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Abstract: This study examines the long-term climate predictability in the Seomjin River basin using
statistical methods, and explores the effects of incorporating the duration of climate indices as
predictors. A multiple linear regression model is employed, utilizing 44 climate indices as predictors,
including global climate patterns and local meteorological factors specific to the area. The analysis
focuses on teleconnections between the target variables and climate indices, considering the value
of each index, not only for the corresponding month, but also for an average value over a duration
of 2 and 3 months. The correlation analysis reveals that considering the duration of climate indices
allows for the inclusion of predictors with higher correlation, leading to improved forecasting
accuracy. The goodness of fit analysis, which compares predicted mean values with observed values
on a monthly basis, indicates that neither precipitation nor temperature is significantly affected by
the duration. However, the tercile hit rate analysis, comparing the results with historical data, shows
a 34.7% hit rate for precipitation, both before and after, reflecting the duration of indices. Notably, for
long lead times (10–12 months), the hit rate improves after incorporating the duration. In contrast,
for temperature, the tercile hit rate is higher before considering the duration. Nonetheless, both
precipitation and temperature exhibit hit rates higher than the baseline probability of 33.3%, affirming
the reliability of long-term forecasts in the Seomjin River basin. Incorporating the duration of climate
indices enhances the selection of predictors with higher correlation, resulting in a notable impact on
long-lead precipitation forecasting. However, since temperature demonstrates little irregularity and
displays a consistent pattern according to the month and season, the effect of considering the duration
is relatively insignificant compared to precipitation. Future research will explore the decrease in hit
rate due to reflecting the duration in temperature by extending the analysis to other regions.

Keywords: seasonal forecasting; teleconnection; multiple linear regression model; climate indices

1. Introduction

Long-term forecasts, also referred to as seasonal forecasts, play a crucial role in pre-
dicting monthly or seasonal averages of meteorological elements. These forecasts provide
valuable information for decision-making in various sectors such as agriculture, food se-
curity, water resource management, natural disaster response, energy, health and disease
management, and the economy [1].

There are two main categories of long-term climate predictions: statistical methods and
dynamical methods [2–7]. Dynamical methods, predominantly conducted at the national
level in countries like South Korea, Australia, the United States, the United Kingdom,
and Japan, involve the use of numerical models based on the coupled atmosphere-ocean-
land-sea ice system. These models simulate complex climate phenomena by representing
physical interactions. While short-term predictions, typically within a few days, exhibit high
accuracy, there is a concern that accuracy significantly decreases as the prediction period
becomes longer due to the strong dependence on initial and boundary conditions [5,8]. On
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the other hand, statistical methods, such as regression analysis, correlation analysis, and
time series analysis, rely on statistical relationships derived from historical data. Compared
to dynamical methods, statistical methods are relatively easier to implement and are less
influenced by the prediction period. However, they solely rely on statistical characteristics
between the target variable and predictors, lacking the representation of complex physical
processes. This limitation arises when sufficient historical data is unavailable or when future
climate characteristics deviate from the past. Therefore, hybrid methods that combine both
statistical and dynamical approaches are also widely employed [3,4,9,10].

