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Abstract: The Qinghai-Tibet Plateau (TP) is susceptible to climate change and human activities, which
brought about drastic alterations in vegetation on the plateau. However, the trends and driving
mechanisms of vegetation changes remain unclear. Therefore, the normalized difference vegetation
index (NDVI) was used to analyze the spatiotemporal distribution of vegetation and the consistency
of dynamic trends in the TP from 2000 to 2020 in this study. The independent contributions and
interactive factors of natural and human activities on vegetation changes were investigated through
the Geodetector model. The drivers of vegetation under different dry-wet zones and precipitation
gradients were quantitatively separated, and the internal mechanisms of vegetation changes were
discussed from multiple perspectives. The results showed that from 2000 to 2020, the NDVI had an
overall increasing trend, with an increasing rate of 0.0027 a1, and the spatial pattern was different,
increasing gradually from the northwest to the southeast. Consistent improvement occurred in
the central and southeastern parts of the TP, while the western and northern parts consistently
deteriorated. The annual mean precipitation had the greatest explanatory power for vegetation
changes (0.781). The explanatory power of the integrated effects between two factors was greater than
that of individual factors. The integrated effects between annual mean precipitation and other driving
factors had the strongest explanatory power on vegetation variations. The driving mechanisms of
vegetation dynamics varied among different dry—wet zones, and the vegetation growth was more
sensitive to the response of precipitation in arid and semi-arid climate zones. This study enhances our
understanding of the intrinsic mechanisms of vegetation changes on the plateau, which can provide
a reference for ecological conservation, and has implications for further prediction and assessment of
vegetation ecosystem stability.

Keywords: NDVI; vegetation dynamics; geodetector model; influencing factors; Qinghai-Tibetan
Plateau

1. Introduction

Vegetation evolution and its driving mechanisms are one of the research focuses un-
der a changing climate [1,2]. As the most important component of terrestrial ecosystems,
vegetation has an important impact on retaining soil moisture, preserving biodiversity, and
maintaining ecological balance [3]. Moreover, it is recognized as a highly responsive indica-
tor that reflects how ecosystems react to both climate change and man-made activities [4].
Therefore, exploring the vegetation changes and their driving mechanisms is crucial for
making effective ecological conservation policies [5].

High-altitude regions are more sensitive to climate change than lower altitude regions
due to the fragility and irreversibility of their ecosystems [6,7]. Vegetation changes on the
Qinghai-Tibetan Plateau (TP), located at high altitudes, have attracted great attention [8,9].
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The vegetation plays an integral role in providing rich ecosystem services and sustaining
the ecological stability in the TP region. Therefore, vegetation changes and their driving
mechanisms in the TP region must be comprehensively evaluated. Since the 1980s, the
TP region has experienced a more rapid warming rate compared to the global average.
Meanwhile, vegetation changes indicated an overall improvement and local degradation
trends. There are clear distinctions in driving mechanisms for vegetation dynamics in
various areas [7]. Different vegetation types are influenced by different hydrothermal
conditions, such as alpine meadows by temperature and alpine grasslands influenced by a
combination of precipitation and temperature [10]. In addition, alpine shrublands were
also regulated by climate factors [11]. Hence, it is crucial to investigate the vegetation
evolution in different sub-regions.

The rapid advancement of remote sensing technology has facilitated precise monitor-
ing of vegetation evolution at large spatial scales [12,13]. Previous researchers have mostly
used remote-sensing-based vegetation index datasets for analyzing large-scale vegetation
evolution, among which the Normalized Difference Vegetation Index (NDVI) is widely
used. This dataset can effectively reflect vegetation evolution, and monitor vegetation and
other ecological environments. Currently, NDVI datasets can be utilized to monitor global-,
national-, and regional-scale vegetation; land use change monitoring; and net primary
productivity estimation [14,15]. Long-time series NDVI data can help to make a scientific
assessment of the vegetation changes.

Vegetation changes play a crucial role in reflecting changes in the entire ecosystem.
Climate change has the potential to disrupt vegetation evolution, thus appealing to contin-
uous global interest [1,16]. As surface organisms, natural factors directly affect the plants’
growth. These factors are sunlight, elevation, and soil environment [17,18]. They are the
basic natural forces that determine the growth of vegetation [19]. Existing research focusing
on the driving forces of vegetation changes has primarily concentrated on analyzing both
temperature and precipitation [20,21]. Precipitation can regulate vegetation productivity,
and its fluctuations can effectively explain the NDVI changes [22,23]. Temperature directly
affects the photosynthesis, evaporation, and phenology of plants, thus affecting vegetation
changes [24]. Additionally, factors of natural and man-made activities affect vegetation
changes, such as intensive human activities, road construction, and ecological planning.
The grazing also affects control vegetation changes [25-28]. Extensive human activities
have caused environmental issues, including biodiversity loss, soil erosion, and vegetation
degradation [29,30]. Some scholars believe that in the long term, the effects of man-made
activities are greater than natural factors [21]. Hence, the coupling relationships between
vegetation evolution with drivers are not a simple linear relationship, but a non-linear and
interactive joint influence. As such, reasonably quantifying the response of the vegetation
evolution to natural factors and man-made activities remains a challenging task.

Traditional analysis methods based on linear relationships have certain limitations.
Linear regression can be vulnerable to abnormal values. Residual analysis is not able to
effectively differentiate between the explanation of independent and dependent factors.
Correlation and regression analyses are valid only when linear relationships between
vegetation evolution and drivers exist [31]. Based on assumptions about the data, these
statistical methods are not only unable to reflect the integrated effects but also cannot
prevent the issue of multicollinearity among drivers [32]. Therefore, traditional linear
models have difficulty accurately explaining this coupled relationship. In contrast, the
Geodetector model provides a simple and effective way to assess driver effects [33]. This
model defies the limited assumptions of traditional statistical methods and possesses
the ability to identify interactions among factors, without being encumbered by issues
for multicollinearity [34]. It found successful applications in diverse fields such as soil
degradation, grassland restoration, environmental pollution, etc. [35,36]. Meanwhile, the
model is also often used to detect the driving mechanisms of vegetation evolution [37,38],
which are an effective tool to address vegetation changes in highland ecosystems.
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This paper investigates the vegetation growth changes and driving mechanisms in the
TP region utilizing long-term NDVI data. The objectives of this work are to (1) analyze the
spatial and temporal vegetation changes in the TP from 2000 to 2020, (2) investigate the
explanatory power of vegetation changes by both natural factors and man-made activities,
and (3) explore the driving mechanisms of vegetation changes under different dry—wet
zones and different precipitation gradients. We attempted to investigate the differences in
vegetation change mechanisms under different sub-regions and the sensitivity of highland
vegetation growth to precipitation levels, thus providing corresponding references for
vegetation conservation in the TP region.

