulnerability map that logically
portrayed the drought vectors. The integration of fuzzification and AHP facilitated the
unidirectional representation of factors based on their significance, with AHP assigning
essential significance to these factors. The combination of these techniques ensured a
logical and scientifically informed assessment, further benefiting from the incorporation of
expert opinions crucial for drought vulnerability evaluation. The final model’s validity was
verified using Receiver Operating Characteristics (ROC), accuracy, mean absolute error
(MAE) and root mean square error (RMSE) metrics. This research contributes valuable
insights to academia and agricultural planning, offering a means to mitigate the impact of
drought effectively.

2. Materials and Methods

Odisha is located on the eastern coast of India, from 17.31◦ N to 22.31◦ N and from
81.31◦ E to 81.31◦ E. (Figure 1). The coastline of 485 km is connected to this state along with
the Bay of Bengal. The temperature and humidity of this area are high, and the rainfall
is moderate to low in nature, along with mild and brief winters. The climate in this state
is tropical, 1451.2 mm of rainfall is the average of this state and rainfall primarily falls
from June to September (Figure 2). Several climatic hazards, such as drought, cyclone and
flooding, are very frequent in this state and occur every year in this state with varying
severity. Five main divisions of physiography are correlated with this province, such as
the Utkal plains, central plateaus, central mountains and highlands, western hills and
floodplains. Mahanadi, Baitarani and Brahamni are the main rivers of this state which
flow into the Bay of Bengal. About 3.47 percent of the population of India belongs to this
state, which is 4.2 crores according to the Indian Census (2011). In the case of Odisha, the
occurrence of drought is not a new phenomenon, and only the severity and extent of the
drought varies from year to year [37]. Extreme drought happened for the first time in
Odisha in the year 1866, accompanied by several droughts of mild to severe magnitude,
and occurred 17 times so far. This means that there has been a serious drought in Odisha
roughly every 8 years. The drought in 2000 and 2001 was the most severe occurrence, along
with the other years of drought in 1866, 1919 and 1965. Essentially, the western portion
of Odisha is synonymous with drought and the southern central part is also comfortable
with drought.
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3. Materials and Methods
3.1. Data Used and Their Sources

In this work, parameters from different categories were combined with the use of the
fuzzy AHP method after that the final vulnerability map of the drought was created. In
this analysis, to establish an ideal vulnerability map, 22 parameters were considered from
various sources from different groups. The analysis on the methodological framework is
seen in Figure 2. The thematic layers were produced from a variety of sources that were
used in this analysis, along with the geospatial technique. The data sources are detailed
in Table 1.
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Table 1. Sources of selected parameters.

Parameters Data Sources

Annual rainfall Indian Meteorological Department
Average temperature Indian Meteorological Department
Evapotranspiration Indian Meteorological Department
Wet day frequency Indian Meteorological Department

Total water demand Ground water booklet 2016
Water use for irrigation Ground water booklet 2016

Water for all use Ground water booklet 2016
Gross cropped area District irrigation plan 2016
Cropping intensity District irrigation plan 2016

Irrigation intensity A study on Irrigation and Agricultural
productivity in Odisha 2018

Gross irrigated area District irrigation plan 2016
Net irrigated area District irrigation plan 2016
Area under forest District irrigation plan 2016

Total ground water Ground water booklet 2016
Stage of ground water development Ground water booklet 2016
Ground water for future irrigation Ground water booklet 2016

Population density District irrigation plan 2016
Health Odisha economic journal 2019

Education Odisha economic journal 2019
Income index Odisha economic journal 2019

3.2. Drought Conditioning Factors

Parameters were considered for this study after analysing some of the previous litera-
ture and after checking the reliability and suitability of databases for drought [38]. After
analysing some of the previous literature, the test of the efficiency and suitability of the
drought databases considered the conditions for this analysis [38]. After that, the spatial
layers were formed for each parameter. Under six groups, 22 spatial layers with a resolution
of 30 m were created. The method was considered in this analysis for the classification of
maps [39]. ArcGIS was used for the mapping of the vulnerability map of the drought in an
effective way. The definitions of the other parameters are given in detail below.

3.2.1. Parameters Used in Physical Drought Vulnerability

With the dry weather scenario, the vulnerability of the physical drought is fundamen-
tally related. Four criteria for the vulnerability mapping of spatial drought were chosen for
this analysis, as seen in Figure 3. The selected criteria of the physical drought are below
(Figure 3).

Annual rainfall: The relationship between drought and annual rainfall is negative,
which means that, with falling rainfall at a given area, the vulnerability of drought will
increase [40]. The average annual rainfall was determined by considering the amount of
the cumulative monthly rainfall of each district (Table 2).

