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Abstract: To study the impact of land—use structure and landscape pattern on water quality at
different spatial scales in the Dan River Basin (Qin Ling Mountains, China), water samples from
21 sites along the Dan River were collected in 2022 during the dry and wet seasons, and nine water
quality indices were tested. Land—use composition and landscape pattern indices at riverine reach,
riparian, and sub—basin were obtained, and correlation analysis and redundancy analysis (RDA)
were used to determine the relationship with water quality. The results are as follows. (1) Water
quality in the Dan River is better in the wet season than in the dry season; the main pollutants
are total nitrogen (TN) and total phosphorus (TP). (2) The impact of land—use composition and
landscape pattern on water quality has a scale effect; riverine reach can best explain the water quality.
(3) Agricultural land and forest have the greatest impacts on water quality; agricultural land and
construction land aggravate the deterioration of water quality, while forest, grassland, and water area
have positive effects on water quality. The largest patch index (LPI) and contagion index (CONTAG)
were positively correlated with pollutants, while Patch richness density (PRD), Patch shape (PD),
Shannon’s diversity index (SHDI), and landscape shape index (LSI) were negatively correlated with
pollutants, indicating that with an increase in the impact of human activities on landscapes, the
degree of fragmentation decreases patch richness, landscape shape tends to be simplified, and water
pollution is eventually aggravated. Land planners should focus on optimizing the land—use structure
and landscape pattern to increase the diversity of the landscape. Therefore, strict environmental
regulations must be established.

Keywords: water quality; land use; landscape pattern; scale effect; redundancy analysis

1. Introduction

Water quality safety is important for the survival of human society. With the rapid
development of China’s economy and society, water pollution, and the uneven distribution
of resources have been exposed, affecting human health and hindering the sustainable
development of the economy and society. Water quality and conservation improvements
have attracted widespread attention. Water resource pollution is divided into point and
nonpoint source pollution [1–4]. The area affected by nonpoint source pollution is large
and difficult to control, and the pollution mechanisms and influencing factors are more
complex than those of point source pollution; therefore, scholars have conducted extensive
research on nonpoint source pollution [5,6]. There is a close relationship between land—use
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structure, landscape pattern, and nonpoint source pollution [7–9]. Land—use structure
and landscape pattern are strongly affected by human activities and affect river water
quality by changing ecological processes, surface runoff, and the hydrological cycle at the
basin scale [5,10,11]. Therefore, it is of great significance to study the relationship between
land—use structure, landscape pattern, and water quality at the basin scale to improve river
water quality, scientifically manage water resources, and optimize land—use structure.

Scholars have studied the relationship between land—use structure, landscape pat-
tern, and river water quality at different spatial scales, such as riverine reach [12,13],
riparian [14–16], and sub—basin [17,18] using methods such as correlation analysis and
redundancy analysis [19,20]. However, owing to the influence of soil texture, hydrologi-
cal processes, climate, and so on, conclusions are often inconsistent in different research
areas [19]. Some studies have shown that construction and agricultural land have a signifi-
cant negative impact on river water quality [21,22] and that forests and grasslands have
active effects in improving water quality [23,24]. However, other researchers believe that
the effects of agricultural land and grassland on water quality are more complicated [25].
Additionally, there are uncertainties in the study of spatial scales. Sliva et al. found that
the impact of the sub—basin scale is greater than the buffer zone on water quality [26].
Johnson et al. concluded that the correlation between land—use composition and river
water quality is highest at the riverine reach scale, while Collins et al. believed that the
riparian scale can best explain water quality compared with other spatial scales [27].