2. Materials and Methods
2.1. Study Area

The Qinghai-Tibetan Plateau (TP) is located in the southwest of China, with a regional
range between 73°19'-104°47" E and 26°00'-39°47" N. It spans six provinces, namely,
Xinjiang, Tibet, Gansu, Qinghai, Sichuan, and Yunnan (the People’s Republic of China)
(Figure 1). The TP area is 2.61 million km?, which is about 25% of China’s land area. Most
of its areas belong to arid and semi-arid zones, accounting for 73.7% of the TP area. Only
some areas in the southeast are semi-humid and humid zones, accounting for 26.3% of
the TP area. The average altitude of TP is approximately 4 km, and its climate type is
a typical plateau climate, characterized by strong radiation, low temperature, and small
annual precipitation that varies significantly in different regions, making the TP vulnerable
to climate changes. Given the influence of climatic and topography, the region is rich in
vegetation types with horizontal-vertical geographical differences.
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arid climate zone
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semi-humid climate zone O 200 400 km
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Figure 1. The Qinghai-Tibetan Plateau.

2.2. Data Sources and Processing
2.2.1. Factors Selection

In this study, we chose the NDVI to be the dependent variable for analyzing vegetation
variations. Environmental changes and man-made activities influence NDVI changes, and
vegetation growth is sensitive to soil conditions and complex topography [39-43]. Therefore,
we combined the characteristics of the TP region, referred to the previous research results,
and constructed the index system considering the accessibility and availability of data,
as shown in Table 1 [44-47]. We selected 15 influencing factors from climate, topography,
human activities, and rivers as important explanatory variables of vegetation changes.
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The five climate factors, namely precipitation, temperature, sunshine, wind, and actual
evaporation, are commonly used as important driving forces to explore vegetation changes.
Although topography elements such as elevation, slope, and aspect, and surface elements
such as vegetation, soil, and land cover type, have relatively minor impacts on vegetation
growth, they are still factors that cannot be ignored when exploring vegetation changes.
The distance to roads, settlements, and rivers can effectively reflect anthropogenic impacts
on vegetation changes. Given the importance of rivers to vegetation growth, we treat the
distance to rivers as a separate category as the impact factor.

Table 1. The influencing factors of the NDVI.

Data Type Factors Unit Resolution Code
Annual mean precipitation mm 1km X3
Annual mean temperature °C 1 km Xz
Climate Sunshine duration hour 1 km X3
Mean wind speed m/s 1km Xy
Actual evaporation mm 1km X5
Elevation m 30 m Xe
Topography Slope ° 30 m Xy
Aspect ° 30 m X3
Population density Person/km? 0.1 km X9
Human activity Distance to the road km 0.25 km X10
Distance to settlement km 0.25 km X11
River Distance to the river km 0.25 km X12
Vegetation type - 1 km X13
Other Soil type - 1km X14
Landform type - 1km X5

2.2.2. Data Sources and Processing

The NDVI data based on SPOT VEGETATION were acquired from the Resource and
Environment Data Cloud Platform of the Chinese Academy of Sciences (www.resdc.cn)
(accessed on 10 September 2022). The original data were masked and projected to obtain
the NDVI dataset in the TP area. The maximum value synthesis method (MVC) was used
to process the NDVI dataset. The MVC was employed to reduce or further minimize the
effects of cloud cover and atmosphere on the remotely sensed images [48].

The data sources related to the independent variables are described as follows: annual
mean precipitation (X;), annual mean temperature (X»), sunshine duration (X3), mean
wind speed (X4), and actual evaporation (X5). These were obtained from the National
Centre for Earth System Science Data Acquired (http://www.geodata.cn) (accessed on
10 December 2022). Digital elevation model (DEM) data was obtained from the geospatial
data cloud (http://www.gscloud.cn/) (accessed on 10 December 2022). The 30 m resolution
DEM data of the TP (X¢) was obtained by stitching, format conversion, and cropping. The
slope (X7) and aspect (X3) data were extracted using the 3D analysis module in the ArcGIS
10.8 software. Population density (X9) data were provided through WorldPop (https:/ /hub.
worldpop.org/geodata/listing?id=76) (accessed on 15 December 2022). The data of the
settlement were obtained from the Baidu LBS open platform through Place API V2.0. Road
and river data were derived from OpenStreetMap (https://www.openstreetmap.org/)
(accessed on 15 December 2022). Distance from the road (X7g), distance from the settlement
(X11), and distance from the river (X,) were calculated by the immediate neighborhood
analysis tool in ArcGIS software. Vegetation types (Xi3), soil types (X14), landform types
(X15), and the dry—wet zone data (Figure 1) were obtained from the Data Centre for
Resource and Environmental Science (https://www.resdc.cn/) (accessed on 20 December
2022). The class space distribution of each driver is shown in Figure 2. Auxiliary data, such
as vector boundaries, were obtained from the basic geographic information data provided
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by the National Basic Geographic Information Centre (http://www.ngcc.cn/) (accessed on
15 September 2022).
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Figure 2. Spatial distribution of influencing factors in the TP: (a) elevation; (b) slope; (c) aspect;
(d) annual mean precipitation; (e) annual mean temperature; (f) sunshine duration; (g) mean wind
speed; (h) evaporation; (i) population density; (j) distance to the road; (k) distance to the river;
(I) distance to the residence; (m) vegetation type; (n) soil type; (o) landform type.

