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Abstract: As a crucial surface water resource, the Yangtze River has raised concerns about its water
quality due to its importance in economic and social development, environmental conservation, and
agricultural development. The principal component analysis (PCA), hierarchical clustering analysis
(HCA), and the water quality index (WQI) were utilized to assess the overall condition and detect
spatiotemporal patterns and the key parameters of water quality in the Yangtze River. All usage
data were determined monthly from samples taken in 2021 at the 33 Yangtze River water quality
monitoring stations. The results demonstrated that 85% of the monitoring stations in the whole
Yangtze River were maintained at a “good” condition, with average WQI values ranging from 71.16
to 81.25. The water quality was slightly poorer in the summer, with 56.6% of monitoring stations
being in “medium” condition. Spatially, there was a downward trend in the water quality from
upstream to downstream. Two significant principal component scores (PCs) were produced as a
result of PCA and HCA, explaining 60.3% of the total variance in the upstream, 67.4% in the transition
zone, and 50.4% in the downstream, respectively. In addition, the middle–upper reaches of water
quality were found to correlated with CODMn, whereas the water quality in the downstream were
mainly influenced by TUR, TP, T, and DO. The results primarily motivated our understanding of the
Yangtze River’s water quality status and suggested the main targets for water quality improvement
in different monitoring areas.

Keywords: water quality parameters; water quality index (WQI); hierarchical cluster analysis (HCA);
principal component analysis (PCA); seasonal distribution

1. Introduction

Clean water is considered one of the most essential natural resources for ensuring
the security of both human health and biodiversity [1,2]. However, as our society and
economy advance, point source pollution, non-point source pollution, and air pollution
all worsen water quality [3–5]. Surface water is severely polluted on a global scale [6–8].
Suspended solids, organic wastes, and nutrients make up major pollutants [9–11]. Different
types of water contamination can be detected by water quality indices. For instance, high
total phosphorus levels, a defining organic waste, may lead to eutrophication of water
bodies and even bloom occurrence [12]. Therefore, a comprehensive understanding of
the spatial–temporal variations of water quality parameters was necessary, as well as an
objective assessment of water quality [13,14]. For the purpose of developing environmental
protection and resource management policies, it is crucial to accurately gauge changes in
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water quality and identify indicators of priority in various locations. In this regard, it is
vital to filter out water quality assessment methods that can be generally used, are simple
to compute, and produce reliable results.

Various water quality evaluation methods have been established for assessing water
quality conditions, including the Analytic Hierarchy Process method [15]; the Nemerow
index method [16]; the BP network model [17,18]; and the single factor index method [19].
Nevertheless, the monitoring of water quality usually generates a series of datasets, which
must be converted into a format that can be simply and successfully interpreted [20].
Compared to other methods, principal component analysis (PCA) has been extensively
applied for the assessment of water quality. PCA transforms a set of potentially correlated
variables into a set of linearly uncorrelated variables, thereby removing correlation between
evaluation indicators and reducing the workload associated with index selection [21]. When
evaluation approaches are effectively combined, the assessment can more correctly reflect
the water quality than when only one method is used [22]. Given that hierarchical cluster
analysis (HCA) is an available tool to classify similar samples into various groups [23],
the PCA method combining HCA is used to evaluate the Yangtze River’s water quality,
delineating the extent of water pollution in space.

The Yangtze River is the third-largest river in the world and the longest river in
China [24]. The most significant economic hub and reservoir of natural resources in China
is the Yangtze River Economic Belt, which was built around the Yangtze River [25]. More
than half of the nation’s wastewater is released into the Yangtze River each year, constituting
a pollution belt along the shoreline that stretches approximately 600 km [26]. The Yangtze
River basin’s water contamination has increased due to wastewater discharge, which is
hindering the basin’s sustainable development [24]. A series of improvement measures
has been taken to enhance the Yangtze River’s water quality. The Chinese Academy of
Environmental Sciences established the national Yangtze River Ecological Environment
Protection and Restoration Joint Research Center in April 2018 [26]. Since 2019, the Chinese
government has enforced laws for the prevention and management of water pollution in
the Yangtze River basin. Additionally, the Yangtze River Protection Law was passed in
December 2020 [27]. To quickly determine whether water quality prevention and control
strategies are effective, a reliable water quality assessment is very important for the Yangtze
River. Numerous studies have been carried out recently to investigate the Yangtze River’s
water quality situation [28–31]. Nevertheless, a lot of research solely pays attention to the
Yangtze River’s partial regions [29,30,32]. Focusing on the spatial and temporal distribution
of water quality in the Yangtze River’s main channel is essential, particularly after the
implementation of various measures in 2020. We can comprehend the overall water quality
of the Yangtze River and pinpoint the critical areas utilizing the principal component
analysis and cluster analysis.