Long-term forecasting in the fields of weather and water resources primarily focuses
on predicting monthly or seasonal rainfall and streamflow, with the main objective of effec-
tive hydrological management. In South Korea, statistical regression equations based on
observational data and ensemble streamflow prediction methods were commonly used un-
til the mid-2000s. However, with the advancement of seasonal prediction techniques, there
has been an increasing emphasis on incorporating long-term forecast information in water
resource research [5]. Several studies have been conducted to develop prediction models
and techniques in this field. For example, Kim et al. [11] and Kim [12] developed a super
ensemble model based on empirical orthogonal function analysis and multiple regression
analysis to predict seasonal rainfall three months in advance. Kim et al. [13] constructed a
monthly temperature and rainfall prediction model using a multiple regression approach
with global climate indices as predictors. Hwang and Ahn [14] and Lee and Kwon [10]
performed summer rainfall predictions by incorporating the results of dynamic models as
predictors in statistical models. Kwon and Lee [15] utilized canonical correlation analysis
to predict summer rainfall in Northeast Asia, while Jo and Ahn [16] proposed a multiple
regression model for predicting rainfall in April to May. Park et al. [17] employed Bayesian
Markov chain Monte Carlo (MCMC) and artificial neural network techniques to forecast
summer rainfall in South Korea. Kim et al. [4] developed a statistical model for predicting
inter-annual variations in summer temperatures, utilizing multiple ensemble results from
dynamic models with a lead time of 3 to 6 months. Han et al. [18] developed a statistical
prediction model for winter temperatures incorporating predictors such as snow cover ex-
tent, Arctic sea ice concentration, El-Niño Southern Oscillation (ENSO), and Quasi-biennial
Oscillation (QBO). Yoo et al. [19] constructed a winter temperature prediction model for
East Asia. Kim et al. [5] performed monthly rainfall prediction for the Han River basin
using a multiple regression model based on teleconnections with global climate indices.
Similarly, Kim et al. [6] conducted monthly temperature prediction for the same region
using the same method. Kim et al. [7] compared rainfall prediction results for the Geum
River basin using multiple regression models and artificial neural network models. Jung
and Kim [20] derived a lead time (1 to 6 months) weather prediction model for the flood
season (June to September) in the Geum River basin by analyzing the teleconnections with
El Niño/La Niña phenomena. And Lee et al. [21] improved the prediction performance of
winter temperatures in East Asia by constructing a statistical model using several simulated
climate patterns from the Global Seasonal Forecasting System (GloSea5) as predictors.

Global climate indices serve as predictors in statistical techniques and provide insights
into large-scale climate phenomena that have a substantial impact on weather patterns
and long-term climate variations across different regions. These indices play a crucial role
in predicting precipitation and temperature patterns. Several climate indices, including
El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic
Oscillation (NAO), Arctic Oscillation (AO), and Indian Ocean Dipole (IOD), are known to
influence precipitation and temperature in various regions. Significant correlations between
these indices and precipitation and temperature in South Korea have been extensively
studied [7]. Kim et al. [7] reviewed previous research that explored the correlation between
South Korean precipitation and climate indices. In addition to ENSO, PDO, NAO, AO,
and IOD, other climate indices such as Antarctic Oscillation (AAO), East Asian Winter
Monsoon Index (EAWMI), Equatorial Eastern Pacific Sea Level Pressure (ESL), Equatorial
SOI (ESO), Multivariate ENSO Index (MEI), Northeast Asian Summer Rainfall Anomaly
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(NEASRA), NINO1+2 (Extreme eastern tropical Pacific SST (0–10S, 90W–80W)), NINO3
(Eastern tropical Pacific SST (5N–5S, 150W–90W)), NINO3.4 (East tropical Pacific SST
(5N–5S, 170, 120W)), Oceanic Niño Index (ONI), Scandinavia Pattern (SCAND), North
Pacific Pattern (NP), Southern Oscillation Index (SOI), and Western Pacific (WP) exhibit
significant correlations with monthly or seasonal precipitation in South Korea. Moreover, in
terms of temperature, notable correlations with ENSO, IOD, AO, and other climate indices
have been observed [6].

However, existing studies have primarily focused on analyzing the relationship be-
tween climate indices and specific seasons or periods of weather characteristics in South
Korea, and there are still limitations regarding the uncertainty and reliability of forecast
information. While research is steadily progressing on developing prediction models using
climate indices that exhibit significant correlations with the target variables (precipitation
or temperature), it remains challenging to derive accurate predictive information necessary
for practical water resources management and operations. South Korea’s geographical
location, influenced by both the continent and the ocean, makes it highly susceptible to
weather and climate variations between tropical/subtropical and mid-latitudes, leading to
increased prediction uncertainty [22].

Statistical models, relying on historical data, cannot guarantee the reliability of pre-
diction results when data is insufficient, past characteristics are unstable, or statistical
correlations are inadequate [8]. Reproducing severe events such as droughts, floods, heat-
waves, or cold spells that have not occurred in the past using statistical models can be
particularly challenging. These issues can be partially addressed by utilizing sufficient
data to derive statistical relationships and incorporating predictors that exhibit significant
correlations with the target variable in forecasting. As noted by Kim et al. [7], most existing
studies on teleconnections with climate indices or statistical-based long-term prediction
models are based on the analysis of specific periods, which can result in inaccurate predic-
tions when new variables or situations, such as climate change, emerge [3]. To address this,
Kim et al. [5–7] developed models by utilizing predictors derived from correlation analysis
with corresponding past data at each prediction time point, allowing for a flexible response
to changes in the statistical relationship between the target variable and predictors due to
medium- to long-term climate changes.