The acquired data were constructed as a geospatial database in ArcGIS 10.8 software,
and the coordinate system was unified using WGS-1984. A regular grid of 10 km x 10 km
was created using the create fishnet tool of ArcGIS 10.8 software. The grid covers the TP
region with a total of 24,182 units as the base unit for subsequent analysis. The NDVI was
divided into five categories [49] (Table 2). We used the equal interval classification method
to rank continuous variables to fulfill the input requirements of the Geodetector [50,51].
The continuous variables (Xl, Xz, X3, X4, X5, X6, X7, Xg, XlO/ Xl]r X12) were divided into
10 categories. The independent variable Xg was classified into nine categories concerning
the existing classification standards [38,52]: flat slope, north slope, northeast slope, east
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slope, southeast slope, south slope, southwest slope, west slope, and northwest slope. The
classification of X3, X14, and Xj5 is shown in Figure 2m-o, which were classified into 12,
13, and 7 categories, respectively.

Table 2. Classifications of the NDVI.

Class Level NDVI
1 Bare soil vegetation 0-0.2
2 Low vegetation 0.2-0.4
3 Medium vegetation 0.4-0.6
4 Relatively high vegetation 0.6-0.8
5 High vegetation 0.8-1
2.3. Methods

2.3.1. Theil-Sen Trend Analysis and Mann-Kendall Significance Test

The Theil-Sen trend analysis combined with the Mann—-Kendall test method can be
used to determine the trend in vegetation evolution [53,54]. The MK significance test can
effectively reduce the effect of outliers [55]. Sen’s slope formula is the following:

L XX
Slope = Median( [

), Vj>i )

where Median is the median function, and x; and x; distributions are time series values.
Slope > 0 indicates an upward trend of the data, whereas Slope < 0 indicates a downward
trend. Meanwhile, Slope = 0 indicates no change in the data.

The MK significance test formula is as follows:

n-=1 n
S=1Y ) sgn(xj—x) )

i=1 j=it1

1, xj—x>0
sgn(xj—x;) =4 0, xj—x; =0 3)
1, xj—x <0
S—1 :
Var(S) ’ lfS >0
7 = 0 ,ifS=0 @)

S—1 .
var(s) lfS <0

n(n—1)(2n+5)

13 @)
where S is the value of the standardized statistic, i, j denotes the time series, n denotes the
length of the time series (n = 21), and sgn is the sign function. The Z value is used for the
trend test, when 1 Z| > Z;_, 5, the NDVI series shows a significant change. When Z > 0, it
indicates that the NDVI series has an upward trend. When Z < 0, it indicates that the NDVI
series has a downward trend. « is the given confidence level, when | Z| > 1.96, it indicates
that it passes the significance test at the 95% confidence level.

Var(S) =

2.3.2. Hurst Index and R/S Analysis

The Hurst index is the main method for quantitatively describing self-similarity and
long-term correlation. It is used to describe the sustainability of long-term data and is
widely adopted in environmental science, ecology, and geology [56-59]. The Hurst index
can be calculated using many methods. This study used the rescaled polar difference
analysis (R/S) with more reasonable results [60]. The specific formula is as follows:
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1 2
Sw =1 72 (X0 — X)) ©)
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where Xy is the mean series, X; ;) is the cumulative deviation, Ry is the polar difference,
and S is the standard deviation. H is the Hurst index, taking values in the range of [0-1].
If H < 0.5, the time series has inverse persistence, which also means that the future trend of
the data is opposite to the past trend. As H approaches 0, the inverse persistence becomes
stronger. If H = 0.5, the time series is randomly varying. If H > 0.5, the time series is
continuous, in which the future trend of the data is consistent with the past trend.

To obtain the dual information of the vegetation changes trend and persistence test,
the results of Equations (1)—(5) are superimposed with the Hurst index [61] to produce
Table 3.

Table 3. Consistency of vegetation changes trend.

Slope 1Z| Hurst Index Change Types
>0 >1.96 H>05 Consistent and significant improvement
<0 >1.96 H=>05 Consistent and significant degradation
>0 <1.96 H>05 Consistent and slight improvement
=0 - - Stable or non-vegetated area
<0 <1.96 H=>05 Consistent and slight degradation
>0 - H<05 Inconsistent and changed from improvement
<0 - H<05 Inconsistent and changed from degradation

2.3.3. Geodetector Model

The Geodetector is a method for detecting spatial non-homogeneity and quantifying
the impact of drivers on spatial statistics. The idea of the method is that X and Y are similar
in spatial distribution if some independent variable X has a strong explanatory power
on the dependent variable Y [33]. In this study, we used factor detectors and interaction
detectors to explore the driver force of the dependent variable pairs on the NDVI in Table 1.

The factor detector is utilized to quantify the extent of the detection factor and explains
the spatial heterogeneity of the dependent variable.

1 L
=1

where h is the stratification of factors Xj, ..., X;;. Nj and N are the numbers of units in layer
h and the whole area, respectively. 07,2 and ¢ are the variances of the Y value of layer h
and the whole area. g is the influence value of the factor and takes a range of [0-1]. A larger
value of g indicates a stronger explanatory power of X on Y, while a smaller value of 4 has
a weaker explanatory power.

The interaction detector is used to detect the explanatory power of the interactions
of different independent variables on the dependent variable. It determines whether the
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explanatory power of the two-factor interaction on the dependent variable increases or
decreases. Interactions can occur in several ways as in Figure 3.

v v viwvw

Types of interaction:

v Nonlinear-weaken: g(X,N.X;) < Min(q(X,), g(X,))
W& Uni-weaken: Min(q(X)), ¢(X,)) < q(X; N X;) < Max(q(X)), ¢(X,))

W Bi-enhance: g(X, N X;) > Max(q(X,), q(X5)) Legend

Min(q(X)), g(X>))
@ Max(q(X)), ¢(X2))
W Nonlinear-enhance: (X, N.X,) > ¢(X,) + g(X,) ® 4(X) +q(X)

v Independent: g(X, N X,) = ¢(X)) + ¢(X,)

Figure 3. Interaction detector result type.