The Dan River Basin in the Qin Ling Mountains of China is an important water
conservation and quality assurance area of the South—to—North Water Transfer Project,
which primarily supplies water to Beijing and Tianjin. The water quality safety and supply
in this basin are closely related to people’s physical health and the sustainable development
of the social economy. It is necessary to strengthen the protection of water resources in the
Dan River Basin to ensure the safety of the water supply. This study collected water samples
from the Dan River Basin in the dry and wet seasons of 2022 for testing, and calculated the
landscape pattern indices and proportion of land—use types at different spatial scales. We
applied correlation and redundancy analyses to explore the relationship between land—use
composition and landscape pattern indices on water quality and identified the spatial scale
with the greatest impact on water quality. This research is expected to find methods to
reconcile economic development with water management in the Dan River Basin.

2. Materials and Methods
2.1. Study Area and Data Preparation

As the longest tributary of the Han River, the Dan River originates at the southern foot
of the Feng Huang Mountains in the eastern Qin Ling Mountains of Shaanxi Province [28].
The overall length of the Dan River is 443 km, 244 km of which is in the range of, with a
catchment area of 6995.9 km2 (Figure 1). The annual average temperature in the river basin
is 12~14.5 ◦C, and the annual average precipitation is 613.1~866 mm.

Data from a 30 m precision digital elevation model (DEM) (http://www.gscloud.cn/,
accessed on 20 October 2021) were used, and land—use types of the Dan River were
obtained from Landsat satellite data by ERDAS and divided into six categories: agricultural
land, forest, construction land, grassland, water area, and unused land (Figure 1). Based on
administrative divisions, topography, urban construction, watershed distribution, and the
results of hydrological analysis in ArcGIS 10.2 (ESRI, Redlands, CA, USA), the Dan River
Basin was divided into 10 sub—basins (Figure 1). Three spatial scales (1000 m riverine reach,
1000 m riparian, and sub—basin) of landscape pattern indices were extracted [12,14]. Water
samples were collected from the Dan River Basin in February (dry season) and July (wet
season) of 2022; a total of 40 water samples were collected from 21 sampling sites, which
were located at the main stream and tributaries of the 10 sub—basins, and 1 was located at
the Shan—Hubei junction (Figure 1). Nine typical in—dices were selected and tested by
the specific method of the national standard to evaluate water quality, including dissolved
oxygen (DO), chemical oxygen demand (COD), total nitrogen (TN), total phosphorus
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(TP), ammonia nitrogen (NH3–N), nitrate nitrogen (NO3–N), nitrite nitrogen (NO2–N),
hexavalent chromium (Cr6+), and total organic carbon (TOC) [29].
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Figure 1. Maps of sampling sites and land use in the Dan River Basin. And the insets show Dan River
Basin within the Qin Ling Mountain, and the position within China MAP. S1–S21 indicate sampling
sites, D1–D10 indicate sub—basins.

2.2. Data Analysis

The average comprehensive pollution index (ACPI) method was adopted in the study.
The ACPI was calculated using Equations (1) and (2) and the evaluation classification is in
Table A1:

Pi = Ci/Si(When the pollution index is the dissolved oxygen Pi = Si/Ci) (1)

P =
1
n

n

∑
i=1

Pi (2)

where Ci is the measured value; Si is the limit value from the national standard for Surface
Water [29]; n is the number of evaluation indicators; Pi is the sub—index of parameter i; P
is the ACPI [30].

Spatial interpolation analysis in ArcGIS 10.2 was used to obtain the spatial distribution
of the water quality indices in the dry and wet seasons. Six landscape pattern indices were
selected, including the patch density (PD), patch richness density (PRD), largest patch
index (LPI), landscape shape index (LSI), Shannon’s diversity index (SHDI), and contagion
index (CONTAG) [31,32], which were calculated using Fragstats 4.2, and their ecological
concepts are shown in Table A2 [33,34]. SPSS (IBM SPSS Inc., Chicago, IL, USA) was used
to analyze correlations among the proportion of land—use types, landscape pattern indices,
and water quality at three spatial scales [35,36]; the spatial scale with the greatest correlation
with water quality was selected for redundancy analyses (RDA). Canoco 5.0 was used
to perform RDA and calculate the contribution rates of environmental variables. In the
two—dimensional ranking plot of RDA, the length of the arrows represents the influence
of environmental variables on species, and the angle between the two arrows indicates the
correlation between the two variables [14,37].
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3. Results
3.1. Temporal and Spatial Distributions of Water Quality

