
Citation: Zhang, C.; Su, G.; Li, X.

Changes in Nutrient Concentrations

and Limitations of Poyang Lake

Associated with Socioeconomic

Development in the Watershed from

1978 to 2021. Water 2023, 15, 3304.

https://doi.org/10.3390/

w15183304

Academic Editor: Anas Ghadouani

Received: 21 August 2023

Revised: 13 September 2023

Accepted: 15 September 2023

Published: 19 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Changes in Nutrient Concentrations and Limitations of Poyang
Lake Associated with Socioeconomic Development in the
Watershed from 1978 to 2021
Cheng Zhang 1,2 , Guodong Su 3,4,5 and Xia Li 3,4,5,*

1 School of Engineering Technology, Beijing Normal University, Zhuhai 519087, China; zhangcheng@bnu.edu.cn
2 Instrumentation and Service Center for Science and Technology, Beijing Normal University,

Zhuhai 519087, China
3 Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University,

Zhuhai 519087, China; suguodong@mail.bnu.edu.cn
4 State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University,

Beijing 100875, China
5 Key Laboratory of Coastal Water Environmental Management and Water Ecological Restoration of

Guangdong Higher Education Institutes, Beijing Normal University, Beijing 100875, China
* Correspondence: lixiabnu@bnu.edu.cn; Tel.: +86-0756-3683-539

Abstract: Socioeconomic development often leads to environmental pollution and degradation
initially while, beyond a certain point, there is the potential for improvements in environmental
quality. In this study, we conducted a comprehensive review of published literature and national
data to investigate changes in nutrient concentrations and limitations in Poyang Lake from 1978
to 2021. Our objective was to examine the relationships between these changes and the process
of socioeconomic development in the watershed. The findings revealed a rapid socioeconomic
development of the Poyang Lake Watershed, showing significant changes in various indexes. For
example, population, Gross Domestic Product (GDP), urbanization, grain and meat productions,
sewage amount and treatment rate, and forest coverage in the watershed showed increasing trends
with different fitting curves, each following distinct fitting curves such as exponential, binary, and
linear models. Concurrently, the concentrations of total nitrogen (TN) and total phosphorus (TP) in
Poyang Lake exhibited a linear increase over the years, surpassing eutrophication thresholds since
the early 1980s. However, TN and TP have shown a decreasing trend in recent years. Notably, the
lake displayed co-limitation by N and P, with TN primarily driving the N:P ratio. TN and TP showed
a significant “∩” shape with the increase in GDP and urbanization, while they increased with the
population. TN:TP showed an increasing pattern with GDP and urbanization but a “U” shape with
the population. This research contributes significant insights into the long-term changes in nutrient
concentrations, shifts in nutrient limitations, and their associations with socioeconomic development.
The findings highlight the need for a balanced and strategic approach to appropriately manage both
nutrients for effective eutrophication mitigation.

Keywords: eutrophication; gross domestic product; nutrient stoichiometry; urbanization

1. Introduction

The major biogeochemical cycles on the earth have been altered by the rapid devel-
opment of human society, such as population expansion and industrialization [1–3]. In
particular, the total amount of circulating nitrogen (N) in the biosphere has doubled [4,5],
and the total amount of phosphorus (P) has quadrupled [6] compared to preindustrial
times. These changes have resulted in large quantities of nutrients being delivered into
aquatic ecosystems, leading to the stimulation of primary production and the acceleration
of the eutrophication process [7,8]. Eutrophication, characterized by excessive nutrient
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enrichment, has been identified as one of the greatest threats to aquatic ecosystems world-
wide [9–11], causing water quality degradation, biodiversity loss, and the disruption of
ecosystem functions [12,13]. The Environmental Kuznets Curve (EKC) theory provides
additional insights into the relationship between environmental degradation and socioe-
conomic development, suggesting that as societies undergo economic development, they
initially experience an increase in environmental degradation [14,15]. However, beyond
a certain level of economic growth and technological advancement, societies may start
to witness a decline in environmental degradation and an improvement in environmen-
tal quality [16–18]. This theory is relevant to understanding the relationship between
socioeconomic development and the long-term nutrient variations in lake ecosystems.

