Environmental Assessment of Soil and Groundwater Pollution by BTEX Leaching in Valencia Region (Spain)
Abstract
:1. Introduction and Objectives
2. Materials and Methods
2.1. Main Properties of BTEX as Soil and Groundwater Pollutants
2.2. The VLEACH Model
- Oversimplification of spatial variability: One-dimensional models assume that the soil properties and contaminant distribution are uniform in the vertical direction, which may not accurately represent real conditions. In reality, soils can have significant horizontal variability in properties and preferential flow paths can exist, which a 1D model cannot capture.
- Neglects lateral movement: One-dimensional models focus solely on vertical transport and neglect lateral movement of contaminants. BTEX compounds can migrate horizontally due to factors, like groundwater flow, fractures, or variations in soil structure, which are not considered in a 1D model.
- Simplified representation of heterogeneity: Soils are inherently heterogeneous, and the transport of BTEX compounds can be influenced by factors like soil texture, organic matter content, and hydraulic conductivity. A 1D model may oversimplify these properties.
- Lack of biological and chemical reactions: Real-world scenarios may involve biological degradation and chemical reactions that can affect the fate and transport of BTEX compounds. One-dimensional models often do not account for these processes, potentially leading to inaccurate assessments of contaminant behavior.
- Insufficient consideration of vadose zone dynamics: BTEX transport in the vadose zone is influenced by factors, like evaporation, infiltration, and unsaturated flow dynamics, which can be challenging to adequately represent in a 1D model.
3. Description of the Study Area and Data Collection
4. Definition of Scenarios and Model Development
4.1. Definition of Scenarios
- Existence of a permanent or a one-time BTEX leak;
- Analysis of the most superficial layer of the soil (silt) or of the entire vadose zone;
- Location of the water table: average observed level or abnormally high level;
- Volumetric water content in the unsaturated zone.
4.2. Determination of the Model Parameters for Every Simulation Scenario
- Hpolygon (height of the simulated polygon);
- (soil bulk density);
- ϕ (porosity);
- θ (water content);
- foc (organic carbon fraction);
- K (saturated permeability).
5. Results and Discussion
5.1. Permanent Leak Scenarios
- When the water table is situated at a medium position (Figure 9a), with the phreatic level in the third stratum from the surface, minimal gasoline contamination reaches the aquifer. The contaminants must traverse the silt, gravel, and a substantial portion of the clay stratum, characterized by very low conductivity. Consequently, the mass of contaminants reaching the aquifer is nearly negligible.
- In the scenario with a higher water table, located 11 m above its typical position and positioned at the boundary between the gravel and clay strata (Figure 9b), the impact on the aquifer is significantly more pronounced. The equivalent hydraulic conductivities are higher, and pollutants have a shorter vadose zone to traverse before reaching the aquifer. Advective transport becomes dominant, particularly under medium and high θ conditions.
5.2. One-Time Leak Scenarios
6. Conclusions
- Lack of public information: There is a scarcity of publicly available data on the chemical composition of BTEX in gasoline sold in Spain. Estimations for the concentrations of these organic compounds in gasoline have had to rely on studies conducted in other countries, with inherent uncertainties. Gasoline composition can vary significantly depending on its source, further contributing to this uncertainty.