3. Results
3.1. Spatial and Temporal Variability of the NDVI in the Qinghai-Tibet Plateau
3.1.1. Spatial and Temporal Evolution Characteristics of the NDVI

The overall trend of the NDVI in the TP region has fluctuated and increased during
the past 21 years, with a range of 0.321-0.388, a mean value of 0.349 (Figure 4a), and an
overall growth rate of 0.0027 a~—!. The evolution of the NDVI was characterized by phases
in the TP, which could be divided into three phases: the rising phase (2000-2010, with a
growth rate of 0.0135 a~!), the falling phase (2010-2015, with a decline rate of —0.0028 a~1),
and the rising phase (2015-2020, with a growth rate of 0.0432 a—!). The spatial distribution
of the NDVI varied significantly in different years, displaying a gradually increasing trend
from northwest to southeast (Figure 5), and the distribution pattern was relatively stable in
the TP.

[Jo-0.2 [ 0.2-0.4 [N 0.4-0.6 [ 0.6-0.8 [N 0.8-1

—=—NDVI y =0.0027x - 5.1609

0399~ - - Mean R?*=0.7816

Mean = 0.349

Area percentage(%)

T T T T T
2000 2005 2010 2015 2020

0
Year 2000 2005 2010 2015 2020 Mean
Year

(a) (b)

Figure 4. Interannual temporal changes of the NDVI. (a) The variation trend of the NDVT; (b) area

percentage of NDVI classification.
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(a) NDVI in 2000 (b) NDVI in 2005 (¢) NDVI in 2010 N

(d) NDVI in 2015 (¢) NDVI in 2020 (f) Mean NDVI Legend

B o002
02-0.4
I 0406
B 0608
I o5

0 500 1000 km
I N

Figure 5. Spatial distribution of the NDVI, 2000-2020.

We displayed the percentage of areas classified by the NDVI in different years (Figure 4b).
Combined with Table 2, the area of class 1 (0-0.2), class 2 (0.2-0.4), class 3 (0.4-0.6), class 4
(0.6-0.8), and class 5 (0.8-1) accounted for 44%, 19%, 11%, 18%, and 7% of the TP area in the
2000-2020 NDVI mean, respectively. Among them, the area of bare soil vegetation is the
largest percentage, and the area with NDVI values greater than 0.6 only accounted for 25%
of the TP area, which demonstrated that the vegetation cover was relatively poor in the TP.

Based on the NDVI changes in different years, the area covered by high vegetation
experienced the greatest change, increasing from 1% in 2000 to 19% in 2020. Meanwhile,
the rest of the vegetation classification decreased slightly, but the general trend remained
stable. It showed that high vegetation was the dominant classification of the NDVI for
the TP region. Combined with Figure 5, the increased high vegetation type was mostly
transformed from relatively high vegetation.

3.1.2. Consistency of Trend in Vegetation Dynamics

The Sen-MK method was employed to simulate the trend of the NDVI in the TP,
reflecting the spatial characteristics of NDVI changes (Figure 6a). The vegetation improve-
ment area accounted for 59.41% of the TP area, the degradation area accounted for 26.78%
of the TP area, and the rest were stable and unchanged areas. The vegetation improvement
area was about 2.22 times more than the degradation area, and the overall improvement
was predominant. Specifically, areas with significant improvement and slight improvement
accounted for 41.65% and 17.76% of the TP area, respectively. Only 12.90% and 13.89%
of the areas had significant and slight degradation, respectively. These values indicated
that the vegetation changes trend had generally developed in a positive direction in the
TP. The improvement areas were mainly distributed in the central and eastern parts of
the TP. The degradation areas were mainly distributed in the northwestern region of the
TP. Figure 6b shows the Hurst index value, which was used to predict future vegetation
growth trends. Consistent changing areas of vegetation accounted for 88.34% of the TP
area, while inconsistent changing areas accounted for 11.66% of the TP area.

To investigate the sustainability of vegetation dynamics trends and future development
trends, the results of the Sen-MK test and Hurst index were overlaid and analyzed by
ArcGIS 10.8 software. The results are shown in Figure 6¢c. Combined with Table 3, 77.34%
of the vegetation area is consistent changes, of which 24.54% and 52.80% were consistent
degradation and consistent improvement, respectively. The consistent improvement areas
were mainly concentrated in the central and southeastern part of the TP, and the consistent
degradation areas were mainly concentrated in the northwest part of the TP, similar to the
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changing trend of the NDVI in Figure 6a. The inconsistent areas accounted for 8.76% of the
TP area and were mostly scattered in the central part of the TP. The stable or non-vegetation
areas accounted for 13.91% of the TP area, which was mainly non-vegetation and non-water
areas. Overall, the vegetation in the TP area was mostly in a state of consistent changes.
Surprisingly, 8.76% of inconsistent areas were still likely to undergo inconsistent changes
in the future despite the upward trend of vegetation status from 2000 to 2020 in the TP.

N N

A A

(a) Trend of NDVI

I sicuviticant degradation
[ siight degradation (b) Hurst index value
B stabieand unchanged 0 500 1000 km - - 0 500 1000 km

© | T - | T
>0.5
I sicnificant improvement

N

A

(c) Consistency of NDVI change trend
Consistent and significant d egradation
Consistent and slight d egradation

[ tuconsistent and changed from degradation

B stabie or non-vegetated area
Inconsistent and changed from im provem ent

0 500 1000 km [ Consistent and slight improvement
| I | I consistent and significant improvement

Figure 6. Spatial changes of the NDVI in the TP, 2000-2020.

To have a deeper understanding of the evolution status of different vegetation types
in the TP, the NDVI area share of different classifications according to different vegetation
types was counted (Figure 7a). Combined with Table 2, Marsh, Grassland, BF, MF, and CF
were mainly distributed in the high vegetation area. AL, Steppe, Desert, and Other were
mainly distributed in the bare soil vegetation area, among which 82% of the Desert surface
were distributed in this area.