In this study, we aim to analyze the impact of the duration of climate indices used
as predictors during the process of constructing statistical models. We compared how the
prediction results are influenced when the average values of climate indices for durations
of 1 to 3 months are used as predictors for the monthly prediction. The selection of
predictors through teleconnection analysis and the process of constructing statistical models
followed the methodology applied in previous studies [6,7]. We evaluated the predictive
performance of monthly precipitation and temperature in the Seomjin River basin based on
the incorporation of climate index durations.

2. Materials and Methods
2.1. Study Area

This study focuses on the Seomjin River basin, situated in the southern region of South
Korea, covering an approximate area of 8298 square kilometers (Figure 1). This region
exhibits distinct seasonal variations, with notable differences between spring/summer and
autumn/winter. During July to September, a humid coastal climate prevails, characterized
by high temperatures and humidity. In contrast, winter brings a continental climate,
resulting in cold and dry conditions. The downstream region, adjacent to the southern
coast, experiences higher temperatures and receives more precipitation compared to the
upstream region. The average temperature from 1981 to 2020 is approximately 13 ◦C, and
the annual precipitation is 1470 mm. Around 65% of the annual rainfall occurs between
June and September.
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Figure 1. Study area.

For the analysis, this study utilizes data from 18 ASOS (Automated Synoptic Obser-
vation System) stations of the Korea Meteorological Administration (KMA) indicated in
Figure 1. These stations serve as observation points to calculate the areal average meteo-
rological data for the entire target area. To derive monthly values for the target variables
(precipitation, temperature), a time-variable Thiessen network is constructed. This network
takes into account the changing availability of data points over time and facilitates the
calculation of areal average values for the entire target area. The latitude, longitude, and
elevation of each station are provided in Table 1.

Table 1. ASOS stations used in this study.

ID Station Name Latitude (◦N) Longitude (◦E) Elevation (m a.s.l)

146 Jeonju 35.84 127.12 61.40
156 Gwangju 35.17 126.89 72.38
168 Yeosu 34.74 127.74 64.64
170 Wando 34.40 126.70 35.24
174 Suncheon 35.02 127.37 165.00
244 Imsil 35.61 127.29 247.04
245 Jeongeup 35.56 126.84 69.84
247 Namwon 35.42 127.40 132.50
248 Jangsu 35.66 127.52 406.49
254 Sunchanggun 35.37 127.13 127.00
256 Juam 35.08 127.24 74.63
258 Boseonggun 34.76 127.21 2.80
259 Gangjingun 34.63 126.77 12.50
260 Jangheung 34.69 126.92 45.02
261 Haenam 34.55 126.57 16.36
262 Goheung 34.62 127.28 51.91
266 Gwangyangsi 34.94 127.69 86.70
289 Sancheong 35.41 127.88 138.07
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2.2. Forecasting Model Setup

As predictors of the statistical model, 36 global climate indices provided by the
National Oceanic and Atmospheric Administration (NOAA) of the United States, and
8 meteorological factors in the Seomjin River basin were used (Table 2). Among the 8 types
of meteorological data, relative humidity, mean sea-level pressure, sunshine duration,
average wind speed, average cloud cover, and small pan evaporation are also based on the
data provided by the KMA’s ASOS stations. A variable Thiessen network was constructed
based on available data for each month, and these variables were averaged on a monthly
basis for the study area. In order to predict future precipitation and temperature, past
values of precipitation and temperature were also used as predictor variables. And the
36 global climate indices were selected from among 39 types that were utilized in previous
studies [6,7], and only those that were continuously updated.

Table 2. Predictors used in this study [5–7].