Wet-day frequency: Frequency of rainy days is also a primary parameter for the
mapping of drought vulnerability. Due to the rising number of rainy days, drought levels
may decrease [41]. This ensures that more days of rainy weather will avoid a condition
of drought.

Evapotranspiration: Evapotranspiration is one of the most important criteria for
evaluating the vulnerability of drought [42]. Drought is positively related to this parameter.
This means that the growing amount of evapotranspiration would be the source of the
more severe drought in a given location [42].

Average temperature: The average temperature is another relevant parameter for
assessing the vulnerability of droughts. This parameter is positively related to drought. In
the case of an area, if the temperature increases, the drought will also increase with it [43].
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3.2.2. Parameters Used in Water Demand and Use-Induced Vulnerability

Total water demand: Evaluating water demand is a fundamental aspect of gauging
drought vulnerability. As communities grow and urbanize, strain on water resources
increases. During droughts, heightened demand exacerbates scarcity issues, potentially
leading to deficits and vulnerability. The correlation between total water demand and
drought susceptibility is well-documented and backed by research. Monitoring trends in
demand helps anticipate and mitigate drought impacts. For a growing amount of water
demand in a given region, the drought would rise. The overall water demand is the
most significant factor in the vulnerability of drought and is directly linked to drought
conditions [44]. Water demand data was obtained from the 2016 groundwater booklet.

Water used for irrigation: Agriculture, especially in countries like India, is a major
water consumer. Irrigation is crucial for food production, and water scarcity during
droughts can lead to crop failures, food insecurity and economic losses. Considering
water used for irrigation provides insights into a drought’s potential impact on agriculture
and food security. Therefore, the water used for irrigation purposes is a very responsible
parameter (Figure 4).

Water for all use: Comprehensive drought vulnerability assessment must include
residential, agricultural, industrial and livestock water needs. When demand exceeds
supply, challenges arise, particularly in droughts. Inadequate residential water affects
health, and diverse uses highlight societal and economic implications. Incorporating all
water needs provides a holistic understanding of drought effects. Data for various uses is
obtained from the 2016 groundwater report (Figure 4).
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3.2.3. Parameters Used in Agricultural Component-Induced Vulnerability

Irrigation intensity: The region with higher irrigation intensity is severely impacted
by drought, as the demand for water in these areas is strong. As a result, the higher the
irrigation intensity, the higher the chances of drought occurrences. The net and gross
irrigated area of the state are 143.92 lakh. ha and 217 lakh ha. respectively (Figure 5).

Gross cropped area: Gross cropped area is one of the most significant factors for
the drought-induced agricultural component. The relationship between this aspect and
the drought is positive, i.e., the drought conditions will rise with a significant volume of
gross cropped area. The crop yield per unit area of the state is approximately 26.09 tons
per hectare.

Net sown area: Another important consideration for the estimation of the drought is
the net sown area. The drought’s state is also positively related to this parameter. Drought
conditions would certainly impact the region with a huge volume of crops.

Cropping intensity: Essentially, the crop intensity is determined by the ratio of the
gross area to the net area of the crop. Agriculture production can be improved by increasing
the crop intensity [45]. Thus, the relationship between drought and this element is positive.
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3.2.4. Parameters Used in Land Use-Induced Vulnerability

Gross irrigated area: Gross irrigated area is expressed as a total area under crops which
is irrigated once or more. In this situation, the number of times the areas are harvested in a
single year is considered most. With a growing amount of gross cropped area, the risk for
drought could increase.

Net irrigated area: This is defined by the region that is irrigated by every source for a
specific crop once a year. With this parameter, the relationship is also direct and considered
to be a critical parameter for drought (Figure 6).
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Area under forests: Forests are one of the most significant factors in protecting an area
from drought. If the number of trees is high, the drought will decrease. This means that
a greater forest area will protect a region from drought. Therefore, it is considered to be
a critical parameter in this case. Increased forest cover diminishes drought vulnerability
through improved soil moisture retention, microclimate regulation, sustained groundwater
levels and enhanced evapotranspiration. This synergy effectively alleviates water scarcity
and mitigates the adverse effects of drought.

3.2.5. Parameters Used in Ground Water Status-Induced Vulnerability

Total ground water: Ground water is one of the most important factors that can save
an area from droughts. Groundwater plays a key role in avoiding drought. Therefore, the
association with this element for drought is negative (Figure 7).
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Stage of ground water development: This is the ratio of annual ground water with-
drawal and the proportion of total annual ground water supply. The relationship between
drought and this parameter is positive. The rise in the percentage of this parameter would
increase the level of drought.