Figure 7b shows the results of the evolutionary trend for different vegetation types.
The vegetation types dominated by consistent improvement were AR, Marsh, Meadow,
Grassland, Scrub, BF, ME, and CE. MF had overwhelmingly consistent improvement, which
accounted for as much as 89%. The vegetation types that were mainly consistent degra-
dation were AL, Desert, and Other. Other had overwhelmingly consistent degradation,
which accounted for 67% of the area. The Steppe-type vegetation changes state was mainly
stable, which accounted for 41%. The share of inconsistency was not dominant in any of
the different vegetation types, which indirectly confirmed that the future of the vegetation
changes pattern will remain relatively stable in the TP. Forest soils can store large amounts
of water and can release it over a longer period to avoid direct climatic impacts on veg-
etation. Meanwhile, grasslands are more vulnerable to climate change and man-made
activities [62,63].
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Figure 7. The change trends of the NDVI in different vegetation types (AR: artificial vegetation; AL:
alpine vegetation; BF: broad-leaved forest; MF: mixed forest; CF: coniferous forest). (a) Statistical
results of area percentage; (b) NDVI trend statistics results.

3.1.3. The Evolution Trends of Vegetation under Different Dry-Wet Zones

To explore the evolution trends of the NDVI in the TP, we combined Figure 1 with
zoning statistics according to different dry—wet zones and explored the characteristics of
NDVI evolution and the consistency of vegetation dynamic trends under different dry—
wet zones (Figure 8). Figure 8a shows that the NDVI values generally showed humid
climate zone > semi-humid climate zone > semi-arid climate zone > arid climate zone.
The NDVI values of the humid climate zone and semi-humid climate zone increased
significantly from 2000 to 2020, and the NDVI values of the arid climate zone and semi-
arid climate zone changed relatively little. Figure 8b presents significant differences in
the area of the NDVI in different dry—wet zones in the TP. The high values of the NDVI
(>0.6) were mainly concentrated in the humid and semi-humid climate zones; the low
values (<0.4) were mainly concentrated in the arid and semi-arid climate zones. Figure 8c
demonstrates that the proportions of vegetation showing consistent improvement in the
humid and semi-humid climate zones were 76% and 80%, respectively, and the proportions
of consistent degradation were 11% and 8%, respectively. The proportions of consistent
degradation in the arid and semi-arid climate zones were 41% and 17%, respectively. The
proportions of inconsistency were 5% and 11%, respectively. Combined with Figure 6a,
the arid climate zone might have been the dominant area of vegetation degradation in the
TP, while the humid climate zone might have been the main area of vegetation showing
local improvement. Therefore, we concluded that the vegetation evolution trend was
significantly related to the dry—-wet zones (i.e., precipitation).
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Figure 8. The change trends of the NDVI in different dry-wet zones. (a) The mean NDVI values;
(b) area percentage of the NDVI; (c) NDVI trend.
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3.2. Identification of Driving Forces
3.2.1. Independent Effects of Drivers on Vegetation Changes

To investigate the underlying drivers on vegetation changes in the TP, we detect the
explanatory power of drivers in Table 1 on the NDVI through the Geodetector model.
Figure 9a—e presents the results of the explanatory power of different factors of the NDVI
at different time points from 2000 to 2020, and the results showed that all the drivers in the
index system had differences in the NDVI. The g-values of annual mean precipitation (X1),
annual mean temperature (X;), mean wind speed (X4) and actual evaporation (X5) showed
an overall upward trend. Mean wind speed (X4) owned the greatest enhancement, from
0.493 in 2000 to 0.667 in 2020. In contrast, the g-value of population density (X9) showed
more evident declining trends, from 0.420 in 2000 to 0.389 in 2020. The g-values of the rest
of the drivers changed relatively and were mostly stable and ordered.

0.8 0.8

041

(a) —o— 2000 A (b) —o—2005 A (c) ——2010
0.7F o\ 0.7F o\
0.6 o 0.6 F 1]
0.5 0.5
’ E 2
/ 0.3 52 \ / 0.3 e /
\o o/. 02 e \. o/ g 02 ° \, / g

e, AN <
\ ? o1l \ ° 0.1+ \ °

° L L
............ ool v vy ool v v v
Xy Xy Xy Xy X Xy X5 X Xy Xio X, X X Xy Xos X Xy X X, X X Xy X X X0 K0 X0 X X Xy X X Xy X, X X X X K XX X, XXy Ko
0.8 0.8
(d) —e—2015 (e —e—2020 A @ —e— Mean
0.7F 0.7
[ 2 [ N,
0.6 0.6
0S5t 0.5
Q Q
= = *
° S 04 S 04 o
S S

\ A : "l 0\0 s e . 0:3: .\g y
\ \// R N \// S SN /“/

w

& [} L}
*—9 *—9
\ o~ 0.1 0.1F
L] L] L]
............ ool v v ool v
X X X Xy X5 Xy X0 Xy Xo X0 X0 X00 X35 X0y K X X Xy Xy X5 Xg Xo Xy Xo XX Xio Xas Xg Xos X X Xy Xy X5 X Xy Xy Xo X0 X0 Xip Xip iy X

Figure 9. (a—f) Factor detection results of vegetation changes (The red triangle represents the maxi-
mum value).

In terms of the average value from 2000 to 2020 (Figure 9f), the factor with the strongest
explanatory power was the annual mean precipitation (X1) (g = 0.781), followed by sunshine
duration (X3) > mean wind speed (X4) > population density (Xo), all with g values above
0.4. The annual mean temperature (X3), actual evaporation (Xs), elevation (Xs), slope
(X7), distance to settlement (X11), distance to the river (X1,), and vegetation type (X;3) had
relatively significant effects on vegetation with g values ranging from 0.204 to 0.383. The
q values of aspect (X3), distance to the road (Xj9), soil type (X14), and landform type (X;5)
were all less than 0.2, and these drivers had fewer effects on vegetation changes.

From the relative trends among the influencing factors, the g-values of the drivers
at each time point were consistent (Figure 9a—e), and the drivers with larger g-values
at each time point were annual mean precipitation (X;), sunshine duration (X3), mean
wind speed (X4), and population density (X9). The g-value of annual mean precipitation
(X1) was always the largest (>0.7). It indicated an evident synchronization between the
influencing factors in different years. These three influencing factors have always possessed
considerable influence on the vegetation growth in the TP. Compared with the results of
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Figure 9f, the variation trend of each factor was slightly different. However, the key
influencing factor remained unchanged, and annual mean precipitation (X;) was still the
highest value. Overall, annual mean precipitation (X;) was the main driver affecting
vegetation growth for TP over the past 21 years.

