Forecasting Snowmelt Season Temperatures in the Mountainous Area of Northern Xinjiang of China
Abstract
:1. Introduction
2. Data and Methods
2.1. Temperature Revision Method
2.1.1. Dynamic Unitary Linear Regression (HG) Revision Scheme
2.1.2. Average Filtering (PJ) Revision Scheme
2.2. Temperature Forecast Method
2.2.1. Forecast of Daily Maximum Temperature
2.2.2. Forecast of Temperature-Rise Range
2.2.3. Forecast of Snowmelt Temperature and Daily Snowmelt Duration
2.3. Inspection Index
2.4. Test Method
3. Tests of Various Temperature Prediction Algorithms
3.1. Temperature Forecast Test
3.1.1. Time Series Comparison of Temperature Forecast
3.1.2. Spatial Distribution Comparison of Temperature Forecast
3.2. Daily Maximum Temperature Test
3.2.1. Time Series Comparison of Daily Maximum Temperature Forecast
3.2.2. Spatial Distribution Comparison of Daily Maximum Temperature Forecast
3.3. Prediction and Test of Temperature Rise
3.3.1. Forecast Period Series Comparison of Daily Temperature-Rise Amplitude
3.3.2. Spatial Distribution Comparison of Temperature-Rise Amplitude Forecast
3.4. Snowmelt Temperature Tests
3.4.1. Time Series Comparison of Snowmelt Temperature
3.4.2. Spatial Distribution Comparison of Snowmelt Temperature
3.5. Daily Snowmelt Duration Tests
3.5.1. Time Series Comparison of Snowmelt Duration
3.5.2. Spatial Distribution Comparison of Snowmelt Duration Forecast
4. Conclusions
4.1. Algorithm Test Results
4.2. Limitations and Novelty
4.3. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhong, X.Y.; Zhang, T.J.; Su, H.; Xiao, X.X.; Wang, S.F.; Hu, Y.T.; Wang, H.J.; Zheng, L.; Zhang, W.; Xu, M.; et al. Impacts of landscape and climatic factors on snow cover in the Altai Mountains, China. Adv. Clim. Chang. Res. 2021, 12, 95–107. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, F.T.; Zhou, P. Changes in climate extremes in a typical glacierized region in central Eastern Tianshan Mountains and their relationship with observed glacier mass balance. Adv. Clim. Chang. Res. 2022, 13, 909–922. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, G.Y.; Jin, H.J.; Marchenko, S.S.; Ma, W.; Du, Q.S.; Li, J.M.; Chen, D. Viscous creep of ice-rich permafrost debris in a recently uncovered proglacial area in the Tianshan Mountains, China. Adv. Clim. Chang. Res. 2022, 13, 540–553. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.T.; Zhang, Y.Y. Impact of seasonal snowmelt on snowpack at woodland, grassland and bare land in North Slope of Tian Mountain. J. Irrig. Drain. 2021, 40, 106–114. [Google Scholar] [CrossRef]
- Xiang, Y.Y.; Wang, Z.Z.; Zhang, W.; Chen, Y.Y. Study of snowmelt runoff simulation in arid regions: Progress and prospect. J. Glaciol. Geocryol. 2017, 39, 892–901. [Google Scholar]
- Wang, X.Q.; Lu, X.Y.; Ma, Y.; Wang, X. Study on snow disaster assessment method and snow disaster regionalization in Xinjiang. J. Glaciol. Geocryol. 2019, 41, 836–844. [Google Scholar] [CrossRef]
- Jeelani, G.; Feddema, J.J.; Van der Veen, C.J.; Stearns, L. Role of snow and glacier melt in controlling river hydrology in Liddar watershed (western Himalaya) under current and future climate. Water Resour. Res. 2012, 48, W12508. [Google Scholar] [CrossRef]
- Cho, E.; Jacobs, J.M. Extreme value snow water equivalent and snowmelt for infrastructure design over the contiguous United States. Water Resour. Res. 2020, 56, e2020WR028126. [Google Scholar] [CrossRef]