In this study, nine water quality parameters were chosen for our research from the
33 Yangtze River water quality monitoring stations in 2021. The specific objectives are
as follows: (1) assess the overall water quality condition and understand spatiotemporal
water quality patterns based on individual parameters; (2) identify the key water quality
parameters of different segments by combining hierarchical cluster analysis and principal
component analysis.

2. Materials and Methods
2.1. Study Region

The Yangtze River (90◦33′~122◦25′ E, 24◦30′~35◦45′ N) originates from the southwest
side of Galadandong Peak of the Tanggula Mountains on the Qinghai–Tibet Plateau, with
a total length of 6397 km. The main stream travels through 11 administrative regions
of the provinces, including Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, Hunan,
Chongqing, Sichuan, Yunnan, and Guizhou, before emptying into the East China Sea to
the east of Chongming Island (Figure 1) (Table 1). Its main tributaries are the Yalong River,
Minjiang River, Tuojiang River, Jialing River, etc. The main lakes are Dongting Lake, Poyang
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Lake, Taihu Lake, etc. The Yangtze River basin’s yearly average precipitation ranges widely
from west to east (300–2400 mm), and its annual average temperature also ranges widely
(9–18 ◦C) [33]. The Qinghai–Tibet Plateau, which is characterized by an alpine climate, is
where the basin’s source is located. This region experiences 300 mm of precipitation on
average every year, with an average temperature of −4 ◦C [34]. The subtropical monsoon
climate that prevails in the middle and lower reaches is characterized by hot, wet summers
and warm, humid winters [35,36]. Forest reserves make up 25% of all the country’s woods
in this region, and the area is rich in vegetative resources. The middle and downstream
plains have a substantial amount of farmland [37].
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Figure 1. Location of the study area. (a) The location of the Yangtze River basin in China;
(b) elevations; and (c) main land use types.

Table 1. Information on the water quality monitoring stations.

River Subdivision Station Abbreviation Latitude (◦) Longitude (◦) Elevation (m)

The upstream stations

Guagongshan GG 28.78 104.68 327
Naxidadukou NX 28.74 105.23 272
Shoupayan SP 28.90 105.55 221
Jiangjindaqiao JJ 29.26 106.26 181
Fengshouba FS 29.41 106.51 167
Heshangshan HS 29.12 106.64 437
Cuntan CT 29.62 106.60 163
Sujia SJ 29.75 106.72 368
Lidu LD 29.75 107.27 314
Shaiwangba SW 30.83 108.45 149
Qingxichang QX 28.41 108.92 395
Jingjiangkou JJK 27.87 110.39 145
Baidicheng BD 31.04 109.57 115
Nanjinguan NJ 30.76 111.27 57
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Table 1. Cont.

River Subdivision Station Abbreviation Latitude (◦) Longitude (◦) Elevation (m)

The middle stream stations

Yunchi YC 30.48 111.46 67
Diaoguan DG 29.69 112.64 29
Liukou LK 29.74 112.76 36
Chenglingji CL 29.45 113.15 18
Zhuanwachang ZW 31.09 113.03 108
Guanyinsi GY 30.39 113.43 29
Yangsigang YS 30.51 114.26 26
Huanglashi HP 29.86 114.20 30
Zhongguanpu ZG 29.84 115.48 25
Hukou HK 29.74 116.26 31

The downstream stations

Yaoguang YG 29.73 115.98 30
Sanxingcun SX 31.97 117.42 40
Xiangkou XK 31.86 117.28 18
Chenjiadun CJ 31.59 117.27 7
Wubugou WB 30.77 117.68 12
Weicun WC 34.00 118.42 20
Qianjiangkou QJ 31.02 118.95 19
Xiaohekou XH 31.78 120.55 2
Xiaowan XW 31.49 120.99 3