- Legal limitations: While there are legal limits for BTEX concentrations in the solid phase of soil, such limits do not exist for the liquid and gas phases within the vadose zone. This legal gap has posed challenges in interpreting model results for these phases.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, B.; Zhang, Y.; Gao, C.; Du, X.; Qu, T. Developing novel persulfate pellets to remediate BTEXs-contaminated groundwater. J. Water Process. Eng. 2023, 52, 103505. [Google Scholar] [CrossRef]
- Zao, B.; Huang, F.; Zhang, C.; Huang, G.; Xue, Q.; Liu, F. Pollution characteristics of aromatic hydrocarbons in the groundwater of China. J. Contam. Hydrol. 2020, 233, 103676. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.C.O.; Solano, A.M.S.; Barbosa Segundo, I.D.; dos Santos, E.V.; Martínez-Huitle, C.A.; da Silva, D.R. Achieving Sustainable Development Goal 6 Electrochemical-Based Solution for Treating Groundwater Polluted by Fuel Station. Water 2022, 14, 2911. [Google Scholar] [CrossRef]
- Arias-Estévez, M.; López-Periago, E.; Martínez-Carballo, E.; Simal-Gándara, J.; Mejuto, J.-C.; García-Río, L. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 2008, 123, 247–260. [Google Scholar] [CrossRef]
- Wang, B.; Gao, C.; Li, X.; Zhang, Y.; Qu, T.; Du, X.; Zheng, J. Remediation of groundwater pollution by in situ reactive zone: A review. Process Saf. Environ. Prot. 2022, 138, 858–871. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Liu, F.; Jin, S. Treatment of co-mingled benzene, toluene and TCE in groundwater. J. Hazard. Mater. 2014, 275, 116–120. [Google Scholar] [CrossRef]
- McGregor, R.; Maziarz, A. The in situ treatment of Basic Violet 16 synthetic dye in groundwater. Remediat. J. 2021, 31, 27–34. [Google Scholar] [CrossRef]
- Do Rego, E.C.P.; Netto, A.D.P. PAHs and BTEX in groundwater of gasoline stations from Rio de Janeiro City, Brazil. Bull. Environ. Contam. Toxicol. 2007, 79, 660–664. [Google Scholar] [CrossRef]
- Ruidas, D.; Pal, S.C.; Islam, A.R.M.T.; Saha, A. Characterization of groundwater potential zones in water-scarce hardrock regions using data driven model. Environ. Earth Sci. 2021, 80, 809. [Google Scholar] [CrossRef]
- Ruidas, D.; Pal, S.C.; Towfiqul Islam, A.R.M.; Saha, A. Hydrogeochemical Evaluation of Groundwater Aquifers and Associated Health Hazard Risk Mapping Using Ensemble Data Driven Model in a Water Scares Plateau Region of Eastern India. Expo. Health 2023, 15, 113–131. [Google Scholar] [CrossRef]
- Jaydhar, A.K.; Pal, S.C.; Saha, A.; Islam, A.R.; Ruidas, D. Hydrogeochemical evaluation and corresponding health risk from elevated arsenic and fluoride contamination in recurrent coastal multi-aquifers of eastern India. J. Clean. Prod. 2022, 369, 133150. [Google Scholar] [CrossRef]
- Pal, S.C.; Ruidas, D.; Saha, A.; Islam, A.R.; Chowdhuri, I. Application of novel data-mining technique based nitrate concentration susceptibility prediction approach for coastal aquifers in India. J. Clean. Prod. 2022, 346, 131205. [Google Scholar] [CrossRef]
- Ruidas, D.; Pal, S.C.; Saha, A.; Chowdhuri, I.; Shit, M. Hydrogeochemical characterization based water resources vulnerability assessment in India’s first Ramsar site of Chilka lake. Mar. Pollut. Bull. 2022, 184, 114107. [Google Scholar] [CrossRef] [PubMed]
- Ruidas, D.; Pal, S.C.; Saha, A.; Chowdhuri, I.; Saha, A.; Biswas, T.; Islam, A.R.T.; Shit, M. Hydrogeochemical evaluation for human health risk assessment from contamination of coastal groundwater aquifers of Indo-Bangladesh Ramsar site. J. Clean. Prod. 2023, 399, 136647. [Google Scholar] [CrossRef]
