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Abstract: The mountains in northern Xinjiang of China were studied during the snowmelt sea-
son. Multi-source fusions of live data of the Chinese Land Data Assimilation System (CLDAS,
0.05◦ × 0.05◦, hourly data) were used as real data, and the Central Meteorological Observatory
guidance forecast (SCMOC, 0.05◦ × 0.05◦, forecasting the following 10 days in 3 h intervals) was
used as forecast data, both of which were issued by the China Meteorological Administration. The
dynamic linear regression and the average filter correction algorithms were selected to revise the
original forecast products for SCMOC. Based on the conventional temperature forecast information,
we designed four temperature-rise prediction algorithms for essential factors affecting snowmelt. The
temperature-rise prediction algorithms included the daily maximum temperature algorithm, daily
temperature-rise-range algorithm, snowmelt temperature algorithm, and daily snowmelt duration
algorithm. Four temperature-rise prediction values were calculated for each prediction product. The
root–mean-squared error algorithm and temperature prediction accuracy algorithm were used to
compare and test each prediction algorithm value from the time sequence and spatial distribution.
Comprehensive tests showed that the forecast product revised by the average filter algorithm was
superior to the revised dynamic linear regression algorithm as well as the original forecast product.
Through these algorithms, the more suitable temperature-rise forecast value for each grid point in the
study area could be obtained at different prediction times. The comprehensive and accurate tempera-
ture forecast value in the mountainous snowmelt season could provide an accurate theoretical basis
for the effective prediction of runoff in snowmelt areas and the prevention of snowmelt flooding.

Keywords: numerical prediction; temperature; mountain snowmelt; revision algorithm; snowmelt
flood

1. Introduction

Northern Xinjiang is one of the three areas with seasonal snow cover in China [1–3]. The
snow cover on the Ertysi River basin is particularly deep in winter, where the source area
snow depth reached 197 cm during the winter of 2021/2022. In northern Xinjiang, seasonal
snowmelt water is the main local water resource, and the snowmelt runoff can supply
more than 75% of rivers in spring [4,5]. The temperature variation in the mountains in
spring is the major determining factor of the snowmelt runoff formation and the snowmelt
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flood occurrence [6–9]. The positive temperature change was more favorable for snow
ablation [10,11]. An analysis based on the annual maximum flood peak records in the last
50 years and the frequency of the warming snowmelt (ice) floods in the last 20 years in
Xinjiang indicated that rising temperatures in the mountains had led to the early melting of
the glaciers in the surrounding areas [12–14]. The continuous rapid rise of the temperatures
caused the snowmelt floods in Xinjiang [15]. The temperature had an important element of
snowmelt [16]. Several studies made dynamic evaluations and forecasts on the occurrence
of snowmelt flooding in spring [17–19]. All of these analyses have confirmed a direct
relationship between the snowmelt and the temperature, with all research based on data
from the meteorological observation stations. The distances between the meteorological
observation stations in Xinjiang were several hundred kilometers, and there are even fewer
observation stations in mountainous areas. Thus, the station data alone cannot quickly
and accurately characterize the temperature changes in mountainous areas. SCMOC, a
grid forecasting product (0.05◦ × 0.05◦, forecasting the following 10 days in 3 h intervals),
was used in this study to carry out full-coverage forecasts for the mountainous areas, and
data were stable where services had been delivered. However, this forecast product had an
average temperature forecast accuracy of less than 50% in mountainous areas. Therefore,
it was necessary to design a correction algorithm to improve the accuracy of the original
forecast product in mountainous areas.

Numerous studies have shown that numerical weather predictions provided early
warnings with extended lead time [20–23] and improved the reservoir’s flood control and
water supply objectives [24–26]. In catchments with seasonal snow cover, snowmelt is an
important flood-generating process. Hence, high-quality air temperature data have been
important to accurately forecast streamflow [27]. In recent years, intelligent grid-point
temperature-prediction technology has become an important field, and numerous scholars
have studied localized correction algorithms to improve the accuracy of local temperature
forecasting in real time [28–31]. Dai et al. used a unary linear regression algorithm and
a Kriging interpolation algorithm [32], and Hao et al. used a sliding training algorithm
and an optimized variable-weights algorithm [33] to train the temperature data of the
ECMWF fine-grid forecast products [34]. Wei et al. and Wan et al. tested and evaluated
the products of the intelligent grid-prediction (SCMOC) service and the ECMWF fine-grid
service, respectively [35,36]. Li et al. established three forecast models, including horizontal,
longitudinal, and horizontal/longitudinal integrated forecast models [37], and Liu et al.
used three algorithms including wavelet analysis, a sliding training algorithm, and an
optimal fusion algorithm [38] to correct the temperature forecast products (SCMOC). Their
analyses results showed that these algorithms were partially able to revise the temperature
predictions in their study area. However, few of these revision algorithms considered
mountain areas, which specifically forecast the future temperature of the snowmelt and
snowmelt temperature-rise range. Due to the lack of meteorological observation data
in mountainous areas, the physical weather processes have been unpredictable, and the
numerical prediction models have been unable to account for the steep and complex terrain,
making temperature forecasts in mountainous areas difficult. The prediction accuracy
of the temperature in mountainous areas is lower than the temperatures of the plains.
Therefore, improving the accuracy of the temperature forecasts in the mountainous areas is
of the utmost importance.