2.2. Datasets

In this study, the Yangtze River’s 33 water quality monitoring stations, which cover
the main stream and important tributaries, collected water samples on a monthly basis in
2021 (Figure 1). Meanwhile, 14 water quality monitoring stations (from Guagongshan to
Nanjinguan station) are located upstream of the Yangtze River, 10 water quality monitoring
stations (from Yunchi to Hukou station) are located in the middle stream of the Yangtze
River, and 9 water quality monitoring stations (from Yaoguan to Xiaowan station) are
located downstream of the Yangtze River. Nine water quality parameters were analyzed in
our study, including pH (unitless), dissolved oxygen (DO, mg/L), potassium permanganate
index (CODMn, mg/L), ammonia nitrogen (NH3-N, mg/L), temperature (T, ◦C), electrical
conductivity (EC, µS/cm), turbidity (TUR, NTU), total phosphorus (TP, mg/L), and total
nitrogen (TN, mg/L), respectively. A total of 3564 samples were collected. The water
samples were obtained from the Ministry of Ecology and Environment of the People’s
Republic of China (https://www.mee.gov.cn/) (accessed on 10 September 2022). Sampling
methods refer to the standard for water quality sampling–technical regulation of the preser-
vation and handling of samples [38]. The methods for sample chemistry analyses were
based on the Standard Methods for the Examination of Water and Wastewater [39]. Additionally,
duplicate and blank samples were collected at each station to check the analytical accuracy.
To analyze seasonal changes in water quality, the seasons were defined as spring, sum-
mer, autumn, and winter, corresponding to the periods of March to May, June to August,
September to November, and December to February, respectively. Meanwhile, the study
area’s border data are provided by the Resource and Environment Science and Data Center,
China (https://www.resdc.cn/) (accessed on 1 October 2022).

2.3. Methods
2.3.1. Water Quality Index (WQI)

The WQI proposed by Rodriguez de Bassoon [40] has been widely used for water
quality assessment [41–43]. Water parameters were assigned weighting factors, which
could represent the difference of importance [40]. The calculations are based on the
following equation:

WQI = ∑n
i=1 CiPi

∑n
i=1 Pi

https://www.mee.gov.cn/
https://www.resdc.cn/
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where n is the total number of water quality parameters, Ci is the normalized value of the
i-th parameter based on Rodriguez de Bassoon (Table 2) [40], and Pi is the i-th parameter’s
calculated weight that is displayed in Table 2 after being validated by earlier studies. [40,44].
According to WQI values, water quality was divided into five categories: excellent (91–100),
good (71–90), medium (51–70), bad (26–50), and very bad (0–25).

Table 2. The relative weights and the normalization factors of the parameters.

Variables a Weight (Pi)
Normalization Factor (Ci)

100 90 80 70 60 50 40 30 20 10 0

pH 1 7 [7, 8) [8, 8.5) [8.5, 9) [6.5,
7)

6–6.5,
9, 9.5

5, 6, 9.5,
10

4–5,
10–11

3–4,
11–12

2–3,
12–13

1–2,
13–14

DO 4 >7.5 [7, 7.5) [6.5, 7) [6, 6.5) [5, 6) [4, 5) [3.5, 4) [3, 3.5) [2, 3) [1, 2) <1
CODMn 3 <1 [1, 2) [2, 3) [3, 4) [4, 6) [6, 8) [8, 10) [10, 12) [12, 14) [14, 15) >15

NH3-N 3 <0.01 [0.01,
0.05)

[0.05,
0.10)

[0.10,
0.20)

[0.20,
0.30)

[0.30,
0.40)

[0.40,
0.50)

[0.50,
0.75)

[0.75,
1.00)

[1.00,
1.25) >1.25

T 1 16–21 15–16,
21–22

14–15,
22–24

12–14,
24–26

10–12,
26–28

5–10,
28–30

0–5,
30–32

−2–0,
32–36

−4–2,
36–40

−6–4,
40–45

>45,
<−6

EC 1 <750 [750,
1000)

[1000,
1250)

[1250,
1500)

[1500,
2000)

[2000,
2500)

[2500,
3000)

[3000,
5000)

[5000,
8000)

[8000,
12,000) >12,000

TUR 2 <5 [5, 10) [10, 15) [10, 20) [20,
25)

[25,
30) [30, 40) [40, 60) [60, 80) [80,

100) >100

TP 1 <0.01 [0.01,
0.02)

[0.02,
0.05)

[0.05,
0.1)

[0.1,
0.15)

[0.15,
0.2)

[0.2,
0.25)

[0.25,
0.3)

[0.3,
0.35)

[0.35,
0.4) >0.4

TN 2 <0.1 [0.1,
0.2)

[0.2,
0.35)

[0.35,
0.5)

[0.5,
0.75)

[0.75,
1) [1, 1.25) [1.25,

1.5)
[1.5,
1.75) [1.75, 2) >2

Note: a Values in mg/L, T as ◦C, EC as S/cm, and TUR as NTU.