- Biswas, T.; Pal, S.C.; Saha, A.; Ruidas, D.; Islam, A.R.M.; Shit, M. Hydro-chemical assessment of groundwater pollutant and corresponding health risk in the Ganges delta, Indo-Bangladesh region. J. Clean. Prod. 2022, 382, 135229. [Google Scholar] [CrossRef]
- Khan, M.Y.A.; ElKashouty, M.; Abdellattif, A.; Egbueri, J.C.; Taha, A.I.; Al Deep, M.; Shaaban, F. Influence of natural and anthropogenic factors on the hydrogeology and hydrogeochemistry of Wadi Itwad Aquifer, Saudi Arabia: Assessment using multivariate statistics and PMWIN simulation. Ecol. Indic. 2023, 151, 110287. [Google Scholar] [CrossRef]
- Khan, M.Y.A.; ElKashouty, M.; Khan, N.; Subyani, A.M.; Tian, F. Spatio-temporal evaluation of trace element contamination using multivariate statistical techniques and health risk assessment in groundwater, Khulais, Saudi Arabia. Appl. Water Sci. 2023, 13, 123. [Google Scholar] [CrossRef]
- Khan Mohd, Y.A.; El Kashouty, M.; Gusti, W.; Kumar, A.; Subyani, A.M.; Alshehri, A. Geo-Temporal Signatures of Physicochemical and Heavy Metals Pollution in Groundwater of Khulais Region—Makkah Province, Saudi Arabia. Front. Environ. Sci. 2022, 9, 800517. [Google Scholar] [CrossRef]
- Yu, B.; Yuan, Z.; Yu, Z.; Xue-song, F. BTEX in the environment: An update on sources, fate, distribution, pretreatment, analysis, and removal techniques. Chem. Eng. J. 2022, 435, 134825. [Google Scholar] [CrossRef]
- Miri, S.; Espejel-Pérez, J.A.; Kaur Brar, S.; Rouissi, T.; Martel, R. Sustainable production and co-immobilization of cold-active enzymes from Pseudomonas sp. for BTEX biodegradation. Environ. Pollut. 2021, 285, 117678. [Google Scholar] [CrossRef]
- Bustillo-Lecompte, C.F.; Kakar, D.; Mehrvar, M. Photochemical treatment of benzene, toluene, ethylbenzene, and xylenes (BTEX) in aqueous solutions using advanced oxidation processes: Towards a cleaner production in the petroleum refining and petrochemical industries. J. Clean. Prod. 2018, 186, 609–617. [Google Scholar] [CrossRef]
- Stefanakis, A.I. The Fate of MTBE and BTEX in Constructed Wetlands. Appl. Sci. 2020, 10, 127. [Google Scholar] [CrossRef]
- Wu, C.-C.; Blount, J.R.; Haimbaugh, A.; Heldman, S.; Shields, J.N.; Baker, T.R. Evaluating Phenotypic and Transcriptomic Responses Induced by Low-Level VOCs in Zebrafish: Benzene as an Example. Toxics 2022, 10, 351. [Google Scholar] [CrossRef]
- Dehghani, M.; Mohammadpour, A.; Abbasi, A.; Rostami, I.; Gharehchahi, E.; Derakhshan, Z.; Ferrante, M.; Oliveri Conti, G. Health risks of inhalation exposure to BTEX in a municipal wastewater treatment plant in Middle East city: Shiraz, Iran. Environ. Res. 2022, 204, 112155. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, E.H.; Chang, H.K. A Screening Model to Predict Entrapped LNAPL Depletion. Water 2020, 12, 334. [Google Scholar] [CrossRef]
- Lee, K.Y. Phase partitioning modeling of ethanol, isopropanol, and methanol with BTEX compounds in water. Environ. Pollut. 2008, 154, 320–329. [Google Scholar] [CrossRef]
- Ministerio de la Presidencia, Gobierno de España. Real Decreto 9/2005, de 14 de Enero, Por el Que se Establece la Relación de Actividades Potencialmente Contaminantes del Suelo y los Criterios y Estándares Para la Declaración de Suelos Contaminados. Available online: https://www.boe.es/eli/es/rd/2005/01/14/9 (accessed on 1 July 2023).