Predictor Description Provider

Global climate
index

AAO Antarctic oscillation NOAA
AMM Atlantic meridional mode NOAA
AMO Atlantic multidecadal oscillation NOAA
AO Arctic oscillation NOAA
BEST Bivariate ENSO timeseries NOAA

CPOLR Monthly central Pacific outgoing long wave
radiation index (170E–140W, 5S–5N) NOAA

EA East Atlantic pattern NOAA
EAWR East Atlantic/Western Russia pattern NOAA
EPNP East Pacific/North Pacific oscillation NOAA
GML Global mean land-ocean temperature index NOAA
MEI.v2 Multivariate ENSO index version 2 NOAA
NAO North Atlantic oscillation NOAA

NINO1+2 Extreme eastern tropical Pacific SST (0–10S,
90W–80W) NOAA

NINO3 Eastern tropical Pacific SST (5N–5S, 150W–90W) NOAA

NINO3.4 East central tropical Pacific SST (5N–5S,
170–120W) NOAA

NINO4 Central tropical Pacific SST (5N–5S, 160E–150W) NOAA
NOI Northern oscillation index NOAA
NP North Pacific pattern NOAA
ONI Oceanic Niño index NOAA
PNA Pacific American index NOAA
POL Polar/Eurasia pattern NOAA
QBO Quasi-biennial oscillation NOAA
SCAND Scandinavia pattern NOAA
SLP_DAR Darwin sea level press NOAA
SLP_EEP Equatorial eastern Pacific sea level press NOAA
SLP_IND Indonesia sea level press NOAA
SLP_TAH Tahiti sea level press NOAA
SOI Southern oscillation index NOAA
SOI_EQ Equatorial SOI NOAA
SOLAR Solar flux (10.7 cm) NOAA
TNA Tropical northern Atlantic index NOAA
TNI Trans-Niño index NOAA

TPI Tripole index for the interdecadal
Pacific oscillation NOAA

TSA Tropical southern Atlantic index NOAA
WHWP Western hemisphere warm pool NOAA
WP Western Pacific index NOAA
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Table 2. Cont.

Predictor Description Provider

Local climate
index

PCP Monthly precipitation KMA
TMP Monthly average temperature KMA
HMD Monthly average relative humidity KMA
AvgSLP Monthly average sea level pressure KMA
DLhr Monthly sum of daylight hours KMA
WND Monthly average wind speed KMA
CLOUD Monthly average cloud cover KMA
SmallEV Monthly sum of small pan evaporation KMA

To select predictors for the forecasting model, a teleconnection analysis was performed
using monthly data from the past 40 years of the target variable (precipitation or tem-
perature) and the 1–18 lead months’ data of 44 climate indices. The analysis aimed to
identify the climatic indices that have the highest correlation with the target variable. From
the teleconnection analysis, the top 10 climate indices with the highest correlations were
chosen as candidate predictors. This approach allows for the selection of predictor vari-
ables based on the correlation analysis of past data for each target month. As described by
Kim et al. [5], this method offers the advantage of constructing optimal predictor variables
and forecasting models even when teleconnections vary from the past due to long-term
climate variations.

There were two approaches considered: One where only the data of the respective
month for each climatic index were examined (without considering the duration), and
another where the correlation with the averaged values over a duration of 1 to 3 months was
calculated. For example, when predicting the precipitation in January 2000, considering
a 2-month duration for each climate index based on the preceding 1-month data, we
performed correlation analysis on the average climate index values for the 2-month period
from November to December, which corresponds to the preceding month of December
from 1959 to 1998, based on the precipitation in January for the past 40 years (1960–1999).
A 3-month duration refers to the average values from October to December.

By performing these correlation analyses with various durations of preceding climate
indices, this study aimed to identify the most relevant and influential predictor variables
for accurate forecasting. This comprehensive approach helped to account for different lead
times and improve the prediction models’ flexibility and accuracy, considering potential
variations in long-term climate patterns. The duration of 1 month corresponds to the
approach used in previous studies by Kim et al. [5–7], and by incorporating average values
for 2 and 3 months, a wider range of potential predictive factors was considered.

The forecast model employed in this study follows the same form as the models used
in previous studies by Kim et al. [6,7]. It utilizes a multiple linear regression model, which
can be expressed as follows:

Y = β0 + β1X1 + β2X2 + . . . + β9X9 + β10X10 + ε, (1)

where Y is the target variable (precipitation or temperature); X1, X2, . . . X9, X10 are the
selected 10 climate indices with high correlation; β0, β1, β2, . . . β9, β10 are the regression
coefficients associated with each predictor; ε is residual term.