As shown in Table A3, COD, TN, NH3–N, and NO3–N had great spatial variability,
ranging from 19.99% to 34.73%, 25.14% to 27.99%, 22.3% to 43.38%, and 21.15% to 32.67%,
respectively. Except for DO, the concentrations of eight indices were significantly higher in
the dry season than those in the wet season (p < 0.05) (Figure 2). According to the limited
values of Class II in the National Environmental Quality Standard for Surface Water [29],
the exceeding rates of TP and TN were 24% and 100% in the dry season, respectively. The
concentration of TN exceeded the limit value of Class V by 95% in the wet season.
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Figure 2. Box plot of water quality indices of the whole Dan River Basin (dry and wet season). X and
Y represent the significant levels of water quality indices during the wet and dry seasons.

During the dry season, D4–D6 had the highest values of TN, TP, NH3–N, and NO3–N
(Figure 3a). COD, TN, NO3–N, NO2–N, and Cr6+ had the highest values of sub—basin D9
and D10. In the wet season, D3 and D4 had the highest COD, TN, TP, NH3–N, and TOC
concentrations (p < 0.05). High concentrations of TN, NO3–N, and Cr6+ were observed in
D6. D9 exhibited high COD, TN, and NO2–N (Figure 3b).

ACPI in the Dan River increased in both seasons, with higher Pi values and a larger
fitting slope during the dry season (Figure 4). According to the classification standard for
the degree of surface water pollution (Table A1), 24% of the sampling sites were heavily
polluted (S8, S9, S12, S18, and S21) and 76% were moderately contaminated during the dry
season. And moderately and mildly polluted sites accounted for 48% and 52%, respectively,
during the wet season (Figure 4).

3.2. Land—Use Composition and Landscape Pattern Indices

The land—use composition of the three scales in the Dan River Basin is shown in
Figure 5. There was significant spatial heterogeneity in land—use structure. At the riverine
reach scale, agricultural land accounts for the largest proportion, ranging from 12% to
74%, followed by construction land, forests, and grassland. For D3, D4, D5, D6, and D9,
agricultural land and construction land with relatively severe human disturbance occupy
the largest proportions, among which D3 and D6 account for 100%. Forest, grassland, and
water are the primary land types on D1, D2, D7, and D10, respectively. At the riparian and
sub—basin scales, land—use patterns consist of agricultural land, grassland, and forests,
among which grassland accounts for the largest proportion, ranging from 29% to 49%,
followed by forests and agricultural land. With an increase in spatial scale, the proportion
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of agricultural and construction land gradually decreases, whereas the proportion of forest
and grassland increases.
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Figure 5. Proportions of land—use types at different spatial scales (riverine reach, riparian, and
sub—basin).

The values of landscape pattern indices vary across the three spatial scales (Table 1).
The LPI, PD, and PRD values decrease with increasing spatial scale, whereas those of
LSI and CONTAG increase. SHDI is the largest in the riparian area, followed by sub—
basin. With the expansion of spatial scale, the landscape shows less heterogeneity and
fragmentation, stronger connectivity, less human influence, and better stability. However,
the shapes of the patches become more complex, and the dominant patch type within the
landscape decreases.
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Table 1. Landscape pattern indices at different spatial scales.