Ground water for future irrigation: If the volume of water for potential use is adequate
for a given area, it is believed that the region will not suffer from situations such as drought.
Similarly, if ground water is adequate for potential irrigation in a given region, the drought
would undoubtedly decrease.

3.2.6. Parameters Used in Population- and Development-Induced Vulnerability

Population density: Population growth would certainly have an effect on the area due
to factors such as drought [46]. Since the population is rising, more water will be required
to satisfy the need for water. The relationship of drought duration to this factor is also
positive, and a significant amount of people will be affected by it (Figure 8).
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Health: Drought is very much reliant on the state of local residents. If the health state
of a certain area is strong, they would be more likely to deal with a drought crisis. As a
result, drought vulnerability is adversely linked to this.

Education: Similarly to the health status of residential residents, if the education level
is high in a particular region, they will also be protected from being vulnerable to drought;
hence, they are likely to be more aware of drought conditions.

Income Index: With a high number of resources, people can battle the drought cri-
sis and they can adopt a precarious situation more effectively with high incomes and
creative strategies.
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Table 2. Reason behind the consideration of drought conditioning factors for drought vulnerability
modelling.

Factors Causes of Selecting the Parameters References

Annual rainfall With higher rainfall the vulnerability of drought
will decrease. [47]

Average temperature Higher average temperature will enhance the
drought condition. [48]

Evapotranspiration Aspects have a severe impact on the landslide
owing to the intense heat of the sun. [49]

Wet day frequency With the rising frequency of wet day, the
drought will reduce. [50]

Total water demand The drought condition will increase by more
water demand. [51]

Water use for irrigation The demand of water for irrigation will increase
the drought. [52]

Water for all use For the more demand of water, the dryness is
increased. [53]

Gross cropped area Higher gross cropped area means more
vulnerable to drought. [54]

Cropping intensity High intensity increases the severity of drought [45]

Irrigation intensity More water demand for irrigation means
increasing amount of drought. [55]

Gross irrigated area Larger amount of gross cropped area will
accelerate the condition of drought. [54]

Net irrigated area With the increasing amount of net irrigated area,
the drought will enhance. [56]

Area under forest Drought will accelerate by decreasing amount of
area under forest cover. [56]

Total ground water Sufficient amount of ground water reduces the
drought vulnerability. [57]

Stage of ground water
development

With the increasing percentage of this parameter
drought will increase. [58]

Ground water for future
irrigation

Less ground water for future irrigation means a
greater number of droughts. [57]

Population density Increasing number of people will increase
drought. [46]

Health Good health condition reduced drought
situation. [59]

Education High level of education can prevent a region
from drought condition. [60]

Income index Higher income level can decrease the number of
droughts of a region. [8]

3.3. Application of Fuzzy AHP

In 1980, Saaty developed the theory of fuzzy AHP [61]. In this theory, the fuzzy
hypothesis applies to the AHP system. The AHP approach is essentially used for decision-
making purposes for the use of multi-criteria layers. This approach is correlated with a
pair of wise analysis of the different solutions according to a variety of criteria and the
weighting judgment. The complexity for each choice is not included in the AHP, but the
fuzzy approach addresses this problem. The weights of the directional parameters were
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calculated by the fuzzy AHP method, which allows a better approach to the problem of
multi-criteria decision-making.

The Fuzzy Analytic Hierarchy Process (fuzzy AHP) method presents a significant
advancement in the field of drought vulnerability assessment by effectively addressing
the inherent uncertainties and complexities associated with the assessment process. This
innovative approach integrates the AHP framework with fuzzy logic, allowing for the
incorporation of subjective judgments and imprecise data in a systematic manner. By
accommodating vagueness and ambiguity, the fuzzy AHP method enables a more com-
prehensive and accurate evaluation of drought vulnerability, considering multiple criteria
and their interdependencies. This enhances the robustness and reliability of the assess-
ment, making it a valuable tool for policymakers, researchers, and practitioners in devising
targeted and adaptive strategies to mitigate drought impacts and enhance resilience in
water-scarce regions.

The first use of the fuzzy AHP approach is identified with [62]. They have addressed
the functions of triangular membership for the purpose of pair-wise comparison. By defin-
ing the priorities of fuzzy, Buckley applied a new theme to the triangular functions in
1985 [63]. However, to determine comparative weights of significance, a variety of tech-
niques were applied to the fuzzy AHP method for both instances (general and replacement).
The method provided by Buckley has been used in our research. The fuzzy AHP approach
is discussed below.