Depending on the prediction time point (issuance month), the top 10 climatic indices
with high correlations were utilized as predictive factors for each target month. The histor-
ical data of the past 40 years, based on the prediction time, were randomly divided into
two groups for calibration and validation. In each calibration step, a stepwise regression
analysis method was used to derive one regression model, which was then evaluated using
the validation data. The criteria for model fitness were set as follows: The percent bias
(PBIAS) within +/−100%, the ratio of RMSE to the standard deviation of the observations
(RSR) below 0.7, and the Nash-Sutcliffe efficiency (NSE) and the coefficient of determination
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(r2) above 0.6. Moreover, the multicollinearity between variables in the model was checked
with a variance inflation factor (VIF) threshold of 10. This process was repeated randomly
to select 1000 models that meet the fitness criteria.

In order to evaluate the long-term predictive performance, forecast models for monthly
precipitation and temperature were constructed and tested for the period from 1991 to
2022. The fitness of the prediction results was evaluated using various evaluation indices,
including PBIAS, RSR, NSE, and the Pearson correlation coefficient (r). This evaluation
was based on the mean of 1000 predicted values for each month and the corresponding
observed values. Additionally, the tercile hit rate, which is used as a measure to assess
the accuracy of seasonal predictions, was employed to analyze the prediction results. It
quantifies the percentage of correct forecasts in terms of the observed outcome falling
within the predicted tercile category. The observed values for the same month over the past
30 years are divided into three intervals based on magnitude, and the probability of the
observed value for the corresponding month falling within each interval is calculated. If
the tercile hit rate exceeds the expected probability of 33.3%, it indicates that the predictions
have meaningful predictive skill.

3. Results
3.1. Teleconnection Analysis

Figure 2 illustrates an example of the teleconnection results with and without con-
sidering the duration. The analysis was based on January 2020, where the correlation
between January precipitation over the past 40 years (1980–2019) and climate index data for
each preceding period (1–18 months) were examined. For instance, the 1-month preceding
data for the AAO (Antarctic Oscillation) index corresponds to December data from 1979
to 2018, while the data for an 18-month lead time refers to July data from 1978 to 2017.
In Figure 2a, only the month data corresponding to each lead time were analyzed, while
Figure 2b shows the correlation results when considering the average values of climate
indices for different durations (1, 2, 3 months). Red color indicates positive correlation, blue
color indicates negative correlation, and gray color indicates insufficient data for correlation
analysis during that period.

For correlations with an absolute value of 0.4 or higher, the results are presented as
numerical values. As observed in Figure 2, incorporating the average values of climate
indices for up to a maximum of 3 months (Case 2) generally results in higher correlation
values. For example, when considering the POL (Polar/Eurasia pattern) index, the corre-
lation with a 3-month lead data is below 0.4 when only the data for the respective month
is considered (Case 1), whereas it increases to 0.48 (result for a 2-month duration) when
the average values of the climate index for 1 to 3 months are taken into account (Case 2).
Incorporating the duration for all analysis periods leads to higher correlation results, even
in the case of temperature.

Figure 3 represents the status of climate indices utilized in constructing the prediction
models for each month of 2020, with the prediction time point set as December 2019. It
displays the top 10 climate indices in terms of correlation coefficient (absolute value) for
each month. Figure 3a shows the list of climate indices based on the data for the respective
month without considering the duration (Case 1), while Figure 3b presents the list of
climate indices with high correlation coefficients obtained by considering the duration of
indices (Case 2). In Figure 3a, PNA(16) refers to the 16-month lead data for the PNA index,
while in Figure 3b, PNA(16-1) represents the combination of a 16-month lead period and a
1-month duration. In other words, PNA(16) and PNA(16-1) refer to the same data.
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In Figure 3, January 2020 corresponds to a 1-month lead, while December 2020 cor-
responds to a 12-month lead. For the 1-month lead prediction, the range of correlation
coefficients for the selected candidate climate indices is −0.491 (maximum) to 0.368 (mini-
mum) based on its values when the duration of the indices is not considered. When the
duration is taken into account, the range becomes −0.491 (maximum) to 0.390 (minimum).
For the 12-month lead prediction, without considering the duration, the range is −0.384
(maximum) to 0.302 (minimum). However, when the duration is considered, the range
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is 0.429 (maximum) to 0.348 (minimum). This means that the correlations presented in
Figure 3b are higher than those in Figure 3a, and by incorporating the duration of the
climate indices, we can utilize indices as predictors that have a higher correlation with the
target variable compared to the conventional approach not considering the duration.