- Ravi, V.; Johnson, J.A. VLEACH. A One-Dimensional Finite Difference Vadose Zone Leaching Model; Version 2.2a; U. S. Environmental Protection Agency: Washington, DC, UDA, 1997. Available online: https://www.epa.gov/water-research/vleach-one-dimensional-finite-difference-vadose-zone-leaching-model-version-22a (accessed on 1 July 2023).
- Cavelan, A.; Colfier, F.; Colombano, S.; Davarzani, H.; Deparis, J.; Faure, P. A critical review of the influence of groundwater level fluctuations and temperature on LNAPL contaminations in the context of climate change. Sci. Total Environ. 2022, 806, 150412. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, J.; Li, J.; Huan, H.; Zhao, X.; Lv, N.; Ma, Y.; Zhang, H. Modeling BTEX Multiphase Partitioning with Soil Vapor Extraction under Groundwater Table Fluctuation Using the TMVOC Model. Water 2023, 15, 2477. [Google Scholar] [CrossRef]
- Civan, M.Y.; Elbir, T.; Seyfioglu, R.; Kuntasal, Ö.O.; Bayram, A.; Doğan, G.; Yurdakul, S.; Andiç, Ö.; Müezzinoğlu, A.; Sofuoglu, S.C.; et al. Spatial and temporal variations in atmospheric VOCs, NO2, SO2, and O3 concentrations at a heavily industrialized region in Western Turkey, and assessment of the carcinogenic risk lev7els of benzene. Atmos. Environ. 2015, 103, 102–113. [Google Scholar] [CrossRef]
- Šoštarić, A.; Stojić, A.; Stanišić Stojić, S.; Gržetić, I. Quantification and mechanisms of BTEX distribution between aqueous and gaseous phase in a dynamic system. Chemosphere 2016, 144, 721–727. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Rao, P.S.C.; Gillham, R.W. Sorption Nonideality During Organic Contaminant Transport in Porous Media. Crit. Rev. Environ. Sci. Technol. 1989, 19, 33–99. [Google Scholar] [CrossRef]
- Banerjee, S.; Yalkowsky, S.H.; Valvani, C. Water solubility and octanol/water partition coefficients of organics. Limitations of the solubility-partition coefficient correlation. Environ. Sci. Technol. 1980, 14, 1227–1229. [Google Scholar] [CrossRef]
- Lyman, W.J.; Reehl, W.F.; Rosenblatt, D.H. Handbook of Chemical Property Estimation Methods; American Chemical Society: Washington, DC, USA, 1990. [Google Scholar] [CrossRef]
- Millington, R.J. Gas diffusion in porous media. Science 1959, 130, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Indoval, R.; Rodrigo-Ilarri, J.; Cassiraga, E.; Rodrigo-Clavero, M.-E. PWC-based evaluation of groundwater pesticide pollution in the Júcar River Basin. Sci. Total Environ. 2022, 847, 157386. [Google Scholar] [CrossRef] [PubMed]
- Instituto Geológico y Minero de España (IGME). Sistema de Información Documental. Available online: http://info.igme.es/ConsultaSID/index.asp (accessed on 12 December 2022).
- Ministerio de Agricultura, Pesca y Alimentación. Gobierno de España. Sistema de Información de Recursos Subterráneos. Available online: https://sig.mapama.gob.es/redes-seguimiento/?herramienta=Sondeos (accessed on 12 December 2022).
- Fetter, C.W. Applied Hydrogeology; Prentice Hall: Hoboken, NJ, USA, 2001. [Google Scholar]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Ghanbarian-Alavijeh, B.; Liaghat, A.; Huang, G.H.; van Genuchten, M.T. Estimation of the van Genuchten Soil Water Retention Properties from Soil Textural Data. Pedosphere 2010, 20, 456–465. [Google Scholar] [CrossRef]
- Leusch, F.; Bartkow, M. A Short Primer on Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) in the Environment and in Hydraulic Fracturing Fluids; Smart Water Research Center: Southport, Australia, 2010; pp. 1–8. Available online: https://www.ehp.qld.gov.au/management/coal-seam-gas/pdf/btex-report.pdf (accessed on 1 July 2023).