Stage 1 decision makers compare or replace parameters in a linguistic manner as seen
in Table 3. For example, if the value of parameter 1 is perceived to be less than that of
parameter 2 by the decision-maker, then it is considered on a fuzzy triangular scale (2, 3, 4).
Alternatively, (1/4, 1/3, 1/2) would be the fuzzy triangular scale for the relationship
between C2 and C1 in the contribution matrices (pair-wise) of the layers [64]. The matrix
of the pair-wise contribution is shown in Equation (1) where the superiority of the kth
decision-maker of the ith parameter over the jth criteria has been indicated using the fuzzy
triangular numbers, the first choice of the decision-maker for the first parameter is indicated
by d ~ 112, which is d ~ 112 = (2, 3, 4).

d̃k


d̃k

11 d̃k
12 . . . d̃k

1n
d̃k

21 . . . . . . d̃k
2n

. . . . . . . . . . . .
d̃k

n1 d̃k
n2 . . . d̃k

mn

 (1)

Table 3. Philological terminologies and the equivalent triangular numbers of fuzzy.

Saaty Scale Definition Fuzzy Triangular Scale

1 Equally important (Eq. Imp.) (1, 1, 1)
3 Weakly important (W. Imp.) (2, 3, 4)
5 Fairly important (F. Imp.) (4, 5, 6)
7 Strongly important (S. Imp.) (6, 7, 8)
9 Absolutely important (A. Imp.) (9, 9, 9)
2

The intermittent values between
two adjacent scales

(1, 2, 3)
4 (3, 4, 5)
6 (5, 6, 7)
8 (7, 8, 9)

Stage 2 in any case, if the number of the decision-maker is greater than one, the average
major concern for each decision-maker is accepted and the estimate is seen in Equation (2).

d̃ij =

K
∑

k=1
d̃k

ij

K
(2)
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Stage 3 there has been a transition in the pair-wise matrix which is steady with the
mean priorities seen in Equation (3).

Ã =

d̃11 . . . d̃1n
...

. . .
...

d̃n1 . . . d̃nn

(3)

Stage 4 for each criterion, the identification of the geometric mean of fuzzy comparative
values shall take place as per Buckley and using Equation (4). Here, the triangular values
are also represented.

r̃i =

(
n

∏
j=1

d̃ij

)1/n

, i = 1, 2, . . . , n (4)

Stage 5 the fuzzy weight of every criterion could be estimated by using Equation (5)
after combining the 3 sub-steps below:

(i) Estimate the vector summation of every r̃i;
(ii) Discover the (−1) power of summative vector. Transform the fuzzy triangular

number to enhance it;
(iii) To obtain the fuzzy weight of i(w̃i)i parameter multiply each r̃i with this reverse

function that follows.
w̃i = r̃i ⊗ (r̃1 ⊕ r̃2 ⊕ . . . ⊕ r̃n)

−1

= (lwi, mwi, uwi)
(5)

Stage 6 using the Chou and Chang method, it is important to de-fuzzify as the fuzzy
triangular numbers are still defined by using Equation (6).

Mi =
lwi, mwi, uwi

3
(6)

Stage 7 in this last stage, Mi is expected to be standardized by using Equation (7) while
Mi is not a fuzzy integer.

Ni =
Mi

∑n
i=1 Mi

(7)

Appropriate weights of all parameters along with alternatives can be calculated by
using the above seven phases. After that, the ratings are determined for each alternative by
combining each alternative weight along with important parameters. In response to these
results, the decision-maker identifies the option with the most desirable score.

3.4. Fuzzification of the Parameters

The transformation of an input into a fuzzy attribute is known as a fuzzification [65].
Owing to vagueness, uncertainty or complexity, where any blurredness has arisen, this
means that the variable may be fuzzy, and the membership function may imply it. The
degree of membership is determined using fuzzification. In this analysis, using the function
of fuzzy membership, we have transformed all layers of different parameters of drought-
induced vulnerability into fuzzy layers in the ArcGIS environment, depending on their
direction (positive or negative) in assessing the vulnerability of drought. The effect of each
parameter is seen in Table 4.

Table 4. Drought vulnerability parameters and their relationship with drought.

Sl No. Parameters Relationship of Parameters with Drought

1 Annual rainfall Negative
2 Average temperature Positive
3 Evapotranspiration Positive
4 Wet day frequency Negative
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Table 4. Cont.

Sl No. Parameters Relationship of Parameters with Drought

5 Total water demand Positive
6 Water for all use Positive
7 Water use for irrigation Positive
8 Gross cropped area Positive
9 Net sown area Positive
10 Cropping intensity Positive
11 Irrigation intensity Positive
12 Gross irrigated area Positive
13 Net irrigated area Positive
14 Area under forest Negative
15 Total ground water Negative

16 Stage of ground water
development Positive

17 Ground water for future
irrigation Negative

18 Population density Positive
19 Income index Negative
20 Education index Negative
21 Health index Negative

3.5. Computing the Weight of the Parameters by AHP

The weights of the various parameters of the induced vulnerability were calculated
using the AHP approach to classify the integrated vulnerability of western Odisha drought.
The comparison matrixes (pair-wise) were built based on the contribution of each criterion
layer to the degree of drought. The weights of each parameter were determined by calcu-
lating the rank of each parameter. The rating, weight and decision matrix for six categories
of drought vulnerability are seen in Table 5.