Spatial Scale Index Mean Value SD Maximum Minimum

Riverine reach LPI 40.21 12.52 18.90 59.46
PD 2.43 0.40 1.87 3.02
LSI 3.97 0.66 3.01 4.97

CONTAG 48.98 5.54 41.40 58.34
PRD 0.54 0.06 0.43 0.58
SHDI 1.07 0.11 0.94 1.26

Riparian LPI 18.88 6.26 9.24 29.99
PD 1.59 0.22 1.34 2.01
LSI 23.08 3.30 16.66 28.79

CONTAG 54.34 3.06 47.94 58.30
PRD 0.02 0.01 0.01 0.03
SHDI 1.16 0.07 1.07 1.27

Substream LPI 17.73 5.57 11.00 29.95
PD 0.72 0.10 0.59 0.90
LSI 29.57 3.86 21.43 35.80

CONTAG 57.66 2.53 54.08 62.82
PRD 0.01 0.00 0.00 0.01
SHDI 1.10 0.05 1.02 1.19

3.3. Impact of Land—Use Structure and Landscape Pattern on Water Quality
3.3.1. Effects of Land—Use Structure on Water Quality

Correlation analysis (Table 2) showed that correlations between the proportion of
land—use types and water quality indices have scale effects, which correlations at the
riverine reach are stronger than those at riparian and sub—basin. During the dry season,
agricultural land is significantly positively correlated with COD, TN, NO3–N, NO2–N,
and TOC, and construction land is significantly positively correlated with TP. Forests,
grassland, and water area are significantly negatively correlated with TN and TP concen-
trations. During the wet season, agricultural land is positively correlated with TN, TP, and
NO2–N, and construction land is positively correlated with TN and TP. Forests are nega-
tively correlated with TN, grassland is positively correlated with TN, TP, and NH3–N, and
water area is negatively correlated with COD, TN, TP, and NH3–N.

3.3.2. RDA of Land—Use Composition and Landscape Pattern Indices to Water Quality

Correlation analyses showed that among the three spatial scales, riverine reach could
best explain the relationship between land—use composition and water quality. And then
the total interpretation rates of land—use composition and landscape pattern indices to
water quality at three spatial scales were conducted by RDA (Tables 3 and 4), and were
highest for riverine reach, followed by sub—basin and riparian reach. For land—use
structure, total interpretation rates were 83.7% in the dry season, 77.2% in the wet season,
and 74% and 88.5% for landscape pattern indices, respectively. Riverine reach was selected
for further discussion. The interpretation rates of agricultural land, forest, and water area on
water quality were relatively high, accounting for 77.2% in the dry season and 84.6% in the
wet season, while construction land and grassland were relatively low, indicating that water
quality is greatly affected by agricultural land, forest, and water area, and less affected by
construction land and grassland. For landscape pattern indices, the interpretation rates of
PD, LSI, and PRD for water quality were relatively high during the dry season, accounting
for 78.4% of the total, whereas the interpretation rates of PD, SHDI, LSI, and PRD for water
quality were relatively high during the wet season, accounting for 92.7%.
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Table 2. Correlation between land use and water quality at different spatial scales. **: Correlation is
significant with p < 0.01, *: Correlation is significant with p < 0.05.

Spatial
Scale

Land
Use Season DO COD TN TP NH3–N NO3–N NO2–N Cr6+ TOC

Riverine
reach

Argi dry −0.15 0.48 * 0.72 ** 0.39 0.42 0.77 ** 0.55 * 0.39 0.58 **
wet −0.51 * 0.29 0.70 ** 0.47 * 0.39 0.37 0.76 ** 0.21 0.01

Forest
dry 0.44 −0.07 −0.53 * −0.69 ** −0.29 −0.15 0.03 0.15 0.34
wet −0.09 0.09 −0.50 * −0.33 −0.35 −0.23 −0.10 −0.34 0.19

Grass
dry −0.06 0.16 −0.58 ** −0.75 ** −0.34 −0.12 −0.10 0.35 0.01
wet 0.29 −0.42 −0.58 ** −0.79 ** −0.61 ** 0.38 0.32 −0.07 −0.29

Water
dry 0.13 −0.38 −0.52* −0.79 ** −0.20 −0.29 −0.26 −0.31 −0.53 *
wet 0.65 ** −0.75* −0.74 ** −0.77 ** −0.63 ** −0.01 −0.17 −0.46 * −0.40