3.2.2. Integrated Effects of Different Factors on Vegetation Changes

We analyzed the interaction of drivers on vegetation changes using the interaction
detector (Figure 10). It can be seen that there are interactions between the influencing
factors. The strongest dominant synergistic effect of the NDVI was the interaction between
annual mean precipitation (X1) and other factors, with the dominant interaction factor
combinations of g(X; N Xg) = 0.855, q(X1 N X4) = 0.844 and g(X; N X5) = 0.843. This outcome
indicated that precipitation, wind speed, actual evaporation, and elevation could better
explain the vegetation changes in the TP.
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Figure 10. The integrated effects of different drivers on vegetation changes.

Based on Figures 3 and 10, the driving forces of the integrated effects of any two
drivers were stronger than that of a single driver. The interaction results were both bi-
enhance and nonlinear-enhance, with most of them being bi-enhance. The vegetation
changes had no combinations of nonlinear-weaken, uni-weaken, and independent effects.
This result indicated that the integrated effects between the drivers were evident and all the
influencing factors interacted with other factors to increase the explanatory power of NDVI
evolution to different degrees. It also indicated that the influence of the drivers on the
NDVI was not independent, but synergistically enhanced. It illustrated that the vegetation
changes in the TP were the synergistic effect of multiple drivers, and their influence showed
a strong spatial heterogeneity.

3.3. Interpretation of Vegetation System Stability
3.3.1. Driving Mechanisms of the NDVI under Different Dry—Wet Zones

We found that there exists spatial heterogeneity in NDVI trends in different regions
(Figures 5 and 8). Precipitation (X;) was the most significant driver affecting vegetation
evolution in the TP (Figure 9). To analyze the response of vegetation changes in the TP to
the local area, we separated the influence factors of each area according to different dry-wet
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zones (Figure 1) and analyzed the driving forces of the different factors of vegetation
changes in different dry—wet zones in the TP in the past 21 years (Figure 11).
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Figure 11. The explanatory power of influence drivers of the NDVI under different dry-wet zones.

Figure 11 showed that the drivers affecting the NDVI in different regions were not
consistent, thus indicating that the drivers affecting vegetation growth had a local effect.
Specifically, the major drivers affecting NDVI changes in the arid climate zone were annual
mean precipitation (X;) and sunshine duration (X3), with g-values of 0.520 and 0.285,
respectively. The main drivers affecting NDVI changes in the semi-arid climate zone
were sunshine duration (X3) and annual mean precipitation (X;), with g-values of 0.615
and 0.587, respectively. This indicated that vegetation growth in the arid and semi-arid
climate zones was more sensitive to the response of precipitation and insolation. The main
factor affecting NDVI variation in the semi-humid climate zone was elevation (Xg), with
a q value of 0.631. The main factors affecting NDVI variation in the humid climate zone
were elevation (X4) and annual mean temperature (X3), with g values of 0.814 and 0.790,
respectively. This outcome indicated that for the humid and semi-humid climate zones,
vegetation growth was more influenced by temperature and elevation. Figures 9 and 11
demonstrate that precipitation was the main factor affecting NDVI changes in the TP region.
However, differences emerged in the explanatory power of precipitation for local areas.
Specifically, annual mean precipitation (X;) ranked first and second in the influence factor
(g value) in the arid and semi-arid climate zones. Annual mean precipitation (X;) ranked
fourth in the influence factor in the humid and semi-humid climate zones. It reflected that
vegetation evolution in the arid and semi-arid zones was more sensitive to the response of
precipitation.

Overall, the drivers affecting vegetation changes in different dry—wet zones differed
in the TP, and vegetation growth in arid and semi-arid climate zones was more sensitive to
the response of precipitation and sunshine. For the humid and semi-humid climate zones,
temperature and elevation have stronger influences on vegetation growth.

3.3.2. Driving Mechanisms of the NDVI under Different Precipitation Gradients

For the TP region with fragile environments and limited humidity, precipitation
was the main environmental factor, and local differences in precipitation had an impact
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on vegetation (Figure 11). To study the explanation of precipitation on the stability of
vegetation systems, we concentrated on the effect of drivers on vegetation changes under
different precipitation gradients based on zonal statistics. The precipitation data were
classified into five gradients using the natural segment point method provided by ArcGIS.
The influence factors were separated quantitatively according to different precipitation
gradients, and the results of the drivers affecting vegetation evolution in the TP under
different precipitation gradients were calculated (Figure 12).
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Figure 12. The g-values affect vegetation changes under different precipitation gradients (Level 1:

0-192 mm/year; Level 2: 192-421 mm/year; Level 3: 421-629 mm/year; Level 4: 629-1022 mm/year;
Level 5: 10222804 mm/year).

When the annual mean precipitation gradient was Level 1, the main factor affecting
vegetation changes was actual evaporation (X5). These areas are mainly located in the
northwestern part of the TP region, where precipitation was insufficient for vegetation
growth, water and heat use were limited, and the primary drivers of vegetation growth
were groundwater availability and water resources supplied by inland rivers [64,65]. The
vegetation type was mainly desert vegetation, and the soil type was mainly desert and
arid soil. Furthermore, the structure of the regional desert ecosystem was relatively simple.
The diversity of biological species was low, the self-regulation ability was weak, the anti-
disturbance ability was poor, and the ecosystem was fragile [66]. When the annual mean
precipitation gradient was Level 2, the main factor affecting vegetation changes was annual
mean precipitation (X1). The explanatory power of three factors on NDVI changes, namely,
sunshine duration (X3), mean wind speed (X4), and evaporation (Xs), was relatively close.
As the annual mean precipitation increased, the change curve of driving forces of different
drivers on the NDVI became consistent with Level 4 and Level 5 when the precipitation
gradient reached Level 3. The relative importance of the drivers on vegetation gradually
stabilized, and the change curve is approximated in Figure 9. Annual mean precipitation
(X1), sunshine duration (X3), and mean wind speed (X4) had greater explanatory power
for NDVI changes in the TP. The region was mainly located in the central and southeastern
areas of the TP region, and the vegetation types were mainly Meadow and CF. The natural
conditions such as precipitation, sunshine, and temperature in this region were superior and
beneficial for vegetation growth. Hence, the precipitation gradient determined the relative
importance of drivers on vegetation. The lower precipitation made the vegetation-driven
explanatory system unstable, and the vegetation was vulnerable to environmental and
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human factors. The influence of natural factors, such as temperature, sunshine duration,
and mean wind speed, on vegetation gradually increased with the increase in annual mean
precipitation.