During the construction of the forecast model, there are constraints on the available
climate indices based on the lead time. However, incorporating the duration expands the
range of available predictors with high correlation coefficients. This effect becomes particularly
significant as the lead time increases. Therefore, by considering the duration of climate indices,
it is possible to identify predictors that exhibit higher correlation with the prediction target
(such as precipitation or temperature) not only in the analyzed period but also in other periods.

3.2. Precipitation Forecasts

Figure 4 displays a comparison between the predicted monthly rainfall values and the
corresponding observed values from January 1991 to December 2022, illustrating the range
and median of the predictions. The gray shading represents the prediction range, the red
solid line represents the median predicted value, and the blue line represents the observed
value. While there may be instances where significant differences between observed and
predicted values occur in certain periods, both Figure 4a (without considering the duration
of climate indices) and Figure 4b (considering the duration) exhibit similar patterns to the
observed values, indicating a seasonal influence.
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Figure 5 presents the analysis of the goodness of fit between the average predicted
values and observed values for monthly precipitation, considering different prediction lead
times ranging from 1 to 12 months. It includes fit indices such as PBIAS, RSR, NSE, and r.
Case 1 refers to the scenario where the duration of climate indices is not considered, while
Case 2 represents the scenario where the duration is taken into account.
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Table 3 provides the range of values for each fit index as presented in Figure 5. Al-
though there may be some variations depending on the lead time, the differences in the val-
ues of the fit indices between considering or not considering the duration of climate indices
are not substantial. According to the evaluation criteria by Moriasi et al. [23], the PBIAS
can be classified as “very good,” while the RSR and NSE are at an “unsatisfactory” level.

Table 3. Goodness of fit analysis results for precipitation forecasts.

PBIAS RSR NSE r

Case 1 0~+2.7% 0.72~0.78 0.39~0.48 0.66~0.71
Case 2 −1.2~+2.6% 0.74~0.77 0.40~0.45 0.67~0.69

As observed in Figure 5, regardless of whether the duration of the predictor is consid-
ered or not, PBIAS generally increases with longer lead time. However, when analyzing
the values of RSR, NSE, and r, it is observed that for prediction lead times from 1 month to
9 months, the goodness of fit in Case 1 is relatively better. On the other hand, for prediction
lead times of 10 months and beyond, the goodness of fit in Case 2 is relatively higher. This
suggests that considering the duration of climate indices as a predictor shows potential
for enhancing the accuracy of predictions, particularly for longer lead times of 10 months
or more.

Figure 6 depicts the analysis of the tercile hit rate for precipitation forecasts. The red
color in Figure 6 represents the baseline probability of 33.3%, and the blue dashed line
represents the average value for all periods. If the average value is higher than the baseline
probability (33.3%), it indicates predictive skill.
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As shown in Figure 6, when the duration of the predictive factor is not considered
(Case 1), the range of probabilities for each month is 27.6% to 45.0% (average 34.7%).
However, when the duration is taken into account (Case 2), the range becomes 25.3% to
41.9% (average 34.7%). Although there may be some monthly differences, the overall
results are similar.

Figure 7 displays a bar plot presenting the range of tercile hit rates for each month
based on the prediction lead time (1 to 12 months). The red line represents the baseline
probability of 33.3%, and values exceeding this threshold indicate meaningful predictive
skill. When the duration is not considered, similar to the results in Figure 5, the hit rates
decrease after a lead time of 10 months. However, when the duration is taken into account,
it is observed that the hit rates for lead times of 10 to 12 months do not drop significantly.
The range of hit rate values for lead times of 10 to 12 months is higher when the duration
is considered (34.9% to 35.6%) compared to when it is not considered (33.6% to 34.2%).
This suggests that incorporating the duration of climate indices as predictors can help
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maintain higher hit rates for longer lead times, enhancing the accuracy of the tercile-based
precipitation forecasts.
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the baseline probability of 33.3%.

3.3. Temperature Forecasts

Figure 8 illustrates the predicted results for monthly temperatures from 1991 to 2022.
Unlike the precipitation forecasts shown in Figure 4, which exhibit some variations depend-
ing on the consideration of duration, the temperature predictions show consistent results
throughout the entire analysis period. This consistency is further supported by the analysis
of goodness of fit presented in Figure 9 and Table 4, where the differences resulting from
the consideration of duration are not significant.
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Table 4. Goodness of fit analysis results for temperature forecasts.