Table 5. Assigned ranks and weights of each parameter.

Parameters Rank Weight

Physical
Annual rainfall 1 0.466

Average temperature 2 0.277
Evapotranspiration 3 0.161
Wet day frequency 4 0.096

Water demand and use
Total water demand 1 0.539

Water for all use 2 0.297
Water use for irrigation 3 0.164
Agricultural component

Gross cropped area 1 0.466
Net sown area 2 0.277

Cropping intensity 3 0.161
Irrigation intensity 4 0.096

Land use
Gross irrigated area 1 0.539
Net irrigated area 2 0.297
Area under forest 3 0.164

Ground water status
Total ground water 1 0.539

State of ground water development 2 0.297
Ground water for future irrigation 3 0.164
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Table 5. Cont.

Parameters Rank Weight

Population and development
Population density 1 0.466

Income index 2 0.277
Education index 3 0.161

Health index 4 0.096

3.6. Validation Methods
3.6.1. MAE

The mean absolute error (MAE) is determined by summing up all the values of the
disparity between the practical and the enumerated values distant from their position [66].
The equation shall be expressed as follows:

MAE =
1
N

n

∑
i=1

∣∣∣Vpredict − Vobserv

∣∣∣ (8)

where N represents the size of sample, Vpredict represents predicted and Vobserv refers to the
practical values of the dependent variable.

3.6.2. RMSE

Root mean square error (RMSE) is designed to establish a square root ratio between
the difference of the enumerated values and the practical values [67]. The equation shall be
defined as follows:

RMSE =

√√√√√ N
∑

i=1
[Vpredict − Vobserv]

2

N
(9)

4. Results
4.1. Drought Vulnerability Mapping Based on Physical Aspect

The drought vulnerability map based on the physical parameter reveals that the
districts of Baragarh, Bolangir, Deogarh and Jharsuguda are coming under very high and
high drought vulnerability areas (Figure 9A). These extremely high and high vulnerability
areas occupy roughly 36.96 per cent (6.05 km2) and 5.19 per cent (0.85 km2) of the study
area, respectively (Table 6). The lower portion of the study region is protected by a
moderate drought vulnerability region. These areas primarily include the Kalahandi and
Nabarangapur districts (Figure 9A). A total of 19.16 percent (3.14 km2) of the study area
is within this vulnerability region (Table 6). Sundargarh, Sambalpur and Nuapara have
low to very low drought vulnerability (Figure 9A). Low to very low risk areas occupy
approximately 38.69 per cent (6.34 km2) of the research area (Table 6).

Table 6. Area under five drought vulnerability classes.

Drought Vulnerability
Based on Physical

Aspect

Vulnerability
Class

Number of
Pixels Area (%) Area in

(km2)

Very low 4719 25.94 4.25
Low 2319 12.75 2.09

Moderate 3486 19.16 3.14
High 944 5.19 0.85

Very high 6725 36.96 6.05
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Table 6. Cont.

Drought Vulnerability
Based on Water

Demand and Use

Vulnerability
class

Number of
pixels Area (%) Area in

(km2)

Very low 4143 20.76 3.73
Low 944 4.73 0.85

Moderate 3486 17.47 3.14
High 2319 11.62 2.09

Very high 9066 45.43 8.16

Drought vulnerability
based on agriculture

Vulnerability
class

Number of
pixels Area (%) Area in

(km2)

Very low 4143 20.76 3.73
Low 944 4.73 0.85

Moderate 3486 17.47 3.14
High 2319 11.62 2.09

Very high 9066 45.43 8.16

Drought vulnerability
based on land use

Vulnerability
class

Number of
pixels Area (%) Area in

(km2)

Very low 2895 14.51 2.61
Low 2192 10.98 1.97

Moderate 3486 17.47 3.14
High 4023 20.16 3.62

Very high 7362 36.89 6.63

Drought vulnerability
based on ground water

Vulnerability
class

Number of
pixels Area (%) Area in

(km2)

Very low 4649 25.68 4.18
Low 2327 12.85 2.09

Moderate 3519 19.43 3.17
High 956 5.28 0.86

Very high 6656 36.76 5.99

Drought vulnerability
based on population

and development

Vulnerability
class

Number of
pixels Area (%) Area in

(km2)