Nitrogen and phosphorus are essential nutrients that support primary production
in both aquatic and terrestrial ecosystems, playing important roles in protein synthesis,
energy transfer, and nucleic acid structure [19,20]. In lake ecosystems, excess nutrient
inputs can lead to eutrophication [21,22]. The dynamics of nutrient enrichment are im-
portant for ecosystem health, and researchers have examined the concept of nutrient
limitation [19,23,24]. Traditionally, phosphorus has been recognized as the primary limiting
nutrient for lake primary production. Unlike certain other essential nutrients that have
gaseous atmospheric cycles, phosphorus lacks a significant gaseous atmospheric cycle and
relies primarily on geological processes for its availability. This characteristic emphasizes
its significance as a critical nutrient for various organisms [25–27]. In marine systems,
nitrogen is typically the limiting nutrient due to the inhibition of nitrogen fixers by high
salinity [20,28,29]. However, several studies have suggested that lakes can experience
frequent nitrogen limitation alongside phosphorus limitation, indicating a dual nutrient
limitation [30–32]. A useful indicator for inferring nutrient limitation in lakes is the N:P
ratio in the water column, which can provide insights into whether a lake is primarily
limited by nitrogen, phosphorus, or both [33,34]. Shifts in lake N:P stoichiometry indicate
changes in phytoplankton nutrient limitation patterns [35]. Generally, a TN:TP molar
ratio greater than 50:1 is indicative of possible phosphorus limitation, a ratio less than
20:1 suggests possible nitrogen limitation, and ratios between 20:1 and 50:1 indicate a
possible co-limitation by N and P [36,37]. Changes in nutrient stoichiometry can lead to
alterations in the composition and structure of the primary producer community [35,38–40],
favoring species with strong competitive abilities for using phosphorus under enhanced
phosphorus limitation [38,41] and nitrogen-fixing cyanobacterial species under nitrogen
limitation [36]. Different nutrient management strategies, such as phosphorus-only control,
nitrogen control, and dual nutrient control, have been suggested to mitigate and halt lake
eutrophication based on the nutrient limitation of phytoplankton [27,42–44].

Human population growth, urbanization, and economic development are key drivers
of global environmental change, especially water pollution [45–49]. As the global popula-
tion continues to surge, so does the demand for resources and land, leading to increased
agricultural activities, industrialization, and urban expansion. Urbanization, characterized
by the proliferation of impervious surfaces and concentrated human activity, generates sub-
stantial volumes of wastewater and stormwater runoff. When inadequately managed, these
runoff sources can transport pollutants into rivers, lakes, and oceans [50,51]. Concurrently,
economic development fosters industrial growth and infrastructure expansion, often result-
ing in the release of chemicals, heavy metals, and nutrients into aquatic ecosystems [52–57].
For example, in the study by Hall et al. [52], the impacts of socioeconomic indices, such as
cropland area, livestock biomass, and nitrogen in sewage, on water quality were compared
with climate factors including temperature, evaporation, and river discharge. The findings
indicate that the former (socioeconomic) factors were stronger determinants influencing
algal communities than the latter (climate) factors. Yuan et al. [58] reported statistically
significant higher nutrient levels and increased concentrations of total and thermotolerant
coliforms (or fecal coliforms) in highly urbanized locations when compared to medium-
and low-urbanization sites. This complex interplay among these driving forces underscores
the critical importance of conducting comprehensive analyses to unravel the multifaceted
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challenges posed by population growth, urbanization, and economic development, all of
which are pivotal in safeguarding the long-term health of these vital aquatic ecosystems
and preserving our invaluable water resources.

Since China’s Opening Up and Reform Process began in 1978, the country has experi-
enced remarkable social and economic development [53,59]. From 1978 to 2021, China’s
population increased from 963 million to 1412 million, the proportion of urban areas in
the watershed increased from 17.9% to 64.7%, and GDP increased 313-fold from CNY
367 billion to CNY 114,924 billion [60]. Concurrently, lake eutrophication has become a
significant environmental problem in China since the 1980s, particularly in shallow lakes in
the middle and lower reaches of the Yangtze River basin [61–63]. As the largest freshwater
lake in China and an important river-connected lake in the Yangtze River region, Poyang
Lake has experienced rapid economic and population growth within its watershed. The
increased anthropogenic inputs resulting from industrialization, urbanization, and popu-
lation expansion have elevated both nitrogen and phosphorus concentrations in Poyang
Lake [64–66]. Comprehensive pollution-source identification revealed that nutrient pollu-
tion in Poyang Lake originates from non-point sources related to agricultural activities and
atmospheric deposition, as well as point sources such as municipal effluents and fertilizer
plant wastewater [67].