4. Discussion
4.1. Vegetation Evolution Characteristics in the TP

The results of spatial and temporal vegetation evolution indicated that vegetation
in the TP had a continuous improvement over the past 21 years but there existed a large
heterogeneity in space and time, which corresponds to the results of previous studies for
vegetation dynamics in the TP [67,68]. The reason might be relevant to the implementation
of national ecological construction and protection projects. Since 2001, China has initiated
several ecological conservation programs, including the Returning Farmland to Forests Project
and the Wildlife Protection and Nature Reserve Development Project [69]. These national policies
have prohibited man-made activities such as indiscriminate logging, reckless reclamation,
and nomadic hunting. These measures had active effects on vegetation conservation and
ecological restoration in the TP region, and were one of the contributing factors to the
increase in the NDVI from 0.321 to 0.388. In addition, high vegetation (NDVI > 0.8) was the
main type of variation, mainly distributed in the southeastern part of the TP, where higher
precipitation and suitable temperature are benefits for vegetation growth. Numerous snow-
capped mountains exist in the northwestern part of the TP. The complex topography and
harsh climate affected vegetation growth, thus resulting in low vegetation cover [51].

The results of the Sen-MK test showed that the vegetation changes in the TP from
2000 to 2020 mainly improved. The Hurst index revealed that 88.34% of the vegetation area
was consistent whereas 11.66% of the vegetation area was inconsistent. The superimposed
results of the Sen-MK test and the Hurst index showed that the consistent improvement
was concentrated in the central and southeastern parts of the TP, with 52.8% of the TP
area. Meanwhile, the western and northern parts showed consistent degradation, with
24.54% of the TP area. The main vegetation types in this area are Desert and Other, and
the corresponding NDVI classification is bare soil vegetation (NDVI < 0.2). It has a high
altitude and harsh natural conditions that are not conducive to vegetation growth, while
it is also an arid climate zone. Figure 8c shows that the arid climate region is dominated
by continuous degradation. The future change trend of inconsistent areas accounted for
8.76% of the total area and was mostly scattered in the central part of the TP. These areas
were likely to be located in Forest-Grassland interspersed areas, which would also be
a key concern for ecological conservation. While the Hurst index is used for predicting
vegetation evolution trends, it does not provide a more definite time. Therefore, exploring
the duration of vegetation change trends should be a research priority in the future [14,53].

According to the different vegetation types, classification exploration found that
various vegetation types had different evolutionary trends. Figure 7b shows that most
vegetation types in the TP region are mainly consistent improvement, such as AR, Marsh,
and ME. Among them, 89% of MF showed a consistent improvement trend, which was
mainly distributed in the southeastern region of the TP. According to Figure 2, the region
had a low altitude and suitable natural conditions such as temperature and wind speed.
Sufficient precipitation enables the soil in the region to store a large amount of water, which
can prevent vegetation from being affected by extreme climate change and contribute
to the long-term stable growth of MF. Figure 6a reflected a significant improvement in
the evolution trend of the NDVI in this region. Only the AL, Desert, and Other areas
were characterized by consistent degradation. The areas with 41% of Steppe showed
stabilization. It might be that different vegetation types were influenced by different
hydrothermal conditions [70]. The spatial distribution of vegetation was found to be
spatially heterogeneous in the different dry—wet zones. The humid and semi-humid
climate zones were mainly distributed in areas with high NDVI values, and the vegetation
development trend mostly showed consistent improvement. The arid and semi-arid
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climate zones were mainly concentrated in areas with low NDVI values, and the vegetation
development trend was mainly consistent with degradation.

4.2. Driving Forces of Vegetation Changes

Vegetation evolution is driven by a combination of environmental changes and man-
made activities. Annual mean precipitation was the key driver affecting vegetation spatial
distribution and vegetation changes, which was consistent with previous studies [71,72].
Moisture was a key limiting factor affecting vegetation conditions. This limitation was
especially true for environmentally sensitive and fragile areas, where vegetation was more
sensitive to precipitation than other influencing factors. Studies have demonstrated that
water availability is a key factor influencing vegetation growth [73] and that there exists
a positive correlation between soil moisture and vegetation cover [6]. In addition to the
factor of annual mean precipitation, sunshine duration, mean wind speed, and population
density also influenced the evolution of the NDVI to a large extent (Figure 9f). Sunshine
duration was the second significant driver of vegetation changes for the TP, which is the
main indicator of solar radiation that maximizes vegetation photosynthesis and indirectly
affects vegetation growth [74]. However, excessive solar radiation can cause plant water
deficit, which can damage the vegetation growth environment [75]. Vegetation is more
sensitive to sunshine duration, and high wind speeds can lead to increased evaporation
and accelerated transpiration of vegetation, thus affecting vegetation growth [76].

The TP region is sparsely populated, with the population concentrated in a few urban
areas, so the explanatory power of human activities on the spatial distribution of the NDVI
is weak relative to natural factors. However, studies suggest that human activities would
reduce the positive effects of climate change [77]. High population density has a negative
impact on vegetation growth [78,79]. Increasing population density and rapid urban
development cause problems such as the destruction of forests and grasslands, as well
as the shrinking of natural habitats, thus affecting vegetation growth [20,26]. According
to a study, human activities caused stronger influences on global vegetation growth than
climate change [80]. During the period 1999-2018, human activities affected 57.11% of the
vegetation to alterations [81]. However, human activities have relatively small impacts
on vegetation growth in the TP compared to natural factors. For long periods, vegetation
growth is expected to be primarily influenced by human activities.