Very low 4719 25.94 4.25
Low 2319 12.75 2.09

Moderate 3486 19.16 3.14
High 944 5.19 0.85

Very high 6725 36.96 6.05

4.2. Drought Vulnerability Mapping Based on Water Demand and Used

The drought vulnerability map used and based on water demand shows that mainly
the northern (Sundargarh, Sambalpur) and southern (Nuapara, Kalahandi and Nabaranga-
pur) districts are vulnerable to a very high drought vulnerability zone (57.05%)
(Figure 9B) (Table 6). The district of Jharsuguda comes under a moderate vulnerability zone
(11.62 percent area) (Figure 9B) (Table 6). The middle portion of the study area, primarily
the districts of Baragar, Bolangir and Deogar, falls under very low to low vulnerability
areas (Figure 9B) and these two zones occupy 25.49 percent (4.58 km2) of the study area
(Table 6).

4.3. Drought Vulnerability Mapping Based on Agriculture

The drought vulnerability map based on agriculture is the same as the vulnerability
map based on the demand and use of water. The districts of Sundargarh, Sambalpur,
Nuapada, Kalahandi and Nabarangapur are also very strongly vulnerable to high drought
(57.05 percent) (Figure 9C) (Table 6). About 11.62 percent of the state is moderately vul-
nerable (district of Jharsuguda). Bargarh, Bolangir and Deogarh districts that are largely
located in the middle part of the study area are vulnerable to low to very low vulnerability
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to drought (Figure 9C). The area of the study region occupies about 25.49 percent (4.58 km2)
(Table 6).
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Figure 9. Drought vulnerability based on six considered categories.

4.4. Drought Vulnerability Mapping Based on Land Use

We can see that the very high to high vulnerability zone occupies about 57.05 percent
of the study region in the vulnerability map dependent on land use (Table 6). These two
regions primarily include the districts of Sundargarh, Sambalpur, Nuapada, Kalahandi and
Nabarangapur (Figure 9D). About 11.62 percent of the Jharsuguda district region came
under a moderate drought vulnerability zone, and 11.62 and 14.51 percent of the remaining
area fell under a low and very low vulnerability area, respectively (Table 6). These two
areas primarily comprise the districts of Baragarh, Bolangir and Deogarh (Figure 9D).

4.5. Drought Vulnerability Mapping Based on Ground Water

The map of drought vulnerability based on groundwater is somewhat the same as the
map of physical drought vulnerability. The extremely low and low vulnerability areas here
often include the northern and southern parts of the area in particular. These two areas
occupy 38.53 percent of the research area in total (Table 6). These two areas are predomi-
nantly Sundargarh, Sambalpur, Nuapara and Nabarangapur (Figure 9E). Kalahandi district
has come under a moderate drought vulnerability category (Figure 9E). Quite high to high
vulnerability to drought can be seen in the districts of Baragarh, Bolangir, Jharsuguda and
Deogarh (Figure 9E). These two areas primarily occupy 42.04 percent of the research area
(6.85 km2) (Table 6).
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4.6. Drought Vulnerability Mapping Based on Population and Development

In the population-based and growth-based vulnerability map, we can see that the
physical drought vulnerability map gives the same outcome. The districts of Baragarh,
Bolangir, Deogarh and Jharsuguda are inhabited by very high to high vulnerability areas
(Figure 9F). These two areas largely occupy 42.15 percent (6.9 km2) of the study area
(Table 6). The Kalahandi and Nabarangapur districts, which are located in the lower part
of the study area, are moderately vulnerable to drought (Figure 9F). This area occupies
approximately 19.16 percent of the study region (3.14 km2) (Table 6). Around 38.69 percent
of the study area, which is roughly 6.34 km2, is largely occupied by very low to low drought
vulnerability zones (Table 6).

4.7. Integrated Drought Vulnerability Mapping

In the integrated drought vulnerability map, the highest percentage of the region
(32.66 percent) was found to have come under a very high vulnerability region covering
the Sundargarh and Sambalpur districts (Table 7) as seen in Figure 10. On the other side,
the district of Nuapara (7.56 percent) is covered by a high vulnerability zone (Table 7). The
moderate vulnerability zone occupies about 25.74 percent of the study region (Table 7). The
Kalahandi and Nabarangapur districts are part of this zone (Figure 10). The composite area
of 34.04 percent of the study zone is very low to low vulnerability (Table 7). The districts of
Bolangir, Baragarh, Deogarh and Jharsuguda inhabit all of these zones (Figure 10).
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Table 7. Area under integrated drought vulnerability classes.