These nutrient inputs have led to persistent harmful algal blooms, significantly de-
grading the water quality and ecological integrity of Poyang Lake. However, the long-term
variations in nutrient concentrations and their relationships with socioeconomic develop-
ment in the region remain unclear. A thorough understanding of these relationships can
provide valuable insights into the increasing environmental impacts of economic growth,
helping policymakers to make informed decisions in order to promote sustainable de-
velopment and mitigate potential ecological threats. Additionally, this research can aid
in the development of targeted strategies for nutrient management and environmental
conservation in the area.

Therefore, the specific objectives of this study were: (1) to evaluate trends in nutri-
ent concentrations and nutrient limitation status in Poyang Lake from 1978 to 2021 by
reviewing published literature and national monitoring data, and (2) to assess the EKC
theory by investigating the relationships between lake nutrient changes and socioeconomic
development indexes. By achieving these objectives, this research aims to provide im-
portant insights into the long-term changes in nutrient concentrations, shifts in nutrient
limitation, and their associations with socioeconomic development. These findings will
contribute to the effective management of eutrophication in Poyang Lake and inform future
decision-making processes.

2. Materials and Methods
2.1. Study Area

Poyang Lake, located in the northern Jiangxi Province and lower reach of Yangtze
River, has a surface area over 4000 km2 in the summer, an average depth of 8.4 m, and a
watershed area spanning 162,200 km2 [68,69]. The lake region falls within the East Asian
Monsoon Region and experiences a subtropical warm and humid climate, characterized by
an average temperature of 17 ◦C and an average annual precipitation ranging from 1200
to 1700 mm. The lake is fed by five rivers, namely the Ganjiang, Fuhe, Xinjiang, Raohe,
and Xiushui rivers, and it has one outlet connecting to the Yangtze River (Figure 1). The
annual runoff of Poyang Lake is 152.5 billion m3, accounting for 16.3% of the annual runoff
of the Yangtze River. Generally, the flood season begins at the end of March and lasts until
October [69]. During the summer, Poyang Lake acts as a flood buffer, receiving excess
water from the Yangtze River and mitigating flood risks downstream. The water level of
Poyang Lake fluctuates significantly due to variations in inflows from the five tributaries
and water exchange with the Yangtze River, resulting in large seasonal variations in the
water surface area [70,71]. Poyang Lake is known as “the kidney of the Yangtze River” as
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its water quality directly affects the ecological security of the middle and lower reaches of
the Yangtze River.
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Figure 1. The map of the Poyang Lake Watershed. Poyang Lake is the largest freshwater lake
in China.

Poyang Lake is not only significant in terms of its hydrology but also serves as a
critical wintering refuge for 310 species of migratory birds [72,73], including 16 threatened
species on the International Union for the Conservation of Nature Red List (IUCN, www.
iucnredlist.org, accessed on 27 April 2022, version 2022-2). The lake hosts approximately
99% of the global population of the critically endangered Siberian Cranes and about 95% of
the global population of the endangered Oriental White Storks during the winter [72,73].
Moreover, Poyang Lake supports a remarkable array of fish species, including the only
freshwater porpoise in the world, diverse aquatic vegetation, and a few dozen species of
mammals that reside in the lake at various times. Due to its exceptional ecological diversity,
Poyang Lake was designated as a Wetland of International Importance by the Ramsar
Convention in 1992.