- Ministerio de Industria, Turismo y Comercio, Gobierno de España. Real Decreto 61/2006, de 31 de enero, por el que se Determinan las Especificaciones de Qasolinas, Gasóleos, Fuelóleos y Gases Licuados del Petróleo y se Regula el uso de Determinados Biocarburantes. Available online: https://www.boe.es/eli/es/rd/2006/01/31/61/con (accessed on 1 July 2023).
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. Pubchem Substance and Compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. National Primary Drinking Water Regulations. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 4 March 2023).
- Occupational Safety and Health Administration (OSHA). Occupational Exposure Limits. Available online: https://www.osha.gov/ (accessed on 4 March 2023).
BTEX | MW (g/mol) | Sol (mL/L) | VP (atm) | log Kow |
---|---|---|---|---|
Benzene | 78.11 | 1780 | 0.125 | 2.13 |
Toluene | 92.14 | 515 | 0.037 | 2.69 |
Ethylbenzene | 106.17 | 152 | 0.0125 | 3.10 |
Xylene | 106.17 | 175 | 0.0087 | 3.12 |
Soil | Strata | (g/cm3) | ϕ (%) | foc (%) |
---|---|---|---|---|
A | Sandy silt + Gravel + Clay (up to average water table) | 1.466 | 0.419 | 0.518 |
B | Sandy silt + Gravel (up to extraordinary water table) | 1.613 | 0.374 | 0.615 |
Code | Analysis of Strata | Leak Type | Phreatic Level Depth | Volumetric Water Content | Permeability Associated with Water Content |
---|---|---|---|---|---|
L-C1 | Superficial | Permanent | Average | Low | Low |
L-C2 | Superficial | Permanent | Average | Medium | Medium |
L-C3 | Superficial | Permanent | Average | High | High |
L-P1 | Superficial | One-time | Average | Low | Low |
L-P2 | Superficial | One-time | Average | Medium | Medium |
L-P3 | Superficial | One-time | Average | High | High |
T-C1 | Full | Permanent | Average | Low | Low |
T-C2 | Full | Permanent | Average | Medium | Medium |
T-C3 | Full | Permanent | Average | High | High |
T-C4 | Full | Permanent | High | Low | Low |
T-C5 | Full | Permanent | High | Medium | Medium |
T-C6 | Full | Permanent | High | High | High |
T-P1 | Full | One-time | Average | Low | Low |
T-P2 | Full | One-time | Average | Medium | Medium |
T-P3 | Full | One-time | Average | High | High |
T-P4 | Full | One-time | High | Low | Low |
T-P5 | Full | One-time | High | Medium | Medium |
T-P6 | Full | One-time | High | High | High |
Soil | Strata | Ks (cm/s) | Equivalent K(θ) (cm/s) | ||
---|---|---|---|---|---|
= 0.20 | = 0.25 | = 0.30 | |||
A | Sandy silt + Gravel + Clay (up to average water table) | 2.39 × 10−6 | 1.82 × 10−7 | 9.11 × 10−7 | 1.82 × 10−6 |