Vulnerability Class Number of Pixels Area (%) Area in (km2)

Very low 6679 29.84 6.01
Low 940 4.20 0.85

Moderate 5760 25.74 5.18
High 1693 7.56 1.52

Very high 7309 32.66 6.58

4.8. Validation of Drought Vulnerability Model

The validation of drought vulnerability evaluation was carried out by the root mean
square error (RMSE) and mean absolute error (MAE) validation methods, as described in
the methodology. For RMSE and MAE, 0.354 and 0.386 values were found, respectively.
It is seen from the measured RMSE and MAE value of the current vulnerability model
that the model used in the current study is accurate and suitable for assessing the drought
vulnerability of any area, because the number of errors is very minimal. The historical
drought events have also provided support for the drought vulnerability map of Odisha
generated in the current study [68–70]. The following are some drought years in Odisha:
1983, 1987, 2002, and 2015 [30].

5. Discussion

Many researchers have prepared a significant number of studies on drought vulnerabil-
ity mapping [56–58]. In addition to this, several researchers have established drought miti-
gation strategies and policies in India [59,71]. However, it is very rare for India to determine
drought vulnerability with many criteria of different component-induced drought [59,71]
and the number of drought studies on Odisha, India, is also very low. We have consid-
ered the western portion of Odisha in this present study for the assessment of drought
vulnerability, as drought is a major problem in this province [72]. Here, we have intro-
duced six criteria of drought-induced components (physical, demand and usage of water,
agriculture, land use, state of ground water and population and development) that are
highly responsible for drought vulnerability [59,73]. In order to recognize the vulnera-
bility of an area, we have found a total of 22 parameters from various drought-induced
components that are very crucial [59,68,74]. Based on the previous literature, we have
chosen all the parameters, and, at the same time, we have evaluated the vulnerability of
drought using the fuzzy AHP system, which is one of the trendiest methods for evalu-
ating drought vulnerability and provides a good result in this area [59]. However, the
fuzzy AHP approach has some disadvantages as this methodology does not tackle the
non-straight model with it; hence, this model cannot cope with uncertainty. This strategy
often relies more on decision-makers by whom the rating system is considered biased [59].
However, this technique is useful in determining the priority value of the parameters. But,
in recent years, the fuzzy AHP approach has been very important in modelling drought
vulnerability [59]. In the fuzzy method, the fuzzification was carried out on the basis of
the importance of the parameters, along with the weighting of the parameters by the AHP
method. The combination of these two methods has improved the importance of this study.
We have composited all the parameters of drought by using this methodology and have
finally prepared the final map of western Odisha’s drought vulnerability. Although many
parameters for the development of drought vulnerability are considered, this study will be
very reliable for the future planning of Odisha’s natural hazard management and for the
planners, researchers and decision-makers of other drought-related research. In this study,
we prepared a total of seven drought vulnerability maps in which the first six maps were
developed on the basis of six vulnerability-based components. Then the six maps were
subdivided further into five classes. After that, all six drought vulnerability maps were
combined to obtain the final result of the drought vulnerability of the northwestern part
of Odisha and subdivided the map by using Jenks’ natural break process from 1967 [75].
From the findings, it is clear that mainly the upper part of this current study’s region has
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fallen through quite high along with the extreme drought vulnerability zone. The names
of the upper districts are Sambalpur and Sundargarh (Figure 10), which means that these
districts are more vulnerable to drought [76–78]. The districts, which are more vulnerable
to drought, have agriculture as their only source of income. High levels of insecurity, less
crop diversity, high levels of borrowing and cultivation make the situation worse [79].
Livelihood diversity is mainly concerned with the control of the risk of natural disaster [79].
The largest region of northwestern Odisha is vulnerable to high drought (Table 7), which is
around 33 percent. In addition to this high temperature, decreased rainfall levels, water
shortages, higher evaporation rates and lower levels of ground water are also responsible
for significant vulnerability to drought [59]. However, the eastern part of the state is not
severely vulnerable to drought as it is situated near the Bay of Bengal [59]. Since the diver-
sity of livelihoods of farmers in that part of the country is much less, they are essentially
dependent on agricultural activities and agriculture-related activities for their livelihoods.
As a result, they are mainly affected by the severity of the drought. It is also found here
that people’s socio-economic conditions are also extremely low [80,81]. Farmers’ income is
substantially lower in areas with drought severity [38,69] where farmers are highly affected.
For the assessment of drought, the applied fuzzy AHP method has provided a valuable
result. The method of rainwater harvesting in this area, along with this scientific use of
water, knowledge of water shortage, the quest for ground water, adaptation of different
crop trends and crop diversity in the northwestern part of Odisha, should be considered
in this drought’s situation. The implementation of a crop insurance scheme is one of the
better steps for the country to deal with drought [59]. This analysis would be of interest to
potential researchers because, with the aid of this report, they will further add certain other
criteria that can be used to represent the vulnerability of drought in a more precise manner.
With the aid of this report, future researchers will also build a more useful model for the
estimation of droughts. However, field surveys may increase the importance of this form
of vulnerability assessment. Nevertheless, the control methods of the natural hazards of
India as well as the environment can be strengthened in an acceptable manner.