2.3.2. Hierarchical Cluster Analysis (HCA)

Cluster analysis, which is used to reveal the correlation or similarity between ob-
jects [45], could group the objects into few classes. The same classes have similar character-
istics but are different from other classes. Hierarchical cluster analysis was chosen in our
study. Cluster analysis has been widely used in water quality research [46,47]. The main
steps of hierarchical cluster analysis are as follows:

1. Data standardization using Z-source method

Zij =
Xij − Xi

Si

where Zij is the water quality index’s variable value following normalization at each
monitoring station, Xij is the average annual observed water quality concentration index
value of each monitoring station, Xi is the mathematical expectation, and Si is standard
deviation;

2. Treat n samples as their own category;
3. Combine the two classes with the smallest distance to form the new class. Distance

calculation usually uses Euclidean distance;
4. Calculate the clustering distance between the new class and other types;
5. Continue to combine the two most recent categories;
6. Repeat until all samples are in the same category.

2.3.3. Principal Component Analysis (PCA)

Principal component analysis was first introduced by Karl Pearson for non-random
variables and depends on an eigenvector decomposition of the covariance or correlation
matrix to establish combinations of variables [48].In brief, PCA transforms a raw dataset to
a new orthogonal uncorrelated variables dataset [49]. PCA is a common dimensionality
reduction method, whereby a close distance between two samples indicates a similar
species composition. The correlation matrix is adopted for the PCA, which signifies that all
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9 parameters are assigned equal weights in forming the principal components. The main
steps of PCA are as follows:

1. Standardize the raw data;
2. Calculate the correlation coefficient matrix C;

C =
1

n− 1
XtXT

t , n = 9

3. Calculate the eigenvalues and eigenvectors;
4. Calculate principal component contribution rate and cumulative contribution rate;
5. Select the first K principal components according to the cumulative contribution

rate of each component points:

P =


PT

1
PT

2
...

PT
n


where n represents the number of dimensions, X t represents the matrix after preprocessing,
P represents the cumulative contribution rate, and P1 through Pn represent the Nth principal
component.

In our study, the data of PCA should be preprocessed using a hierarchical cluster anal-
ysis. All mathematical and statistical computations were made using IBM SPSS Statistics 27
and Origin (Origin Pro 2023 (64-bit) 10.0.0.154).

3. Results
3.1. Water Quality Assessment of the Yangtze River

As a non-parametric statistical method, this paper cites Kruskall–Wallis as a difference
significance test [50]. Table 3 displays the statistical calculation summary of the quarterly
mean of the river. Figures 2 and 3 present variations in the spatial–temporal concentrations
of nine water quality parameters of the Yangtze River, respectively.

Table 3. Comparison of the variations of the water quality parameters in the Yangtze River in 2021.

Parameters a pH DO CODMn NH3-N T EC TUR TP TN

Thresholds of the
Class I Standards b 6.00~9.00 ≥7.50 mg/L ≤2.00 mg/L ≤0.15

mg/L N/A N/A N/A ≤0.02
mg/L

≤0.20
mg/L

Spring

Avg. ± S.D. 7.82 ± 0.26 8.54 ± 1.01 1.43 ± 0.39 0.058 ±
0.039

17.30 ±
2.76

373.35 ±
59.73

27.19 ±
20.17

0.064 ±
0.019

1.893 ±
0.339

Max 8.31 9.71 2.33 0.15 19.50 469.43 69.90 0.13 2.75
Min 7.25 6.19 0.76 0.02 14.12 249.56 3.75 0.03 1.14
H 29.14 234.14 111.17 27.89 354.02 52.22 169.41 51.58 48.31
P 0.004 <0.001 <0.001 0.006 <0.001 <0.001 <0.001 <0.001 <0.001

Summer

Avg. ± S.D. 7.72 ± 0.29 7.00 ± 1.23 1.99 ± 0.74 0.055 ±
0.078

25.32 ±
2.46

342.17 ±
47.16

86.91 ±
73.68

0.075 ±
0.027

1.799 ±
0.432

Max 8.27 8.95 3.50 0.37 28.14 420.66 262.57 0.13 2.43
Min 7.16 2.89 1.07 0.02 18.19 267.70 9.40 0.04 0.91
H 31.94 239.84 117.34 24.6 354.103 54.89 189.06 56.27 44.92
P 0.001 <0.001 <0.001 0.017 <0.001 <0.001 <0.001 <0.001 <0.001