- Sadro, S.; Sickman, J.O.; Melack, J.M.; Skeen, K. Effects of climate variability on snowmelt and implications for organic matter in a high-elevation lake. Water Resour. Res. 2018, 54, 4563–4578. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M.X.; Wang, S.L.; Yu, X.J. Spatial-temporal variation characteristics of snow cover duration in Xinjiang from 1961 to 2017 and their relationship with meteorological factors. J. Glaciol. Geocryol. 2021, 43, 61–69. [Google Scholar] [CrossRef]
- Hanati, G.L.M.R.; Zhang, Y.; Su, L.D.; Hu, K.K. Response of water and heat of seasonal frozen soil to snow melting and air temperature. Arid Land Geogr. 2021, 44, 889–896. [Google Scholar] [CrossRef]
- Mao, W.Y.; Fan, J.; Shen, Y.P.; Yang, Q.; Gao, Q.Z.; Wang, G.Y.; Wang, S.D.; Wu, S.F. Variations of extreme flood of the rivers in Xinjiang region and some typical watersheds from Tianshan Mountains and their response to climate change in recent 50 years. J. Glaciol. Geocryol. 2012, 34, 1037–1046. [Google Scholar] [CrossRef]
- Laudon, H.; Seibert, J.; Köhler, S.; Bishop, K. Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in meltwater, soil water, and runoff. Water Resour. Res. 2004, 40, W03102. [Google Scholar] [CrossRef]
- Zhang, J.L.; Luo, J.; Wang, R.M. Combined analysis of the spatiotemporal variations in snowmelt (ice) flood frequency in Xinjiang over 20 years and atmospheric circulation patterns. Arid Zone Res. 2021, 38, 339–350. [Google Scholar] [CrossRef]
- Tian, H.; Yang, X.D.; Zhang, G.P.; Zhao, L.N.; Wang, Z.; Zhao, L.Q. The possible weather causes for snowmelt flooding in Xinjiang in Mid-March 2009. Meteorol. Mon. 2011, 37, 590–598. [Google Scholar] [CrossRef]
- Qin, Y.; Zhao, Q.D.; Liu, Y.Q.; Ding, J.L. Response of snow hydrological processes to climate change in the Hutubi river basin on the North Slope of Tian Shan mountains. J. Soil Water Conserv. 2021, 35, 190–199. [Google Scholar] [CrossRef]
- Zhou, G.; Cui, M.Y.; Li, Z.; Zhang, S.Q. Dynamic evaluation of the risk of the spring snowmelt flood in Xinjiang. Arid Zone Res. 2021, 38, 950–960. [Google Scholar] [CrossRef]
- Mercado-Bettín, D.; Clayer, F.; Shikhani, M.; Moore, T.N.; Frías, M.D.; Blake, L.J.; Sample, J.; Lturbide, M.; Herrera, S.; French, A.S.; et al. Forecasting water temperature in lakes and reservoirs using seasonal climate prediction. Water Res. 2021, 201, 117286. [Google Scholar] [CrossRef]
- Yan, J.; Liao, G.Y.; Gebremichael, M.; Shedd, R.; Vallee, D.R. Characterizing the uncertainty in river stage forecasts conditional on point forecast values. Water Resour. Res. 2012, 48, W12509. [Google Scholar] [CrossRef]
- Kim, Y.; Sartelet, K.; Raut, J.C.; Chazette, P. Evaluation of the Weather Research and Forecast/Urban Model Over Greater Paris. Bound. Layer Meteorol. 2013, 149, 105–132. [Google Scholar] [CrossRef]
- Battisti, A.; Acevedo, O.C.; Costa, F.D. Evaluation of Nocturnal Temperature Forecasts Provided by the Weather Research and Forecast Model for Different Stability Regimes and Terrain Characteristics. Bound. Layer Meteorol. 2017, 162, 523–546. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Y.P.; Pan, S.L.; Bai, Z.X. Potential application of hydrological ensemble prediction in forecasting floods and its components over the Yarlung Zangbo River basin, China, Hydrol. Earth System Science Data 2019, 23, 3335–3352. [Google Scholar] [CrossRef]