PBIAS RSR NSE r

Case 1 −1.2~−0.5% 0.15~0.16 0.98 0.99
Case 2 −1.2~−0.4% 0.15~0.16 0.97~0.98 0.99

Compared to precipitation, the goodness of fit between the predicted results and the
actual observed values for temperature is very high, as indicated by the values of PBIAS,
RSR, NSE, and r. According to the evaluation criteria by Moriasi et al. [23], PBIAS, RSR, and
NSE are considered to be at a very good level. This suggests that the temperature forecasts
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exhibit a high level of accuracy, regardless of whether the duration of climate indices is
considered or not.

Figure 10 presents a comparison of the tercile hit rates for the temperature forecasts on
a monthly basis. The case without considering duration yields higher hit rates (ranging
from 30.4% to 55.7%, with an average of 38.8%) compared to the case considering duration
(ranging from 26.3% to 53.4%, with an average of 36.9%). It was consistently observed that
May had the highest hit rate, and the period from May to November generally exhibited
relatively higher hit rates. Overall, the average hit rates were higher than the baseline
probability of 33.3%, indicating the reliability of the statistically derived temperature
forecasts in this study.
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Figure 11 illustrates the tercile hit rates for the temperature forecasts across different
lead times. It was observed that irrespective of the lead time, the hit rates were higher when
the duration of climate indices was not considered. Furthermore, similar to precipitation
forecasts, it was noted that for lead times of 10 months or more, the hit rates decrease when
duration is not considered, while considering duration improves the hit rates. However, as
evident in Figures 8–11 and Table 4, there is minimal difference in temperature prediction
performance when considering the duration of climatic indices.



Water 2023, 15, 3291 16 of 19

Water 2023, 15, x FOR PEER REVIEW 16 of 19 
 

 

 

(b) 

Figure 10. Tercile hit rate for monthly temperature forecasts: (a) Case 1. Not considering the duration 

of climate indices; (b) Case 2. Considering the duration of climate indices. The red solid line repre-

sents the baseline probability of 33.3%, and the blue dashed line represents the average value for all 

months. 

Figure 11 illustrates the tercile hit rates for the temperature forecasts across different 

lead times. It was observed that irrespective of the lead time, the hit rates were higher 

when the duration of climate indices was not considered. Furthermore, similar to precip-

itation forecasts, it was noted that for lead times of 10 months or more, the hit rates de-

crease when duration is not considered, while considering duration improves the hit rates. 

However, as evident in Figures 8–11 and Table 4, there is minimal difference in tempera-

ture prediction performance when considering the duration of climatic indices. 

 

Figure 11. Tercile hit rate for temperature forecasts according to the lead time. The red line repre-

sents the baseline probability of 33.3%. 

4. Discussion 

The results obtained from the analysis of precipitation and temperature forecasts pro-

vide valuable insights into the predictive performance of the statistical models used in this 

study. 

Regarding precipitation forecasts, Figure 4 demonstrates that both the range and me-

dian of the predicted rainfall values exhibit patterns similar to the observed values, indi-

cating a seasonal influence. This suggests that the models capture the general variability 

Figure 11. Tercile hit rate for temperature forecasts according to the lead time. The red line represents
the baseline probability of 33.3%.

4. Discussion

The results obtained from the analysis of precipitation and temperature forecasts
provide valuable insights into the predictive performance of the statistical models used in
this study.

Regarding precipitation forecasts, Figure 4 demonstrates that both the range and
median of the predicted rainfall values exhibit patterns similar to the observed values,
indicating a seasonal influence. This suggests that the models capture the general variability
of precipitation on a monthly basis. However, it is important to note that there are instances
where significant differences between observed and predicted values occur, indicating
potential areas for improvement in the models.

The goodness of fit analysis presented in Figure 5 further evaluates the performance
of the precipitation forecasts. The fit indices, including PBIAS, RSR, NSE, and r, provide
quantitative measures of the agreement between the predicted and observed precipitation
values. It is observed that the models generally exhibit a “very good” level of performance
according to the evaluation criteria by Moriasi et al. [23] based on PBIAS. However, there
is room for improvement as the models show an “unsatisfactory” level of performance
based on NSE and RSR. These findings indicate that while the models capture the overall
precipitation patterns well, there is room for refinement to enhance the accuracy of pre-
dictions. The tercile hit rate analysis presented in Figures 6 and 7 provides insights into
the accuracy of tercile-based precipitation forecasts. The results show that considering
the duration of climate indices as predictors does not significantly impact the overall ter-
cile hit rates. The average hit rates are relatively consistent between the cases with and
without considering duration. However, it is worth noting that the hit rates for lead times
of 10 months and beyond are higher when the duration is considered, suggesting that
incorporating the duration of climate indices may enhance the accuracy of longer-term
precipitation predictions.