Constr
dry −0.12 −0.35 0.33 0.71 ** 0.08 −0.14 −0.29 −0.47 * −0.18
wet −0.20 0.29 0.46* 0.58 ** 0.40 −0.28 −0.60 ** 0.18 0.26

Riparian

Argi dry 0.22 0.16 0.49* 0.03 0.26 0.37 0.08 0.21 0.38
wet 0.12 0.53* 0.52* 0.58 ** 0.46* 0.44 0.61 ** −0.21 0.55 *

Forest
dry −0.03 −0.07 0.14 0.62 ** 0.09 −0.10 0.30 −0.41 0.21
wet −0.53 * 0.26 0.16 0.48* 0.27 −0.54 * −0.33 0.09 0.02

Grass
dry −0.09 −0.08 −0.22 −0.64 ** 0.03 −0.04 −0.12 −0.06 −0.44
wet 0.41 −0.72 * −0.42 −0.66 ** −0.44 0.27 0.07 −0.08 −0.49 *

Water
dry 0.61 ** −0.38 −0.29 −0.85 ** −0.06 −0.24 −0.23 −0.26 −0.50 *
wet 0.89 ** −0.27 −0.55 * −0.38 −0.18 0.13 −0.21 −0.68 * 0.18

Constr
dry 0.13 −0.48 * 0.22 0.15 −0.27 0.04 −0.64 ** −0.20 −0.14
wet 0.24 0.18 0.36 0.27 0.12 0.21 −0.24 −0.20 0.49 *

Substream

Argi dry −0.42 −0.21 −0.56 ** 0.01 −0.19 −0.67 ** −0.31 −0.30 −0.52 *
wet −0.04 −0.61* −0.56 ** −0.43 −0.49 * −0.81 ** −0.47 * 0.26 −0.61 **

Forest
dry −0.15 −0.33 0.15 0.49 * −0.50 * 0.30 −0.31 −0.13 0.36
wet −0.36 0.18 0.41 0.15 −0.12 0.20 −0.15 −0.04 0.21

Grass
dry 0.30 0.56 ** 0.04 −0.54 * 0.47 * 0.07 0.49 * 0.47 * 0.01
wet 0.24 0.06 −0.19 −0.07 0.24 0.19 0.53 * 0.02 −0.01

Water
dry −0.13 −0.13 −0.37 −0.58 ** −0.04 −0.15 −0.12 −0.03 −0.52 *
wet 0.40 −0.82 * −0.59 ** −0.76 ** −0.59 ** −0.15 −0.01 −0.12 −0.63 **

Constr
dry −0.15 −0.20 0.16 0.18 0.14 −0.15 −0.19 −0.36 0.01
wet 0.01 −0.02 0.16 0.41 0.08 −0.26 0.21 −0.13 0.04

Table 3. Interpretation rates of water quality by land use at different scales (%).

Water Period Spatial Scale Water Agri Forest Constr Grass Total

Dry Riverine reach 23.2 25.1 16.3 11.3 7.8 83.7
Riparian 19.9 21.8 13.2 3.4 1.8 60.1

Substream 30.2 15.3 10.4 8.1 8.7 72.7
Wet Riverine reach 30.7 22.8 11.8 7.3 4.6 77.2

Riparian 26.6 12.0 5.9 0.8 12.5 57.8
Substream 22.8 21.6 15.7 3.5 1.6 65.2

Table 4. Interpretation rates of water quality by landscape patterns at different scales (%).