Autumn

Avg. ± S.D. 7.78 ± 0.25 7.95 ± 1.14 1.93 ± 0.62 0.055 ±
0.065

21.50 ±
3.71

347.03 ±
37.98

55.07 ±
42.57

0.065 ±
0.022

1.656 ±
0.389

Max 8.19 9.56 3.31 0.31 23.61 421.19 160.58 0.12 2.49
Min 7.29 4.91 0.97 0.02 14.62 288.05 13.94 0.02 1.00
H 29.62 229.63 117.38 24.38 351.64 54.22 179.44 51.65 48.31
P 0.003 <0.001 <0.001 0.018 <0.001 <0.001 <0.001 <0.001 <0.001

Winter

Avg. ± S.D. 7.89 ± 0.25 9.62 ± 1.13 1.48 ± 0.60 0.057 ±
0.049

13.74 ±
2.75

381.72 ±
47.70

23.71 ±
20.90

0.061 ±
0.023

1.727 ±
0.337

Max 8.26 11.14 3.13 0.23 20.19 462.23 70.27 0.13 2.25
Min 7.46 7.62 0.85 0.02 10.56 296.15 3.31 0.023 1.00
H 33.35 247.03 109.30 26.27 352.24 58.34 171.43 52.30 45.77
P 0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Notes: a Values in mg/L, T as ◦C, EC as S/cm, and TUR as NTU. b Standards from the People’s Republic of
China’s environmental quality regulations for surface water [51]).
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Figure 2. Temporal concentrations for 9 water quality parameters for each monitoring station of the
Yangtze River. Note: (1) (a–i) represent the monthly water quality data for pH, DO, CODMn, NH3-N,
T, EC, TUR, TP, and TN, respectively; (2) range represents spring; green represents summer; purple
represents autumn; and yellow represents winter.

3.1.1. Water Quality Temporal Conditions Based on Physicochemical Properties

The quarterly mean pH values were all greater than 7.72, while the maximum mea-
sured pH value occurred in the spring (Table 3). All of the average pH readings over
the course of a year were higher than 6.94 (Figure 2a). The lowest and highest values
for dissolved oxygen were 6.96 mg/L in July and 9.81 mg/L in January, respectively
(p < 0.005, Table 3) (Figure 2b). Algal blooms and warmth are likely to blame for the shift
in dissolved oxygen content [52]. From September to April, there was a clear reduction
in the monthly CODMn values (Figure 2c). The NH3-N values in the successive months
(January to March and July to September) were relatively higher than those in the previous
months (Figure 2d), and 13.74 ◦C and 25.32 ◦C were the greatest and lowest quarterly mean
T values, respectively (Table 3). According to Figure 2e, the temporal variation exhibited a
clear increased tendency from March to September and a downward trend from October
to February, which is consistent with China’s overall temperature trend. It might have
something to do with atmospheric precipitation [53]. The highest and minimum EC values
varied by at least 1.5 times over each season. But there was no discernible change in EC
from spring to winter (Figure 2f). The greatest quarterly mean for TUR, which is reliant
on seasonal changes, was 86.91 NTU in the summer. For NTU, there was a significant
difference in value across the months (p < 0.005, Table 3) (Figure 2g). Heavy rainfall, run-off
with a high suspended matter content, and organic matter pollution could all have an
impact. TP concentrations were greatly above the Class I standard of the People’s Republic
of China’s environmental quality regulations for surface water (GB 3838-2002) of 0.02 mg/L
(Figure 2h). There was no discernible temporal change in TN, with the highest TN value of
1.92 mg/L occurring in August (Figure 2i).
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3.1.2. Water Quality Patterns Based on Spatial Variation