2.2. Data Collection and Statistics

The nutrient concentration (TN and TP) data from 1978 to 2021 were collected from
28 sources documented in scientific papers and the nation’s monitoring data (Table S1).
When multiple yearly TN and TP values were available for the same years, we used the
averaged values. Additionally, we calculated yearly averages from the monthly monitoring
data. All of the data were carefully checked and cross-referenced with reference datasets
spanning a 10-year duration. The N:P molar ratio was calculated with the average values
of TN and TP. The watershed area of Poyang Lake accounts for 97% of the area of Jiangxi
Province; thus, we used the sociometric data of Jiangxi Province to represent the data of
the Poyang Lake Watershed. The sociometric indexes from 1978 to 2021 were collected
from Jiangxi Statistical Yearbooks (http://tjj.jiangxi.gov.cn, accessed on 6 December 2022),
including GDP, population, proportion of urban area (urbanization), domestic sewage
amount, sewage treatment rate, forest coverage, grain yield, meat yield, agriculture land
area, total amount of N-fertilizer and P-fertilizer, and the molar ratio of N-fertilizer:P-
fertilizer. The change trend in these indexes was assessed using the ggtrendline package
(https://cran.r-project.org/web/packages/ggtrendline, accessed on 27 April 2022) in R
3.6.3 (R Core Team. 2020. R: A language and environment for statistical computing,
R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org,
accessed on 29 February 2020). The relationships among TN, TP, and TN:TP, as well as the
relationships between the nutrient indexes (TN, TP, and TN:TP) and sociometric indexes
(GDP, population, and urbanization) were assessed using the ggtrendline package in R.

www.iucnredlist.org
www.iucnredlist.org
http://tjj.jiangxi.gov.cn
https://cran.r-project.org/web/packages/ggtrendline
https://www.R-project.org


Water 2023, 15, 3304 5 of 15

3. Results
3.1. Socioeconomic Indexes

The Poyang Lake Watershed has experienced rapid societal development as evidenced
by significant changes in various socioeconomic indexes since 1978 (Figure 2). GDP in-
creased exponentially from CNY 8.7 billion to CNY 2962 billion (Figure 2). Population
shows a quadratic relationship, increasing from 31.8 million to 45.2 million and plateau-
ing since 2010 (Figure 2). Urbanization has also increased quadratically from 16.8% to
61.5%. During these 43 years, GDP increased 340-fold, population increased 1.4-fold, and
urbanization increased 3.7-fold. Moreover, from 2003, the total volume of domestic sewage
increased linearly, while the treatment rate of sewage also increased simultaneously in a
parabolic pattern and reached 98.1% in 2021 (Figure 2). The forest coverage of the watershed
increased parabolically and has stayed at around 63% since 2010. The meat production
and grain production increased linearly, while the agriculture area showed a “U” shape.
The N-fertilizer showed an “∩” shape, while the P-fertilizer first increased and has then
decreased since 2014. The fertilizer N:P ratio is the ratio of the nutrients being applied to
the land. In the watershed, the ratio showed a significant decreasing trend from 13 to 8
(Figure 2).
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3.2. Nutrient Concentration and Nutrient Limitation

From 1978 to 2021, the annual average TN of Poyang Lake showed a significant
(p < 0.001) linear increase with an increasing rate of 0.037 mg/L per year, while this rate de-
creased from 2019 (Figure 3). Meanwhile, TP increased significantly with an increasing rate
of 0.003 mg/L per year until 2014 and then decreased significantly at a rate of 0.013 mg/L
per year (Figure 3). TN:TP ratio showed an “U” shape trend with the lowest value observed
around 2000 (Figure 3).
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Figure 3. The change in nutrient concentrations and the shifts of nutrient limitation in Poyang Lake
from 1978 to 2021. (a) The red dash lines represent the TN concentration threshold for eutrophication
TN = 0.65 mg/L and hypereutrophication TN = 1.2 mg/L. (b) The red dash lines represent the TP
concentration threshold for eutrophication TP = 0.03 mg/L and hypereutrophication TP = 0.1 mg/L.
(c) The red dash lines represent the nutrient limitation in terms of the N:P molar ratio, less than 20:1
indicates nitrogen limitation, greater than 20:1 and less than 50:1 indicate nitrogen and phosphorus
co-limitation, and greater than 50:1 indicates phosphorus limitation. The blue shading shows 95%
confidence intervals.

During the past 43 years from 1978 to 2021, Poyang Lake had a higher TN and TP
than the eutrophication thresholds in most years. Only the first 9 years had a TN lower
than 0.65 mg/L, and only the first 5 years had a TP lower than 0.03 mg/L. For the N:P
ratio, almost all of the years (40 out of 43) had a value less than 50:1 and greater than 20:1.
There was a significant (p < 0.001) linear relationship between TN and TP (Figure 4). The
TN:TP ratio showed a significant but weak relationship with TN, while it did not with TP
(Figure 4).