- Deng, Q.; Yang, J.; Zhang, L.; Sun, Z.; Sun, G.; Chen, Q.; Dou, F. Analysis of Seasonal Driving Factors and Inversion Model Optimization of Soil Moisture in the Qinghai Tibet Plateau Based on Machine Learning. Water 2023, 15, 2859. [Google Scholar] [CrossRef]
- Nayak, M.A.; Herman, J.D.; Steinschneider, S. Balancing flood risk and water supply in California: Policy search integrating short-term forecast ensembles with conjunctive use. Water Resour. Res. 2018, 54, 7557–7576. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, T.; Mariethoz, G. Numerical investigation on the implications of spring temperature and discharge rate with respect to the geothermal background in a fault zone. Hydrogeol. J. 2018, 26, 2121–2132. [Google Scholar] [CrossRef]
- Krainer, K.; Winkler, G.; Pernreiter, S.; Wagner, T. Unusual catchment runoff in a high alpine karst environment influenced by a complex geological setting (Northern Calcareous Alps, Tyrol, Austria). Hydrogeol. J. 2021, 29, 2837–2852. [Google Scholar] [CrossRef]
- Hegdahl, T.J.; Engeland, K.; Steinsland, I.; Tallaksen, L.M. Streamflow forecast sensitivity to air temperature forecast calibration for 139 Norwegian catchments. Hydrol. Earth Syst. Sci. 2019, 23, 723–739. [Google Scholar] [CrossRef]
- Regonda, S.K.; Rajagopalan, B.; Clark, M.; Zagona, E. A multimodel ensemble forecast framework: Application to spring seasonal flows in the Gunnison River Basin. Water Resour. Res. 2006, 42, W09404. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Mao, W.Y.; Zhang, S.Q.; Wang, M.Q.; Tang, Y.; Mushajiang, A.D.T.L.d; Yusupu, T.R.G. Correction and verification for grid refined forecast of temperature and frost in spring in Northern Xinjiang. Meteorol. Mon. 2022, 48, 1460–1474. [Google Scholar] [CrossRef]
- Fan, H.; Liu, Y.; Li, Y.; Liu, Y.; Duan, J.; Li, L.; Huo, Z.Y. A deep learning method for predicting lower troposphere temperature using surface reanalysis. Atmos. Res. 2023, 283, 106542. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, Y.; Dong, J.; Song, X.J.; Pang, R.B.; Guoan, B.Y.; Yu, H. A deep learning method for real-time bias correction of wind field forecasts in the Western North Pacific. Atmos. Res. 2023, 284, 106586. [Google Scholar] [CrossRef]
- Dai, Y.; He, N.; Fu, Z.Y. Beijing intelligent grid temperature objective prediction method (BJTM) and verification of forecast result. J. Arid Meteorol. 2019, 37, 339–344. [Google Scholar] [CrossRef]
- Hao, C.; Zhang, Y.X.; Wang, Z.W.; Fu, Z.Y. Application of analog ensemble rectifying method in objective temperature prediction. Meteorol. Mon. 2019, 45, 1085–1092. [Google Scholar] [CrossRef]
- Hou, Z.L.; Li, J.P.; Wang, L.; Zhang, Y.Z.; Liu, T. Improving the forecast accuracy of ECMWF 2-m air temperature using a historical dataset. Atmos. Res. 2022, 273, 106177. [Google Scholar] [CrossRef]
- Wei, Q.; Dai, K.; Lin, J.; Zhao, R.X. Evaluation on the 2016–2018 fine gridded precipitation and temperature forecasting. Meteorol. Mon. 2020, 46, 1272–1285. [Google Scholar] [CrossRef]
- Wang, F.J.; Zhao, C.H.; Ma, Y.; Xia, Z.Y. Prediction effectiveness verification of ECMWF Fine grid model for air temperature in Qingdao region. Meteorol. Sci. Technol. 2018, 46, 112–120. [Google Scholar] [CrossRef]
- Li, G.; Yang, X.Z.; Liu, Y.H.; Chen, Z.H.; Yu, Q.; Wu, C.H. Forecast of maximum temperature based on refined guidance SCMOC data in Guizhou Province. J. Arid Meteorol. 2020, 38, 457–464. Available online: http://www.ghqx.org.cn/CN/Y2020/V38/I03/457 (accessed on 28 June 2020).