The Yangtze River basin’s regional distribution of water quality data is shown in
Figure 3. The distribution of the pH values showed a hidden trend with fluctuations from
upstream to downstream, and the average pH values were larger than 7.3 at 33 successive
stations (from the GG station to the XW station) (Figure 3a). The DG station recorded the
highest DO values at 9.4 mg/L, whereas the XK station recorded the lowest at 5.46 mg/L
(Figure 3b). The average yearly concentration of CODMn downstream was 1.81 mg/L.
Nearly ten times as much NH3-N was present at the LK station’s maximum value than at
the JJK station’s lowest (Figure 3d). There was no discernible pattern for T across all stations.
T values ranged from 7.69 ◦C in the winter at the XK station to 29.65 ◦C in the summer
at the SX station (Figure 3e). EC showed an obvious decreasing trend from upstream to
downstream, ranging from 406.6 ± 31.8 µS/cm at the GG station to 324.3 ± 38.2 µS/cm at
the XW station (Figure 3f). The TUR contents in the upstream stations were higher than
those of the other stations, with the LD station having the highest value at 130.7 111.2 NTU
and the XK station having the lowest value at 9.7 3.1 NTU (Figure 3g). The TP values from
upstream to downstream did not appear to vary spatially. At the CL station, the highest TP
values were 0.10 mg/L (Figure 3h). The distribution of the TN concentrations following
33 consecutive stations presented over 0.2 mg/L.
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3.1.3. Water Quality Conditions Based on WQI

Figure 4 depicts variations in water quality conditions. The WQI was calculated in
the Yangtze River during sampling periods based on the nine measured water quality
parameters above. From spring through winter, the Yangtze River’s WQI value first
declined and then rose. In the spring, summer, autumn, and winter, the mean WQI values
were 75, 61, 67, and 73, respectively. The maximum WQI value was 79.70 in November,
and the minimum WQI value was 67.44 in July. The results demonstrate that the water
quality was slightly poor in the summer, with 56.60% of monitoring stations rated as
“average”. Spatially, the water quality presented a trend of deterioration from upstream
to downstream. The stations downstream had a score ranging from 68.80 to 74.03. The
majority (85%) of monitoring stations’ WQI scores, with WQI values ranging from 71.16 to
81.25, classed the water quality conditions as “good”. The minimum WQI value was 68.80
at the XK station, and it was classified as “average” along with the LD station and the HK
station. Overall, the Yangtze River’s water quality is “good” based on the WQI results.
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3.2. Analysis of Water Quality Patterns of the Yangtze River Using the PCA Method
3.2.1. Hierarchical Cluster Analysis (HCA) of Yangtze River Water Quality

According to the similarity of the dataset and the identification of similarities and
differences, hierarchical cluster analysis (HCA) is a tool that can be used to arrange similar
samples into various groups [54,55]. In our study, the HCA was conducted on standardized
data to examine spatial differences and correspondence between 33 stations along the
river. The circular dendrogram (Figure 5) shows the three primary patterns that were
found. About 45% of the data came from the monitoring stations of the first groups,
which were primarily located upstream of the Yangtze River. The second group, with
only one-third as many monitoring stations as the first group, was mostly situated in the
upstream–downstream transition zone. The third group was mainly composed of the
downstream stations including about 39% of all stations.

3.2.2. Water Quality Conditions Patterns Based on the PCA

The PCA, which could identify some noteworthy parameters, was used to explore the
contribution of different parameters to water quality status in different patterns identified
using the hierarchical cluster analysis. The outcomes are displayed in Table 4 and Figure 6.
The PCA using annual data revealed that the first two PCs explained more than 52.76% of
the total variance of the water quality (Figure 6d). PC1 had a significant negative association
with EC and a relatively greater positive correlation with CODMn, indicating that PC1 is
associated with cleanliness of the sediment and organic pollution. Comparatively speaking,
the Yangtze River’s water quality can be controlled by paying more attention to the impact
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of organic contaminants and water acidity, according to the strong correlation between PC2,
pH, and TN.
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Table 4. Factor loadings of principal components on variables.

Variables
A a A1 a A2 a A3 a

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

pH −0.241 0.557 −0.177 0.609 0.435 −0.337 0.272 −0.054
DO −0.366 0.224 −0.403 −0.084 0.291 −0.278 0.483 0.360

CODMn 0.422 0.312 0.459 0.111 0.446 0.126 −0.286 0.250
NH3-N 0.010 0.117 −0.152 0.479 0.169 0.270 0.288 −0.317

T 0.460 0.008 0.470 0.086 0.144 0.482 −0.512 −0.250
EC −0.373 0.291 −0.277 0.137 0.166 −0.462 0.366 0.289

TUR 0.401 0.436 0.441 0.237 0.480 0.251 −0.319 0.419
TP 0.331 0.167 0.283 −0.076 0.370 0.303 −0.173 0.568
TN 0.088 −0.475 −0.019 −0.541 −0.287 0.346 0.003 0.247

Eigenvalue (%) 34.239 18.525 42.995 17.256 35.719 31.725 31.987 18.437
Cumulative (%) 34.239 52.764 42.995 60.251 35.719 67.444 31.987 50.424

Note: a A denotes the entire Yangtze River, A1 the upstream zone, A2 the upstream–downstream transition zone,
and A3 the downstream zone.