Odisha’s susceptibility to drought stems from a confluence of geographical, climatic,
and socio-economic factors [49]. Its predominantly a tropical climate, characterized by
seasonal and often erratic monsoons, resulting in uneven distribution of rainfall across the
region. The state’s undulating terrain is coupled with poor soil moisture retention and
exacerbates water scarcity during dry spells [50]. High evaporation rates, coupled with
overexploitation of groundwater resources and inadequate water management practices,
further amplify the region’s vulnerability [50,51].

The implications of our findings reverberate profoundly in the area of drought man-
agement and policy formulation in Odisha. Our results advocate for the immediate imple-
mentation of strategic measures, such as rainwater harvesting, prudent water management
practices, groundwater conservation, and diversification of crops, particularly in regions
exhibiting elevated vulnerability. The proposition of a crop insurance scheme emerges
as a pragmatic stride toward mitigating the adverse effects of drought [59]. Beyond its
immediate application, our study serves as a springboard for future researchers, providing
a scaffold to refine assessments by integrating additional criteria and elevating model accu-
racy. While acknowledging potential limitations, such as the enrichment brought by field
surveys, our research equips decision-makers and stakeholders with invaluable insights to
bolster natural hazard management and fortify resilience in the face of drought-induced
adversities.

6. Conclusions

In conclusion, this study employed an integrated multi-criteria spatial drought method-
ology to generate a comprehensive drought susceptibility map for the northwestern region
of Odisha. By amalgamating diverse parameters from various causative components of
drought using the Fuzzy Analytic Hierarchy Process (fuzzy AHP) and geospatial tech-
niques, we verified the model’s applicability. Evaluation of the model’s performance using
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RMSE and MAE metrics on training and evaluation datasets validated its robustness. The
fuzzy AHP method effectively ranked and weighted parameters, leading to a synthesized
drought vulnerability map that offers valuable insights. The outcomes of our analysis un-
derscore critical zones of drought vulnerability within the study area. Notably, Sundargarh
and Sambalpur districts exhibit extreme vulnerability, while Nuapada experiences high
vulnerability. Moderate vulnerability characterizes Kalahandi and Nabarangpur, whereas
Jharsuguda, Deogarh, Baragarh and Bolangir districts face relatively lower vulnerability
levels. These findings hold immense practical utility for stakeholders, including planners,
decision-makers, natural resource managers and farmers, enabling them to formulate
targeted mitigation strategies, policies and actions. By aiding in the design of resilient
farming practices and water management approaches, the vulnerability map empowers
local communities to mitigate the adverse impacts of drought.

Furthermore, the transferability of this model to similar physiographic and geological
contexts beyond Odisha offers broader relevance for drought-vulnerable regions across
the country. This research serves as a crucial resource for India, a nation highly reliant
on agriculture for sustenance, guiding farmers in selecting drought-resistant crops and
optimizing water use. It is important to acknowledge the limitations of this study, such
as the reliance on published sources rather than field surveys and the potential omis-
sion of certain parameters. Nevertheless, the developed model’s adaptability to different
datasets and regions holds promise for enhancing drought vulnerability assessments in
diverse landscapes.

Based on the vulnerability assessment conducted in Odisha, several targeted measures
can be implemented to mitigate the impacts of drought. For districts exhibiting extreme and
high vulnerability, such as Sundargarh, Sambalpur and Nuapada, a multifaceted approach
involving enhanced water conservation and storage through rainwater harvesting, efficient
irrigation practices, promotion of drought-resistant crop varieties, and micro-level water
management initiatives should be prioritized. In areas with moderate vulnerability such as
Kalahandi and Nabarangpur, emphasis should be placed on promoting crop diversification,
sustainable land management practices and community-based water-sharing arrangements.
For districts with lower vulnerability, such as Jharsuguda, Deogarh, Baragarh and Bolangir,
continued awareness campaigns on water conservation and judicious water usage should
be reinforced to ensure preparedness for future drought events.

As we move forward, the insights gained from this study hold great potential for
informing proactive natural hazard management strategies. By equipping decision-makers
with a comprehensive understanding of drought vulnerability, this research lays the ground-
work for resilient and sustainable approaches that safeguard livelihoods and enhance the
overall resilience of vulnerable communities.
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