Water Period Spatial Scale PD LSI LPI CONTAG SHDI PRD Total

Dry Riverine reach 33.1 13.8 5.0 5.3 5.7 11.1 74.0
Riparian 7.6 2.2 15.1 30.6 1.8 12.4 69.7

Substream 24.6 8.8 23.9 6.4 4.2 2.9 70.8
Wet Riverine reach 38.7 15.1 5.2 1.3 10.7 17.5 88.5

Riparian 8.0 8.1 11.3 7.1 4.0 16.7 55.2
Substream 7.3 16.7 8.3 7.6 5.7 22.2 67.8

Figure 6 shows a two—dimensional sequence diagram of land—use composition and
landscape pattern indices and their influence on water quality indices at the riverine reach
scale. The correlations between water quality indices and land—use composition were the
same in the dry and wet seasons (Figure 6a,b). TN, TP, NH3–N, NO3–N, NO2–N, COD,
TOC, and Cr6+ were positively correlated with agricultural land and construction land and
negatively correlated with forest, grassland, and water area. For landscape pattern indices
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(Figure 6c,d), during the dry season, TN, TP, NH3–N, NO3–N, NO2–N, COD, and Cr6+ were
positively correlated with LPI and negatively correlated with PRD, PD, and SHDI; TN, TP,
NH3–N, and NO3–N were positively correlated with LPI and LSI and negatively correlated
with PRD, PD, SHD, and CONTAG. In the wet season, COD, TN, TP, NH3–N, NO3–N, and
TOC were positively correlated with LPI and CONTAG and negatively correlated with PD,
PRD, LSI, and SHDI. Cr6+ and NO2–N were positively correlated with PRD and SHDI and
negatively correlated with PD.
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4. Discussion
4.1. Effects of Land—Use Structure on Water Quality

Water quality in the Dan River Basin is better in the wet season and more stable than
that in the dry season, and its self—purification ability is also stronger. This is mainly owing
to the higher rainfall during the wet season and subsequent increase in river water volume,
which has a good dilution effect on pollutants. Among the pollutants, the concentration
of TN exceeded the national standard limit value of class V, which led to higher Pi values
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in this region; the concentration of TP in some sites exceeded the standard limit value of
Class II in the dry season, indicating that the pollutant types in this basin are mainly N
and P. It turned out that agricultural land is the main land—use type among all scales
(Figure 5), and that agricultural land and construction land are distributed near the river
bank. Human activities, such as farming and construction, may cause serious N and P
pollution. Agricultural and construction land in D3–D6 account for a large proportion of
the scale of the riverine reach, and sample sites in these reaches are mostly surrounded by
urban residential areas, agricultural land, tourist attractions, roadways, and construction
sites, where pollution is generated by production, construction, domestic garbage, and the
application of pesticides and fertilizers, resulting in poor water quality [22,38,39]. Water
pollution in D10 is lower, possibly owing to a decrease in towns and agricultural land, an
increase in forests, and a widening of the river channel [40].

The water quality of the 21 sampling sites showed spatial heterogeneity, and the
contamination of S8, S9, S12, and S18 was relatively severe, which may be because the
quality of the samples was affected by the surrounding environment and land—use type of
the sampling sites. S18 is a construction site that is undergoing excavation operations and
S12 is located in the Yin Hua River; the nearby Wu Zhou mining industry pollutes water
quality during the mining process.

Correlation and redundancy analyses showed that among the three spatial scales, the
riverine reach is more strongly correlated with water quality than the other two spatial
scales in the Dan River Basin, and can better explain the relationship with water quality.
This conclusion conforms with those found along the Yellow River [41]. The proportions
of agricultural and construction land were positively correlated with concentrations of TP,
TN, NO3–N, and NO2–N [25,42], whereas forest, grassland, and water were negatively
correlated with TN, TP, NH3–N, and COD [15,24,43]. These conclusions are consistent with
those of previous studies. As the proportions of agricultural and construction land increases,
the pollutants caused by urban residents’ living, infrastructure, industrial production,
and the use of pesticides and fertilizers during cultivation will also increase, which will
aggravate the pollution of water quality when entering the river. An increase in roadways
also worsens the soil and water conservation of the ground and accelerates the entry
of pollutants into water bodies [38,44,45]. Forests and grassland can intercept surface
runoff, effectively alleviate water and soil loss, absorb pollutants, and prevent pollutants
from entering water bodies [23,33,46]. A larger water area is conducive to the dilution of
pollutants in the water, and it improves the self—purification of the water body, which
helps improve water quality [40].