- Liu, X.W.; Duan, B.L.; Huang, W.B.; Duan, M.J.; Li, R.; Di, X.H.; Wei, S.J. Application of objective prediction method based on wavelet analysis in intelligent grid high and low temperature prediction. Trans. Atmos. Sci. 2020, 43, 577–584. [Google Scholar] [CrossRef]
- Meteorological Center, C.M.A. CLDAS2.0 Dataset Description. 19 January 2017. Available online: http://data.cma.cn/data/detail/dataCode/NAFP_CLDAS2.0_NRT.html (accessed on 1 June 2022).
- Liu, Y.; Shi, C.X.; Wang, H.J.; Han, S. Applicability assessment of CLDAS temperature data in China. Trans. Atmos. Sci. 2021, 44, 540–548. [Google Scholar] [CrossRef]
- Gan, G.J.; Wu, J.L.; Hori, M.; Fan, X.W.; Liu, Y.W. Attribution of decadal runoff changes by considering remotely sensed snow/ice melt and actual evapotranspiration in two contrasting watersheds in the Tienshan Mountains. J. Hydrol. 2022, 610, 127810. [Google Scholar] [CrossRef]
- Hidalgo-Hidalgo, J.-D.; Collados-Lara, A.-J.; Pulido-Velazquez, D.; Rueda, F.J.; Pardo-Igúzquiza, E. Analysis of the Potential Impact of Climate Change on Climatic Droughts, Snow Dynamics, and the Correlation between Them. Water 2022, 14, 1081. [Google Scholar] [CrossRef]
- Xiong, W.; Tang, G.; Wang, T.; Ma, Z.; Wan, W. Evaluation of IMERG and ERA5 Precipitation-Phase Partitioning on the Global Scale. Water 2022, 14, 1122. [Google Scholar] [CrossRef]
- Zhu, G.F.; Wang, L.; Liu, Y.W.; Bhat, M.A.; Qiu, D.D.; Zhao, K.L.; Sang, L.Y.; Lin, X.R.; Ye, L.L. Snow-melt water: An important water source for Picea crassifolia in Qilian Mountains. J. Hydrol. 2022, 613A, 128441. [Google Scholar] [CrossRef]
Average Value of the Forecast Period | 0–240 h | Correction Techniques | 0–24 h | 24–48 h | 48–72 h | 72–96 h | 96–120 h | 120–240 h |
---|---|---|---|---|---|---|---|---|
RMSE_XJ/°C | 5.17 | 4.04 | 4.11 | 4.22 | 4.3 | 4.55 | 6.19 | |
RMSE_HG/°C | 6.77 | −1.60 ↓ | 4.37 | 5.37 | 5.9 | 5.47 | 6.66 | 8.01 |
RMSE_PJ/°C | 4.59 | 0.58 ↑ | 2.97 | 3.18 | 3.39 | 3.54 | 4.11 | 6.21 |
TT_XJ/% | 32.52 | 40.15 | 39.37 | 38.82 | 37.19 | 34.56 | 26.24 | |
TT_HG/% | 41.65 | 9.13 ↑ | 55.36 | 47.9 | 44.92 | 42.91 | 38.39 | 29.14 |
TT_PJ/% | 41.83 | 9.30 ↑ | 58.04 | 53.82 | 50.1 | 46.8 | 40.3 | 27.31 |
Average Value of Forecast Period in 24 h Interval | 240 h | Correction Techniques | 1 d | 2 d | 3 d | 4 d | 5 d | 10 d |
---|---|---|---|---|---|---|---|---|
RMSE_Max_XJ/°C | 5.11 | 3.74 | 3.83 | 3.97 | 4.20 | 4.75 | 6.82 | |
RMSE_Max_HG/°C | 7.85 | −2.74 ↓ | 3.68 | 5.16 | 6.64 | 6.82 | 7.33 | 8.96 |