Water 2023, 15, x FOR PEER REVIEW 7 of 16 
 

 

3.2. Nutrient Concentration and Nutrient Limitation 
From 1978 to 2021, the annual average TN of Poyang Lake showed a significant (p < 

0.001) linear increase with an increasing rate of 0.037 mg/L per year, while this rate de-
creased from 2019 (Figure 3). Meanwhile, TP increased significantly with an increasing 
rate of 0.003 mg/L per year until 2014 and then decreased significantly at a rate of 0.013 
mg/L per year (Figure 3). TN:TP ratio showed an “U” shape trend with the lowest value 
observed around 2000 (Figure 3). 

 
Figure 3. The change in nutrient concentrations and the shifts of nutrient limitation in Poyang Lake 
from 1978 to 2021. (a) The red dash lines represent the TN concentration threshold for eutrophica-
tion TN = 0.65 mg/L and hypereutrophication TN = 1.2 mg/L. (b) The red dash lines represent the 
TP concentration threshold for eutrophication TP = 0.03 mg/L and hypereutrophication TP = 0.1 
mg/L. (c) The red dash lines represent the nutrient limitation in terms of the N:P molar ratio, less 
than 20:1 indicates nitrogen limitation, greater than 20:1 and less than 50:1 indicate nitrogen and 
phosphorus co-limitation, and greater than 50:1 indicates phosphorus limitation. The blue shading 
shows 95% confidence intervals. 

During the past 43 years from 1978 to 2021, Poyang Lake had a higher TN and TP 
than the eutrophication thresholds in most years. Only the first 9 years had a TN lower 
than 0.65 mg/L, and only the first 5 years had a TP lower than 0.03 mg/L. For the N:P ratio, 
almost all of the years (40 out of 43) had a value less than 50:1 and greater than 20:1. There 
was a significant (p < 0.001) linear relationship between TN and TP (Figure 4). The TN:TP 
ratio showed a significant but weak relationship with TN, while it did not with TP (Figure 
4). 

 
Figure 4. The relationships among TN, TP, and TN:TP ratio. The blue shading shows 95% confidence 
intervals. 
Figure 4. The relationships among TN, TP, and TN:TP ratio. The blue shading shows 95%
confidence intervals.



Water 2023, 15, 3304 7 of 15

3.3. Lake Nutrients and Society Development

Combining the water nutrients and the major socioeconomic development indexes,
we found interesting relationships. The socioeconomic development indexes exhibited the
most significant influences on TN compared to the other two nutrient indexes, as evidenced
by the highest regression coefficients. High residual values (high SSE in Figure 5) were
observed when assessing the societal development impacts on TN:TP. Specifically, both
TN and TP showed a significant “∩” shape (p < 0.001) with the increase in GDP per capital
and urbanization (Figure 5). Meanwhile, TN showed an exponential relationship and TP
showed a linear relationship with the increasing population (Figure 5). In addition, TN:TP
showed an increasing pattern with increasing GDP and urbanization, while a “U” shape
was observed with the increasing population (Figure 5).
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4. Discussion
4.1. Nutrient Changes and Eutrophication

Reactive N is a crucial element supplied to the biosphere through natural processes
such as N-fixation, as well as human activities including industrial N-fixation and fossil
fuel combustion [42,74,75]. In contrast, phosphorus (P) enters the biosphere through the
natural weathering of rocks, as well as mining, fertilization, and the use of P-containing
products [76,77]. However, the excessive influx of N and P into rivers and lakes poses a
significant threat to aquatic ecosystems, leading to eutrophication and the disruption of
vital ecosystem functions [8,78]. From 1978 to 2021, the escalating levels of total nitrogen
(TN) and total phosphorus (TP) in Poyang Lake indicate a concerning trend. TN has
been higher than the eutrophication threshold (TN = 0.65 mg/L) since 1986. TP has been
higher than the eutrophication threshold (TP = 0.03 mg/L) for even longer, since 1983.
These alarming findings clearly demonstrate the severity of eutrophication in Poyang Lake.
Moreover, this pattern of eutrophication is not unique to Poyang Lake, as many lakes in
the middle and lower reaches of the Yangtze River experienced a significant turning point
towards eutrophication during the 1980s [61]. However, there has been some positive news
in recent years regarding the mitigation of nitrogen and phosphorus pollution in Poyang
Lake. Since 2014, there has been a notable decline in TP levels, indicating a substantial
reduction in phosphorus pollution. This positive trend suggests that efforts to control
and manage nutrient inputs have shown some effectiveness in curbing the eutrophication
of Poyang Lake in the processes of ecological civilization [63,79]. Further investigation
is needed to identify the specific factors contributing to this decline and to evaluate the
long-term sustainability of these improvements.