Turning to temperature forecasts, Figure 8 demonstrates that the predicted monthly
temperature values align well with the observed values throughout the analysis period.
This consistency indicates that the models effectively capture the general temperature
variations on a monthly basis. The high goodness of fit indicated by PBIAS, RSR, NSE, and
r (Figure 9 and Table 4) further supports the notion that the models perform exceptionally
well in predicting monthly temperature. The tercile hit rate analysis for temperature
forecasts, as shown in Figures 10 and 11, reveals interesting patterns. While the hit rates
are generally higher when the duration of climate indices is not considered, the difference
is minimal compared to precipitation forecasts. This suggests that the consideration of
duration has a limited impact on the accuracy of temperature predictions.
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In summary, the results indicate that the statistical models used in this study show
promising performance in predicting monthly precipitation and temperature. The models
capture the overall patterns and variability of these climatic variables, and the goodness of
fit measures demonstrate a high level of agreement between the predicted and observed
values. Incorporating the duration of climate indices as predictors shows potential for
improving the accuracy of longer-term precipitation forecasts. However, for temperature
forecasts, the consideration of duration has a minimal effect on the predictive performance.
These findings contribute to the understanding of the predictive capabilities of the statistical
models in capturing and forecasting climatic variables, providing valuable information for
climate-related decision-making and planning.

5. Conclusions

In this study, long-term weather forecasting using statistical methods was conducted
on the Seomjin River basin, and the effects of incorporating the duration of climate indices
used as predictive factors were evaluated. The statistical technique utilized in this study
was the multiple linear regression model applied in previous studies by Kim et al. [5–7]. A
total of 44 climate indices, including global climate patterns and local weather factors in
the target area, were used as predictive factors. For each target month, the teleconnection
analysis of each climate index was performed for different lead times (1–18 months), and
the top 10 climate indices with high correlation were selected as candidate predictors. In
order to incorporate the duration of climate indices, the correlation analysis was conducted
not only for the values of each climate index for the corresponding month, but also for the
average values for 2-month and 3-month durations.

The results of the correlation analysis showed that incorporating the duration of
climate indices allowed for the selection of climate indices with higher correlation compared
to considering only the values for the corresponding month. Particularly, as the forecast
lead time increased, the difference in correlation became more pronounced. This indicates
that the inclusion of duration in the prediction model expands the range of available climate
indices with high correlation, which is important in the process of constructing models
where the choice of available predictors is constrained by the forecast lead time.

When comparing the prediction results with and without incorporating the duration,
significant differences were observed in precipitation rather than temperature. In precip-
itation forecasts, incorporating duration maintained a stable tercile hit rate (34.9–35.6%)
for lead times of 10–12 months, while excluding duration resulted in a decreased hit rate
beyond 10 months (33.6–34.2%). For temperature, hit rates were higher without considering
duration. Both precipitation and temperature forecasts had average tercile hit rates above
the baseline probability (33.3%) regardless of duration incorporation.

In conclusion, the inclusion of the duration of climate indices as predictive factors
in our forecasting models showed the potential to utilize climate indices with higher
correlations. This notably improved the predictive skill for precipitation forecasts with lead
times of 10–12 months. However, for the overall forecast period, the difference in predictive
skill was relatively marginal. As for temperature forecasts, the impact of incorporating
the duration on the goodness of fit analysis results was negligible. The influence of
incorporating the duration on temperature hit rates will undergo further investigation in
future research, encompassing additional applications to different regions.

Furthermore, this study focused solely on the statistical correlation without consider-
ing the dynamic relationships between each climate index or between the climate indices
and the prediction target. The emphasis was placed on constructing flexible models based
on statistical relationships depending on the prediction time. Therefore, due to the lim-
itations of statistical models, predictions may be somewhat compromised for extreme
events that differ significantly from historical patterns. However, we anticipate that this
issue can be mitigated to some extent by the utilization of new predictive factors and the
incorporation of diverse statistical characteristics into the models in the future.
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