More than 60% of the overall variance in the water quality was explained by the first
two principal components (PCs) in the first group. A total of 43.0% of the variation was
supplied by the first and greatest eigenvector, and 17.3% was supplied by the second.
PC1 had comparatively higher positive correlations with T, followed by CODMn and
TUR. PC2 had a high correlation with pH and TN. The winter was distinct from the
summer (Figure 6a). Specifically, summer had distinctive water quality with relatively
high correlations between DO and EC, and winter had relatively high positive correlations
between CODMn, TUR, and T (Figure 6a).

In the second group, PCA produced a two-component model explaining 67.44% of the
variation in the water quality overall. The first main component (PC1), which had larger
loadings with TUR, CODMn, and pH, accounted for 35.7% of the variability in total. PC2,
which has a correlation with EC and T, is responsible for 31.7% of the overall variation. The
temporal difference of A2 was inconspicuous, relatively speaking (Figure 6b). A significant
level of consistency was seen when the PCA results of the transition zone were compared to
those of the upstream region. Higher correlations between TUR, CODMn, and T and water
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quality show the impact of organic matter and sediment in the upstream and transitional
regions.

The first two PCs in the third group accounted for 50.42% of the overall variance in
the water quality. The coefficients of parameters demonstrated that T had a relatively high
negative correlation, and DO had a higher positive correlation with PC1. TP and TUR
had positive correlations with PC2 (Figure 6c). Therefore, the downstream water quality
was mainly affected by phosphorus-containing pollutants, suspended sediments, or algae.
Compared with other seasons, the similarities between spring and fall are considerable.
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4. Discussion
4.1. Causes Affecting the Spatiotemporal Distributions of Individual Water Quality Parameters

The water quality of Yangtze River’s main stream displayed clear spatiotemporal
trends based on physicochemical characteristics. Between July and October, concentrations
of CODMn, T, TUR, and TP were higher than in other months, but DO showed a trend
in the reverse direction. The pH, EC, and TUR decreased from upstream to downstream,
while TN showed the opposite spatial variation.

Water temperature is the main factor affecting the change in dissolved oxygen [56].
The higher the temperature, the lower the dissolved oxygen concentrations. Consumed by
organisms in water [43], dissolved oxygen is closely related to the water quality. Due to the
rainy season, which lasts from July to November, the organic stuff that chemical fertilizers
and pesticides create is washed into the water body. On the other hand, the relatively high
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temperature will also cause inhabitants’ water use to rise, increasing the pollution load
from home sources [57]. Pesticides, fertilizers, and domestic sewage contain a lot of organic
pollutants, so CODMn and TP concentrations were greater from July to October. This is
consistent with other studies [28,58]. During the rainy season, non-point source pollution
will contribute to water quality at a higher rate [57]. Therefore, the government can reduce
the impact of non-point source pollution on the Yangtze River’s water quality by adjusting
the structure of agricultural input, lowering the usage of fertilizers and pesticides, and
expanding the local sewage treatment capacity.

One of the chemical factors that affects or causes the mineralization process brought
on by the watershed’s lithological composition is pH [48]. There was no significant change
in pH, which may be influenced by carbonate rocks [59]. According to the China Ecological
and Environmental Bulletin 2021, acid rain is mainly distributed in the south of the Yangtze
River and in the eastern Yunnan–Guizhou Plateau. The Yangtze River is dominated by
limestone and carbonate-rich Triassic sand shales [60], and acid rain speeds up the dissolv-
ing of these salt-bearing minerals, which was the cause of the pH being higher upstream.
The EC value of the Yangtze River’s main stream fell from the upper reaches to the lower
reaches, and the upper reaches’ high conductivity may be related to some sedimentary
rocks’ natural weathering. In surface water, TUR is usually caused by suspended sedi-
ments or algae. Suspended particles have a significant impact on the reduction in water
clarity [61]. High TUR will lead to deterioration of water quality and increase the cost of
nearby drinking water treatment with the Yangtze River water as raw water [9,62]. The
Yangtze River’s upper reaches have a wide longitudinal slope and vigorous flushing, which
raises the channel’s silt concentration and causes the TUR to be higher. It is worth noting
the TUR value of the upstream LD monitoring station. The Yangtze River’s yearly average
TUR was 48.22 NTU, while the LD station’s annual average TUR was 130.67 NTU, or nearly
2.7 times more. According to the data from China’s second national pollution source census,
the Yangtze River water body receives more than 50% of its nitrogen and phosphorus input
from agricultural non-point sources. Additionally, the net anthropogenic nitrogen input in
the downstream area is about three times that in the upstream area [63], which could result
in frequent algal blooms.