There are many human activities in agricultural and construction land, and their
formation and development are greatly affected by human factors [11]. Therefore, the
effect of agricultural and construction land on river water quality is greater than that of
forests and grasslands. In the Dan River Basin, the water quality was less affected by
construction land, which may be related to the small proportion of construction land and
strict environmental supervision in this basin [47].

4.2. Effects of Landscape Pattern on Water Quality

The characteristics of landscape pattern at the three spatial scales differed (Table 1).
The proportion of construction land at sub—basin and riparian scales was small (Figure 5),
but the shapes of landscape patches at the riverine reach scale were simple, with high
fragmentation and poor connectivity. This indicates that the proportion of agricultural
land and towns where the river flows are relatively large and greatly affected by human
activities, suggesting that the land—use structure and urban pattern of the Dan River
Basin are unreasonable. The RDA of the landscape pattern indices and water quality
indices showed that PD, LSI, and PRD have a significant impact on water quality, which
indicates that the density, richness, shape, and fragmentation degree of the landscape at the
riverine reach scale significantly impacts water quality [33]. TN, TP, NH3–N, and NO3–N
were positively correlated with LPI and CONTAG and negatively correlated with PRD,
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PD, and SHDI [48], whereas NH3–N, NO2–N, COD, and TOC were negatively correlated
with LSI. LPI shows the abundance of dominant types in the landscape and the degree of
human influence. The more the landscape pattern is affected by human activities, the more
complex the factors that affect water [45]. PD represents the fragmentation of the landscape,
and CONTAG represents the connectivity of the landscape. The higher the degree of
fragmentation, the worse the connectivity, which prevents pollutants from entering the
water body and helps to alleviate water pollution [49]. PRD shows the richness and stability
of the landscape patches in this basin. With an increase in patches, the landscape becomes
more stable, and the ability to respond to environmental changes that maintain the stability
of water quality becomes stronger. LSI shows the regularity of the shape of the patches.
Generally, the greater the effect of human activities, the more regular the shape of the
patches. The analysis results showed that with a decrease in the LSI, the landscape was
more affected by human activities, and water pollution was aggravated.

4.3. Optimization of Water Quality and Landscape Pattern

Based on the above discussion, it is suggested that land managers and planners
should focus on optimizing the structure of agricultural and construction land by reducing
aggregation and increasing connectivity between forests and grassland. The proportion of
grassland and forests along rivers should be increased, and inferior farmland should be
returned to forest and grassland to reduce soil erosion and increase the interception and
absorption of pollutants. In addition, to reduce pollutants such as TN and TP in water,
it is necessary to improve crop cultivation techniques, reduce the use of pesticides and
fertilizers, and develop new fertilizer formulas.

The production and construction projects with pollutant emission risks along the
river should be supervised strictly to reduce the impacts of production and construction
projects on water quality. Simultaneously, it is necessary to develop strict monitoring and
implementation measures and a protection responsibility system for each river section and
detect and deal with pollution incidents in time.

5. Conclusions

Applying correlation analysis and redundancy analysis, this paper studied the impact
of land—use structure and landscape pattern on water quality at different spatial scales in
the Dan River Basin, based on 21 water samples and land—use data in 2022, and concluded
that:

(1) The water quality of the Dan River Basin has spatial and temporal heterogeneities.
The water quality of each sampling point is different, and that in the wet season is better
than that in the dry season; the main pollutants are nutrient elements such as N and P,
which should be controlled.

(2) The main land—use types in the Dan River Basin are agricultural land, forest land,
and grassland. There are scale effects on the effects of land use and landscape pattern
characteristics on water quality. Among three spatial scales (riverine reach, riparian, and
sub—basin), riverine reach best explains the water quality variation. Therefore, the scale
effect should be considered during land—use planning.