B | Sandy silt + Gravel (up to extraordinary water table) | 1.82 × 10−4 | 2.39 × 10−9 | 1.20 × 10−8 | 2.39 × 10−8 |
BTEX | % Volume in Gasoline | Koc (mL/L) | KH (-) | Solubility (mg/L) | Dair (m2/day) | Density at 20 °C (g/L) |
---|---|---|---|---|---|---|
Benzene | 1 | 58 | 0.221 | 1790 | 0.804 | 876 |
Toluene | 5 | 139 | 0.269 | 526 | 0.734 | 867 |
Ethylbenzene | 1 | 220 | 0.321 | 169 | 0.657 | 866 |
Xylene | 7 | 350 | 0.244 | 106 | 0.622 | 861 |
Volumetric Water Content in Soil | Precipitation (mm/Year) | Annual Precipitation Volume (L/Year) | Annual Infiltration Volume (L/Year) |
---|---|---|---|
0.20 | 350 | 323,050 | 64,861 |
0.25 | 450 | 415,350 | 66,707 |
0.30 | 550 | 507,650 | 68,553 |
BTEX | Leak Volume (L/Year) | Concentration (mg/L) | ||
---|---|---|---|---|
Prec. = 350 mm | Prec. = 450 mm | Prec. = 550 mm | ||
Benzene | 20 | 262 | 255 | 248 |
Toluene | 100 | 1297 | 1262 | 1229 |
Ethylbenzene | 20 | 259 | 252 | 245 |
Xylene | 140 | 1803 | 1754 | 1709 |
Scenario | Hpolygon (m) | Blocks (Unit) | (g/cm3) | ϕ (%) | θ (%) | foc (%) | K (cm/s) |
---|---|---|---|---|---|---|---|
L-C1 | 8.5 | 10 | 1.335 | 0.435 | 0.20 | 0.71 | 9.25 × 10−8 |
L-C2 | 8.5 | 10 | 1.335 | 0.435 | 0.25 | 0.71 | 5.19 × 10−7 |
L-C3 | 8.5 | 10 | 1.335 | 0.435 | 0.30 | 0.71 | 2.03 × 10−6 |
L-P1 | 8.5 | 10 | 1.335 | 0.435 | 0.20 | 0.71 | 9.25 × 10−8 |
L-P2 | 8.5 | 10 | 1.335 | 0.435 | 0.25 | 0.71 | 5.19 × 10−7 |
L-P3 | 8.5 | 10 | 1.335 | 0.435 | 0.30 | 0.71 | 2.03 × 10−6 |
T-C1 | 26.5 | 30 | 1.466 | 0.419 | 0.20 | 0.52 | 2.39 × 10−9 |
T-C2 | 26.5 | 30 | 1.466 | 0.419 | 0.25 | 0.52 | 1.20 × 10−8 |
T-C3 | 26.5 | 30 | 1.466 | 0.419 | 0.30 | 0.52 | 2.39 × 10−8 |
T-C4 | 15.5 | 20 | 1.613 | 0.374 | 0.20 | 0.62 | 1.82 × 10−7 |
T-C5 | 15.5 | 20 | 1.613 | 0.374 | 0.25 | 0.62 | 1.20 ×·10−8 |
T-C6 | 15.5 | 20 | 1.613 | 0.374 | 0.30 | 0.62 | 2.39 × 10−8 |
T-P1 | 26.5 | 30 | 1.466 | 0.419 | 0.20 | 0.52 | 2.39 × 10−9 |
T-P2 | 26.5 | 30 | 1.466 | 0.419 | 0.25 | 0.52 | 1.20 × 10−8 |
T-P3 | 26.5 | 30 | 1.466 | 0.419 | 0.30 | 0.52 | 2.39 × 10−8 |
T-P4 | 15.5 | 20 | 1.613 | 0.374 | 0.20 | 0.62 | 1.82 × 10−7 |
T-P5 | 15.5 | 20 | 1.613 | 0.374 | 0.25 | 0.62 | 1.20 × 10−8 |
T-P6 | 15.5 | 20 | 1.613 | 0.374 | 0.30 | 0.62 | 2.39 × 10−8 |
Scenario | Benzene | Toluene | Ethylbenzene | Xylene | ||||
---|---|---|---|---|---|---|---|---|
Crecharge (mg/L) | Csoil (mg/L) | Crecharge (mg/L) | Csoil (mg/L) | Crecharge (mg/L) | Csoil (mg/L) | Crecharge (mg/L) | Csoil (mg/L) | |
L-C1 | 262 | 0 | 1297 | 0 | 259 | 0 | 1803 | 0 |