The N:P ratio in the water column has been widely used as an indicator of nutrient
limitation for phytoplankton growth [33,34,80,81]. Among the essential elements, phospho-
rus (P) is generally considered the most limiting nutrient for phytoplankton growth [27,82].
In the case of Poyang Lake, the TN:TP ratios varied from 17.86 to 47.63, with an average
value of 29.47. This suggests that phytoplankton growth in the lake was co-limited by
both nitrogen (N) and phosphorus (P) for the majority of the time. Notably, in the context
of Poyang Lake, there was a significant linear relationship observed between TN and TP
concentrations. However, the TN:TP ratio exhibited a significant relationship only with
TN, implying that nutrient limitation in the lake was primarily influenced by N inputs.
This finding suggests that the availability of nitrogen played a more substantial role in
regulating phytoplankton growth and nutrient limitation dynamics in Poyang Lake. Re-
cent studies have provided additional insights into nutrient dynamics and limitation in
freshwater systems. Variations in the N:P ratio strongly influence the dominance of differ-
ent phytoplankton species, emphasizing the importance of considering the N:P ratio in
understanding the complex interactions between nutrient availability and phytoplankton
community composition [83–85].

4.2. Lake Nutrients Driven by Socioeconomic Development

China has served as a dynamic laboratory for observing the impacts of rapid urban-
ization and economic development [86]. The country’s population expansion, increased
grain yield, economic growth, and urbanization have led to extensive resource exploitation
and heightened resource consumption [87–90]. Consequently, there has been a widespread
discharge of nutrients from municipal, industrial, and agricultural sources, resulting in
the expanding eutrophication of aquatic ecosystems. The Environmental Kuznets Curve
(EKC) theory provides insights into the relationship between economic development and
environmental degradation [91,92]. With rapid urbanization and economic growth, the
urban and rural population experiences lifestyle changes and higher income levels, leading
to increased resource consumption [87,93]. In China, this is evident in the significant alter-
ation of food structure, with a shift from plant-based to animal-based diets driven by urban
dwellers [89,94]. Meeting the nutrient consumption demands of the urban population
necessitates an increase in the supply of food and other products containing N or P, thereby
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accelerating the cycling of these nutrients [95–97]. Moreover, rapid urbanization in China
has also resulted in a severe labor shortage in rural communities, leading to the exces-
sive use of fertilizers and pesticides to maintain or increase grain yields [98,99]. Studies
have shown that P cycling in China has been artificially intensified, primarily through
fertilization, resulting in a three-fold increase in P losses to rivers and lakes [94,100]. In
fact, approximately 80% of mined phosphorus worldwide is used in fertilizers, with 57%
directly running off through soil leaching and erosion in farmland [101]. Although Jiangxi
Province (representing the whole Poyang Lake Watershed) has a relatively lower economic
aggregate and growth rate compared to other regions in China (NBSC, 2022), it has still
experienced significant socioeconomic development compared to many countries globally.
Over the span of 43 years from 1978 to 2021, the population increased by 1.4-fold, GDP
increased by 340-fold, urbanization increased by 3.7-fold, grain production increased by
1.9-fold, and meat production increased 13.1-fold. Regression analyses demonstrate that
this socioeconomic development, encompassing population growth, GDP, and urbaniza-
tion, strongly influenced the eutrophication of Poyang Lake. The “∩” shape relationship
between TN and TP against the increase in GDP and urbanization supported the theory
of EKC. The reduction in TN and TP when the socioeconomic development reached a
certain level might be largely contributed by structural transformations in the economy
and improved sewage treatment and pollution management.