4.2. Assesses the Overall Water Quality Condition and Patterns

The 33 monitoring stations were grouped using a systematic cluster analysis. From
the analysis’s findings, the first and second sets of monitoring stations were situated in
the middle and upper reaches of the Yangtze River, while the third group was situated
downstream. The results were consistent with the geographical location, indicating that
the Yangtze River’s water quality presented gradual characteristics in different regions.
There were variations in the Yangtze River’s monitoring priority when combined with the
PCA method. The results showed that the Yangtze River’s water quality in summer was
worse than that in other seasons, which may be affected by domestic sewage and natural
pollution [55]. Spatially, the Yangtze River’s water quality had progressively declined from
upstream to downstream.

The Yangtze River’s upper reaches have greater water quality than its lower reaches,
which may be attributable to the effectiveness of soil and water conservation in the Yangtze
River’s middle and upper reaches. The Yangtze River basin’s soil and water loss was
337,000 square kilometers in 2020, as predicted by the Announcement on Soil and Water
Conservation in the Yangtze River basin (2020), down from 531,000 square kilometers in
the late 1990s [64]. Upstream, the water quality increased further. As a comprehensive
parameter of the degree of surface water organic matter pollution, CODMn could reflect
both the organic matter content and the level of water quality pollution. The PCA method
identified a correlation between CODMn and the middle–upper range, indicating a close
relationship between water quality and organic pollution. Authorities still need to keep
an eye on the water quality in the upper portions of the Yangtze River, despite the fact
that it was better than it was in the lower reaches. The Yangtze River’s upper reaches have
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experienced a constant decline in river flow as a result of climate change and rising human
water consumption [65]. This could cause the water quality to worsen, the surrounding
ecological environment to be destroyed, and the ecological environment of the downstream
water to be harmed.

The lower parts of the Yangtze River are vulnerable to flood disasters during the rainy
season as a result of severe rainfall events [66], which have varied degrees of damage to
water supply facilities and sewage discharge conditions. Due to the abundance of river
discharge and sediments, the relationship was manifested between water quality and TUR.
The lower parts of the Yangtze River have seen a reduction in total phosphorus emissions
since 2017, However, our research found that water quality was still strongly correlated
with total phosphorus [67], which may be related to the issue of phosphorus residues [68].
Economic variables may be linked to water quality [69]. Some studies showed that water
quality improves with economic development and the availability of comprehensive water
treatment facilities [70]. The findings of our study, however, showed that while the water
quality is worse in the lower parts of the Yangtze River, the economic situation is better. We
hypothesize that the worsening of water quality is a result of an increase in home sewage
and industrial wastewater caused by the rapid economic expansion in the lower reaches
of the Yangtze River [64]. Relevant results showed that industrial wastewater discharge
has decreased since China’s adoption of the River Chief System [71]. Notwithstanding, the
water quality in the downstream regions was still worse than that in the upstream regions,
reflecting the need for continued measures to improve the downstream water quality.

5. Conclusions

In this study, the results lead to the following conclusions:
(1) CODMn, T, TUR, and TP levels are comparatively high from July to September,

and EC and TUR all showed a clear downward spatial trend. By changing the pattern of
agricultural inputs and using fewer pesticides and fertilizers, government agencies can
lessen the effect of non-point source pollution on the Yangtze River’s water quality;

(2) The Yangtze River’s water quality declined from upstream to downstream. A
total of 85% of the monitoring stations have “good” levels of water quality, with WQI
values ranging from 71.16 to 81.25. The government can continue to take soil and water
conservation measures in the upper and middle reaches of the Yangtze River to maintain
water quality. At the same time, the variations of river flow should be tracked and timely
adjusted to keep the water’s ability to self-purify;

(3) The Yangtze River’s middle and upper reaches of water quality were found to be
strongly correlated with CODMn, whereas the downstream reaches of water quality were
strongly correlated with TUR, TP, T, and DO, according to the results of the PCA. The target
objectives for improving the water quality in various monitoring areas are made simpler
using PCA, which makes it easier to create various treatment programs for various Yangtze
River locations.
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