(3) For land—use structures, agricultural land and forest have the greatest impacts
on water quality, and increased proportions of agricultural and construction land leads to
increases in pollutants in the water, which aggravates the deterioration of water quality,
whereas forests, grassland, and water area alleviate water pollution. For the landscape
pattern indices, pollutants are positively correlated with LPI and CONTAG and negatively
correlated with PRD, PD, SHDI, and LSI. In other words, the more the landscape is influ-
enced by humans, the simpler the shape of the patches, and the worse the water quality.
The more abundant the landscape patches, the more stable the landscape pattern, and the
more conducive it is to alleviating water pollution.

(4) Land managers and planners should focus on optimizing the land—use structure
and landscape pattern, incorporating the scale effect into the plan, controlling the propor-
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tion of agricultural land, increasing the diversity of the landscape, reducing the aggregation
and connectivity of agricultural land and cities, and increasing the proportions of grassland
and forest along rivers. Therefore, strict environmental regulations must be established.
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Appendix A

Table A1. Comprehensive pollution index evaluation classification.

Value Pollution Level

≤0.20 clean
0.21~0.40 Still clean
0.41~0.70 Mild pollution
0.71~1.00 Moderate pollution
1.01~2.00 Heavy pollution

>2.00 Serious pollution

Table A2. Landscape pattern index and its ecological significance.

Landscape Pattern Index Ecological Significance

Patch density (PD)
Describing the degree of spatial heterogeneity and fragmentation
of the landscape, and the larger the value, the higher the degree
of heterogeneity and fragmentation.

Patch richness density (PRD)

Referring to the abundance of patches per unit area, which
reflects the diversity of patch types within the landscape, the
more abundant the patches, the stronger the ability to resist
external disturbances.

Largest patch index (LPI)

Reflecting the dominant type of landscape, the value range is
(0,100), and the size of its value determines the landscape
dominant species and internal species abundance. And it also
reflects the direction and strength of human activities.

Contagion index (CONTAG)

Reflecting the degree of agglomeration or extension trend of
different patch types in the landscape, with a value range of
(0,100). The high contagion value indicates that a certain
dominant patch type in a landscape forms a good connectivity;
otherwise, it indicates that the landscape is a dense pattern with
many elements and has a high degree of fragmentation.

Shannon’s diversity index (SHDI)

Reflecting the heterogeneity of landscape systems. The large
SHDI value indicates that the degree of landscape fragmentation
is high, and there are many types of blocks in the landscape or the
distribution of each block type in the landscape is balanced.

Landscape shape index (LSI) Indicates the degree of plaque regularity, and a large value
indicates that the plaque is irregularly shaped.
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Table A3. Descriptive statistics of various water quality indicators.

Index Maximum Minimum Mean Value SD CV (%)

DO (mg/L) Dry 5.387 6.400 5.936 0.226 3.81
Wet 5.418 6.737 6.021 0.336 5.58

COD (mg/L) Dry 5.509 12.010 8.636 1.726 19.99
Wet 1.533 7.117 4.157 1.444 34.73

TN (mg/L) Dry 2.097 5.736 4.236 1.065 25.14
Wet 1.876 4.849 3.495 0.979 27.99

TP (mg/L) Dry 0.073 0.112 0.094 0.011 11.29
Wet 0.031 0.081 0.051 0.013 25.76

NH3–N
(mg/L)

Dry 0.032 0.301 0.152 0.066 43.38
Wet 0.063 0.140 0.092 0.020 22.30

NO3–N
(mg/L)

Dry 1.707 5.166 3.595 1.175 32.67
Wet 1.759 3.371 2.416 0.511 21.15

NO2–N
(mg/L)

Dry 0.032 0.089 0.060 0.012 19.83
Wet 0.006 0.036 0.014 0.008 60.11

Cr6+

(µg/L)
Dry 2.955 9.693 6.731 1.876 27.87
Wet 2.053 6.088 4.047 1.046 25.85

TOC (mg/L) Dry 1.759 3.441 2.439 0.488 20.00
Wet 0.947 1.860 1.291 0.240 18.63
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