High residual values (high SSE in Figure 5) between socioeconomic development
indexes and TN:TP also indicate that eutrophication in Poyang Lake can be exacerbated
as a result of other unaccounted variables, such as climate change and the Three Gorges
Project [69,102]. Li et al. [103] reported that Poyang Lake exhibited a significant warming
trend from 1980 to 2018, alongside a marked decrease in wind speed. The rising tem-
peratures create an environment conducive to algal proliferation, and the reduced wind
speeds enhance their retention within the lake’s waters, elevating the risk of algal blooms.
Additionally, impoundment of the Three Gorges Project attenuates the river’s force on
the lake, resulting in reduced sand mining and nutrient transport, further altering the
lake’s nutrient dynamics [104]. The complex interplay of climatic factors and the profound
influence of large-scale engineering projects may introduce complexities when evaluating
the evolving dynamics of eutrophication in Poyang Lake.

4.3. Implications for Eutrophication Control

Eutrophication, which is primarily caused by intensified human activities during
the process of socioeconomic development, has become a significant impediment to sus-
tainable development in China [61,105]. Balancing rapid economic growth with minimal
environmental impact is a key challenge facing the country [87]. The solution may seem
straightforward: reducing inputs of N and P [44,106]. Numerous practices and experiments
have been conducted to manage eutrophication, and successful demonstrations of P-only
control have been observed. Some argue that N-fixing cyanobacteria can compensate for
reductions in nitrogen, rendering N-control efforts futile [43,107]. A noteworthy whole-lake
experiment conducted by Schindler and others since 1971 has unequivocally shown that
reducing P inputs must be the primary focus of eutrophication management in lakes [106].
Considering the current conditions of Poyang Lake, it is evident that both N and P inputs
need to be decreased to mitigate eutrophication in terms of nutrient concentrations. How-
ever, when addressing the issue of N and P co-limitation and compensating for N-limitation
through N-fixation, controlling N inputs becomes pivotal. Thus, a balanced and strategic
approach is necessary to effectively manage both nutrients. Additionally, it is crucial to
recognize that the recovery of the ecosystem in Poyang Lake will require several decades,
even if external sources of N and P are controlled, due to the high internal loading of P
from sediments [69,108]. This highlights the long-term nature of the restoration process,
emphasizing the need for sustained efforts and patience [10].



Water 2023, 15, 3304 10 of 15

5. Conclusions

This study explores the intricate relationship between socioeconomic development
and environmental shifts in the Poyang Lake Watershed. An analysis of data from 1978 to
2021 exposes rapid development through rising population, GDP, urbanization, agricultural
output, sewage management, and forest coverage. These changes trigger notable shifts
in nutrient concentrations within Poyang Lake. Significantly, total nitrogen (TN) and
total phosphorus (TP) concentrations follow a consistent upward trajectory, surpassing
eutrophication thresholds since the early 1980s. However, recent years have revealed a
promising decline in TN and TP levels. The lake’s nutrient dynamics are marked by nitrogen–
phosphorus co-limitation, particularly driven by TN influencing the N:P ratio. Interactions
between nutrient concentrations and socioeconomic indicators, such as GDP, urbanization,
and population, unveil intricate trends. TN and TP exhibit a distinct “∩” shape concerning
GDP and urbanization, while correlating positively with population. The TN:TP ratio rises
with GDP and urbanization but takes a “U” shape relative to the population.

This study highlights the necessity of adopting a well-balanced approach to nutrient
management, ensuring effective eutrophication mitigation. To effectively combat eutroph-
ication, it is essential to address multiple facets of nutrient management and recognize
the crucial roles that nitrogen and phosphorus play in ecological dynamics. Evaluating
nutrient stoichiometry in conjunction with nitrogen and phosphorus levels is key. Given the
co-limitation of nitrogen and phosphorus and the principles of nitrogen compensation in
this lake, prioritizing the control of nitrogen inputs is imperative. It is important to note that
the challenges faced in the Poyang Lake Watershed are not isolated but representative of a
global environmental challenge. Our ability to protect the lake’s ecosystem while promoting
economic growth serves as a litmus test for our commitment to sustainable development.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/w15183304/s1, Table S1: Features and sources of the data to determine the
trend and breakpoints in the Poyang [109–134].
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