In this study, two aspects were considered to design the correction algorithms. First,
the mountainous terrain is steep, and the temperature changes dramatically with increasing
altitude. We designed a dynamic linear regression algorithm, and the latest real values
were used to dynamically update the slope of the regression equation of the temperature
prediction in order to forecast the temperature changes. Secondly, the amount of the grid
data and the system forecast errors in the mountainous area were significant. Therefore, we
designed an average filter-correction algorithm that used the latest real values to dynami-
cally update the forecast errors for different forecast periods to predict the temperatures in
the mountainous area.
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In this research, we studied the intelligent grid temperature prediction technology
of the temperature rise during the spring snowmelt period in the mountainous area of
northern Xinjiang. Two temperature prediction correction algorithms were designed to
correct the original forecast product SCMOC. After correction, two new forecast products
were obtained. In order to focus on the influence of temperature-rise prediction accuracy
during the spring snowmelt period based on the temperature forecast information, four
innovative temperature-rise prediction algorithms were designed to more accurately de-
scribe the physical quantity index of the snowmelt process. The temperature-rise prediction
algorithms included prediction algorithms for the daily maximum temperature, daily
temperature-rise range, snowmelt temperature, and daily snowmelt duration. The values
of four temperature-rise prediction algorithms for each forecast product were calculated.
Though multiple indexes were used to compare and test the value of each temperature-rise
prediction algorithm and the temperature prediction from the time sequence and spatial
distribution, a suitable forecast product was selected for mountainous areas.

2. Data and Methods

The study area included mountainous areas with altitudes above 1300 m in northern
Xinjiang, ranging from 42.25◦ to 49.20◦ N and 79.85◦ to 96.50◦ E, with a total of 7371 grid
points and a spatial resolution of 0.05◦ × 0.05◦, as shown in Figure 1.
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Figure 1. Overview map of mountainous areas in northern Xinjiang.

There were three temperature forecast products, which included the original product
(the product research area was in Xinjiang, shortened to XJ) that was obtained from the tem-
perature guidance forecast product of the China Meteorological Administration (SCMOC);
the revised product (translated into Chinese Pinyin HuiGui, shortened to HG) that used the
original forecast product modified by the dynamic linear regression algorithm; the revised
product (translated into Chinese pinyin PinJun, shortened to PJ) that used the original
forecast product modified by the average filter correction algorithm. The temperature
forecast products predicted future values at 240 h in 3 h interval values with a spatial
resolution of 0.05◦ × 0.05◦, and their reports started at 08:00 (Beijing time), every day, from
March to May 2021.

Real data were simulated values, which were obtained from Chinese Land Data
Assimilation System (CLDAS) hourly data with a spatial resolution of 0.05◦ × 0.05◦. The
advantage of the real product was the combination of multi-source fusion data, such as
ground observation data, ECMWF numerical product, GFS numerical product, Fengyun-2
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weather satellite precipitation product, Fengyun-2 weather satellite full disk nominal map,
and digital elevation model data. After evaluation by the Meteorological Information
Center of China, the temperature of CLDAS was in good agreement with the actual ground
observation values [39]. After Liu Ying et al. evaluated the temperatures of CLDAS-V2.0
in northwest China, including this study area, the test results of CLDAS showed that the
non-independent test was 0.972, the independent test was 0.950, the mean deviation was
−0.271 ◦C, the RMSE was 2.406 ◦C, and the mean absolute error was 1.588 ◦C [40].

2.1. Temperature Revision Method
2.1.1. Dynamic Unitary Linear Regression (HG) Revision Scheme

Based on the temperature forecast products (XJ) in the mountainous area of northern
Xinjiang, in spring, from March to May 2021, the unary regression correction model was
established by each grid and each forecast period dynamically, and a new forecast data
product (HG) was generated after each revision. The revised model formula of the dynamic
regression equation was as follows:

b =

d−n
∑

j=1
X(d−i)Y(d−i) − nxy

d−n
∑

i=1
X(d−i)

2 − nx2
, (1)

a = y− bx, (2)

Y = aX + b, (3)

The forecast value of one grid at the forecast period on the day was revised by the
following steps. In Equation (1), n represents the number of days of dynamic training
in the previous days, according to previous experiments on observation stations, and
n = 6 was chosen in this paper, where x represents the temperature forecast value (XJ) and
y represents the actual value of the corresponding time, d represents the day the forecast
began, i stands for integer value 1 − n, (d − i) indicates the previous i day, x represents
the temperature forecast average value (XJ), and y represents the average actual value of
the corresponding time. Equation (1) calculated the value of b. According to x, y, and b
calculated by Equation (1), the value of a was calculated by Equation (2). In Equation (3),
X is the original forecast value (XJ), and Y is the forecast value after regression correction
(HG). According to b of Equation (1) and a of Equation (2), the correction value Y was
computed by Equation (3).