The complexity of ecosystems and geographic processes suggested that the interaction
of any two factors might affect vegetation changes [82-84]. Figure 10 demonstrates that
the interaction of two factors had a greater effect on vegetation than independent factors.
The interaction of annual mean precipitation with mean wind speed, evaporation, and
elevation had the greatest effect on the NDVI. It is further verified that natural factors
have greater influences on vegetation growth. It was also verified that the interaction
between influencing factors improved the explanatory power of the independent variable
to the dependent variable [41,85]. While aspect (Xg), distance to the road (X19), soil type
(X14), and landform type (X;5) have limited impact on NDVI changes, their impact can be
amplified when interacting with other factors. Furthermore, human activities tend to have
a greater impact when interacting with natural factors.

4.3. Explanations for the Stability of Highland Vegetation Ecosystems

This study showed that precipitation was the most important climatic factor affecting
vegetation evolution in the TP (Figure 9). Differences in vegetation driving factors under
different dry—-wet zones and precipitation gradients also influenced the interpretation of
vegetation system stability. In arid and semi-arid areas, vegetation growth is more sensitive
to precipitation and sunshine, whereas, in humid and semi-humid regions, the impact
of precipitation on vegetation is less significant compared to factors such as temperature
and elevation. Water availability is a major limiting factor for vegetation growth [72].
Vegetation in relatively water-scarce areas was highly sensitive to precipitation changes,
and precipitation promotes vegetation growth in most areas. We found an interesting
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pattern where precipitation gradients determine the relative importance of natural and
anthropogenic factors on vegetation evolution. Actual evaporation replaces mean annual
precipitation as the factor with the highest explanatory power for vegetation evolution
in low precipitation areas. These areas lack sufficient precipitation to support the water
requirements for vegetation growth, with water primarily sourced from nearby river sys-
tems [66,70]. The main vegetation type is Desert, which has weak self-regulation ability
and a fragile ecosystem. With the increase in precipitation, the annual mean precipitation,
sunshine duration, and wind speed become the key factors. An area with high precipitation
has good natural conditions and is suitable for vegetation growth. The vegetation types
are mainly Meadow, BE, and CF. Compared with the explanatory power of vegetation
type (9(X13) = 0.383), the highest NDVI appeared in areas dominated by BF and CF [26,31],
which might mean that different vegetation types show different sensitivity to natural and
anthropogenic factors [39]. BF has more litter than other vegetation types, which reduces
the loss of surface soil moisture through evaporation, thus providing better water and
nutrient conditions for vegetation growth [51]. This indicates distinct response mecha-
nisms to climatic factors among sub-regions with varying precipitation levels. In arid
climatic zones characterized by scarce precipitation, limited water availability leads to less
stable ecosystems, and the natural environment does not provide sufficient support for
vegetation growth. Taken together, the mismatched relationship between precipitation
and vegetation water demand in different sub-regions affected vegetation growth, thus
making precipitation the main driver of spatial heterogeneity of the TP vegetation. This
mismatch also illustrated the importance of precipitation for vegetation growth in relatively
water-scarce regions. However, in the context of warming and wetting changes, the annual
mean precipitation change showed a non-significant trend of weak increase, which was not
beneficial for the TP ecosystem stability in the long term.

Long-term vegetation changes are a complex process, especially for sensitive and
complex ecosystems of the TP. Different vegetation types have different responses to
climatic conditions and disturbances from human activities. Human activities have dual
effects on NDVI changes. Vegetation growth near human settlements is generally disturbed
by human activities. However, human conservation measures for vegetation growth are
increasing the stability of ecosystems [86]. Elevation, temperature, precipitation, and
other natural factors have certain thresholds for vegetation growth [70], beyond which
vegetation growth may be inhibited. Therefore, it is necessary to analyze the effects of
climate factors on vegetation growth in different vegetation types and formulate targeted
protection measures to improve the plateau vegetation ecosystem stability.

4.4. Implications and Limitations

Although we demonstrated the usefulness of analyzing the drivers of vegetation
changes in the TP region through the Geodetector model, there are limitations in the
selection of factors that affect the vegetation dynamic. The increase in CO, concentration
was one of the drivers of vegetation greening [44,87]. In addition, human behaviors such
as tourism, hunting, and grazing also affect vegetation growth [88,89], but this paper did
not discuss the corresponding indicators that were difficult to quantify precisely. In future
research, the comprehensiveness of the analysis of vegetation dynamic factors will be
further improved in terms of grazing behavior, socioeconomic development, ecological
engineering implementation, and more bioclimatic aspects.

5. Conclusions

The spatial and temporal change characteristics and driving mechanisms of vegetation
in the Qinghai-Tibetan Plateau were analyzed using long-time series vegetation remote
sensing data. The explanatory power of the driving factors for vegetation evolution under
different wet-dry zones and precipitation gradients was quantitatively separated, which
explored the sensitivity of vegetation evolution to precipitation in the Qinghai-Tibetan
Plateau from multiple perspectives. The results found that the NDVI showed an overall
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increasing trend during 2000-2020, with a continuous increase at a rate of 0.0027 a~!.
Vegetation changes were affected by natural and anthropogenic factors, with annual mean
precipitation as the main influencing factor. Double-factor interactions can enhance the
explanatory power of single factors for vegetation changes. The interaction between the
annual mean precipitation and other factors had the strongest explanatory power on
vegetation changes. The response of vegetation growth to precipitation was more sensitive
in arid and semi-arid climate zones, while vegetation changes were more influenced
by temperature and elevation in humid and semi-humid climate zones. The mismatch
between precipitation and vegetation water requirements in different sub-regions can affect
vegetation growth. This study highlights the responses of vegetation to dry—wet zones
and different precipitation gradients, which can better assess different factors affecting the
vegetation ecosystems’ stability in environmentally sensitive and fragile areas and provide
references for the conservation of plateau ecosystems in the context of climate change.
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