L-C2 | 255 | 0 | 1262 | 0 | 252 | 0 | 1754 | 0 |
L-C3 | 248 | 0 | 1229 | 0 | 245 | 0 | 1709 | 0 |
L-P1 | 0 | 2315 | 0 | 11,460 | 0 | 2289 | 0 | 15,933 |
L-P2 | 0 | 2315 | 0 | 11,460 | 0 | 2289 | 0 | 15,933 |
L-P3 | 0 | 2315 | 0 | 11,460 | 0 | 2289 | 0 | 15,933 |
T-C1 | 262 | 0 | 1297 | 0 | 259 | 0 | 1803 | 0 |
T-C2 | 255 | 0 | 1262 | 0 | 252 | 0 | 1754 | 0 |
T-C3 | 248 | 0 | 1229 | 0 | 245 | 0 | 1709 | 0 |
T-C4 | 262 | 0 | 1297 | 0 | 259 | 0 | 1803 | 0 |
T-C5 | 255 | 0 | 1262 | 0 | 252 | 0 | 1754 | 0 |
T-C6 | 248 | 0 | 1229 | 0 | 245 | 0 | 1709 | 0 |
T-P1 | 0 | 2228 | 0 | 11,028 | 0 | 2203 | 0 | 15,332 |
T-P2 | 0 | 2228 | 0 | 11,028 | 0 | 2203 | 0 | 15,332 |
T-P3 | 0 | 2228 | 0 | 11,028 | 0 | 2203 | 0 | 15,332 |
T-P4 | 0 | 2540 | 0 | 12,569 | 0 | 2511 | 0 | 17,475 |
T-P5 | 0 | 2540 | 0 | 12,569 | 0 | 2511 | 0 | 17,475 |
T-P6 | 0 | 2540 | 0 | 12,569 | 0 | 2511 | 0 | 17,475 |
Parameter | Uncertainty |
---|---|
Simulated area | Low |
Thickness of the vadose zone | Low |
Unsaturated hydraulic conductivity | High |
Apparent dry density | Low |
Soil porosity | Low |
Volumetric water content | High |
Organic content fraction | High |
Concentration of pollutants in infiltrated water | High |
Initial concentration of pollutants | High |
Upper boundary condition of vapor | Low |
Lower boundary condition of vapor | High |
Organic carbon partition coefficient | Low |
Henry’s constant of pollutants | Low |
Solubility in water of pollutants | Low |
Free-air diffusion coefficient of pollutants | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.-E.; Capilla, J.E.; Romero-Ballesteros, L. Environmental Assessment of Soil and Groundwater Pollution by BTEX Leaching in Valencia Region (Spain). Water 2023, 15, 3279. https://doi.org/10.3390/w15183279
Rodrigo-Ilarri J, Rodrigo-Clavero M-E, Capilla JE, Romero-Ballesteros L. Environmental Assessment of Soil and Groundwater Pollution by BTEX Leaching in Valencia Region (Spain). Water. 2023; 15(18):3279. https://doi.org/10.3390/w15183279
Chicago/Turabian StyleRodrigo-Ilarri, Javier, María-Elena Rodrigo-Clavero, José E. Capilla, and Luis Romero-Ballesteros. 2023. "Environmental Assessment of Soil and Groundwater Pollution by BTEX Leaching in Valencia Region (Spain)" Water 15, no. 18: 3279. https://doi.org/10.3390/w15183279
APA StyleRodrigo-Ilarri, J., Rodrigo-Clavero, M. -E., Capilla, J. E., & Romero-Ballesteros, L. (2023). Environmental Assessment of Soil and Groundwater Pollution by BTEX Leaching in Valencia Region (Spain). Water, 15(18), 3279. https://doi.org/10.3390/w15183279