RMSE_Max_PJ/°C | 4.61 | 0.50 ↑ | 2.26 | 2.54 | 2.87 | 3.23 | 4.06 | 6.68 |
TT_Max_XJ/% | 32.77 | 42.47 | 41.63 | 40.08 | 37.77 | 32.66 | 25.27 | |
TT_Max_HG/% | 35.00 | 2.23 ↑ | 62.91 | 53.02 | 44.11 | 36.59 | 30.05 | 22.52 |
TT_Max_PJ/% | 43.73 | 10.96 ↑ | 71.61 | 65.88 | 58.12 | 51.30 | 40.25 | 25.97 |
Average Value of the Forecast Period in 24 h Interval | Range | 1–10 d | Correction Techniques | 1 d | 2 d | 3 d | 4 d | 5 d |
---|---|---|---|---|---|---|---|---|
RMSEUP_XJ/°C | 2.4–714.68 | 4.87 | 3.19 | 3.41 | 3.50 | 3.70 | 3.85 | |
RMSEUP_HG/°C | 2.96–20.14 | 6.41 | −1.54 ↓ | 4.51 | 4.02 | 4.19 | 5.81 | 6.13 |
RMSEUP_PJ/°C | 2.84–7.35 | 4.25 | 0.62 ↑ | 1.69 | 2.10 | 2.53 | 2.94 | 2.82 |
Average Forecast Period | Range | 240 h | Correction Techniques | 24 h | 48 h | 72 h | 96 h | 120 h | 240 h |
---|---|---|---|---|---|---|---|---|---|
TS_XJ | 0.09–99.84 | 79.36 | 82.35 | 82.65 | 80.94 | 82.64 | 82.1 | 66.29 | |
TS_HG | 0.26–99.07 | 74.1 | −5.4 ↓ | 71.72 | 68.8 | 65.93 | 63.6 | 64.68 | 68.01 |
TS_PJ | 1.45–98.98 | 81.99 | 2.45 ↑ | 85.12 | 84.78 | 83.22 | 83.06 | 81.71 | 66.75 |
Average Value of the Forecast Period in 24 h Interval | Range | 1–10 d | Correction Techniques | 1 d | 2 d | 3 d | 4 d | 5 d | 10 d |
---|---|---|---|---|---|---|---|---|---|
RMSEDF_XJ/h | 0–14.62 | 2.22 | 1.90 | 1.91 | 1.93 | 1.97 | 2.07 | 2.04 | |
RMSEDF_HG/h | 0–7.2 | 1.40 | 0.81 ↑ | 0.72 | 0.93 | 1.03 | 1.07 | 1.03 | 1.85 |
RMSEDF_PJ/h | 0–5.68 | 1.29 | 0.93 ↑ | 0.66 | 0.80 | 0.92 | 0.95 | 1.10 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Mao, W.; Wang, M.; Zhang, W.; Ji, C.; Mushajiang, A.; An, D. Forecasting Snowmelt Season Temperatures in the Mountainous Area of Northern Xinjiang of China. Water 2023, 15, 3337. https://doi.org/10.3390/w15193337
Zhang Z, Mao W, Wang M, Zhang W, Ji C, Mushajiang A, An D. Forecasting Snowmelt Season Temperatures in the Mountainous Area of Northern Xinjiang of China. Water. 2023; 15(19):3337. https://doi.org/10.3390/w15193337
Chicago/Turabian StyleZhang, Zulian, Weiyi Mao, Mingquan Wang, Wei Zhang, Chunrong Ji, Aidaituli Mushajiang, and Dawei An. 2023. "Forecasting Snowmelt Season Temperatures in the Mountainous Area of Northern Xinjiang of China" Water 15, no. 19: 3337. https://doi.org/10.3390/w15193337
APA StyleZhang, Z., Mao, W., Wang, M., Zhang, W., Ji, C., Mushajiang, A., & An, D. (2023). Forecasting Snowmelt Season Temperatures in the Mountainous Area of Northern Xinjiang of China. Water, 15(19), 3337. https://doi.org/10.3390/w15193337