There were 7371 grid points in this study area. One grid point had forecast the
following 240 h in 3 h intervals every day, yielding 80 forecast values per day. Each grid
forecast value was revised according to the above steps.

2.1.2. Average Filtering (PJ) Revision Scheme

Both the original temperature forecast product (XJ) and the real product CLDAS were
grid data with a spatial resolution of 0.05◦ × 0.05◦. The average filtering algorithm was
used to correct the original forecast temperature, and the revised temperature forecast
product, marked as PJ, was obtained. The forecast value of one grid at the forecast period
on the day, as revised by average filtering algorithm, is as follows:

1© Calculation of model prediction error:

b(d) = f(d) − a(d), (4)

In Equation (4): b(d) is the prediction error value, which was defined as the prediction
error between the prediction data f (d) of a certain prediction time and the corresponding
live data a(d).
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2© Daily sliding forecast error model:

B(d) =
b(d−1) + b(d−2) + ... + b(d−n)

n
, (5)

In Equation (5): B(d) is the corrected error of the model forecast, which was the
arithmetic average of the temperature forecast error of the same grid at the same forecast
period every day for n days before the forecasting date. Through numerous experiments
conducted by meteorological observation stations in different regions, different values
of n were found to have great influence on B(d). Based on previous periodic studies and
reference materials [29], this study selected n = 6.

3©Model forecast error revision:

F(d) = f(d) − B(d), (6)

In Equation (6), B(d) was obtained by Equation (5), f (d) is the forecast value of the
original temperature forecast product (XJ), and f (d) is the revised forecast value.

Equations (4)–(6) referred to the process of correcting specific forecast periods of the
same grid. Equations (4)–(6) were used to correct the temperature for every forecast period
of 7371 grid points in mountainous areas. After the correction, a new temperature forecast
product (PJ) at 3 h intervals for the following 10 days, forecasted from 8 a.m. every day,
was generated.

2.2. Temperature Forecast Method
2.2.1. Forecast of Daily Maximum Temperature

In the forecast for the next 10 days in 3 h intervals at 08:00 (Beijing time) every day,
the maximum temperature was selected as the daily maximum temperature forecast value
according to the 8 forecast periods of each 24 h interval, such as 0–24 h and 24–48 h, and the
daily maximum temperature forecast values in the future for 1–10 days (d) were calculated
similarly. The method for selecting the real maximum temperature was the same. The
daily maximum temperature was selected from the corresponding eight real values of the
forecast obtained during the day.

2.2.2. Forecast of Temperature-Rise Range

First, the daily maximum temperature of grid points was calculated, followed by the
daily temperature-rise range during the temperature-rise period.

UPi = Houi −Qiani, (7)

UPsk = Housk −Qiansk, (8)

btupi = UPi −UPsk, (9)

In Equations (7) and (8), i represents XJ, HG, and PJ forecast products, and sk rep-
resents the grid value obtained from CLDAS. To forecast the temperature-rise range of
the date, the maximum temperature forecast of the day after and the day before the date
was required, so “Hou” represented the daily maximum temperature of the following day,
and “Qian” represented the daily maximum temperature of the previous day. For exam-
ple, if a grid temperature exhibited a four-day continuous rise, the grid had three daily
temperature-rise values. The calculation of the daily forecast temperature rise was the same
as the real temperature rise, and the error of the forecast temperature rise was calculated
according to Equation (9).
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2.2.3. Forecast of Snowmelt Temperature and Daily Snowmelt Duration

Taking 0 ◦C as the critical index of snowmelt temperature, a temperature ≥ 0 ◦C
satisfied the snowmelt temperature condition. In this study, when the forecast temperature
was above 0 ◦C, it was defined as the snowmelt temperature.

The duration of daily snowmelt was directly related to its speed. In the critical
period of spring snowmelt, the duration of the temperature ≥ 0 ◦C within 24 h of one day
(08:00–08:00 Beijing time) was the duration of daily snowmelt, expressed in hours (h).
Because the grid temperature forecast interval was 3 h, there were 8 values in the 24 h
forecast period from 08:00 to 08:00 the next day. The eight temperature forecast values were
identified one by one. The times when the snowmelt temperature index was reached were
added up and multiplied by three to obtain the daily snowmelt duration hours of the day.
Therefore, based on the temperature forecast of the next 10 days by 24 h intervals, the daily
snowmelt duration forecast of the next 1–10 days could be calculated. To test the forecast
data, the real daily snowmelt duration was calculated from the eight corresponding times
of CLDAS temperature. To forecast the daily duration of snowmelt (FS), the formula was
as follows:

d = t× 3, (10)

FS =

N
∑

j=1
d(j)

N
, (11)

In Equation (10), t is the times at which the temperature ≥ 0 ◦C, predicted by a single
grid within a specific 24 h forecast period; d represents the predicted snowmelt duration
of a single grid point within a specific 24 h forecast period. In Equation (11), N is the
grid number of reaching the forecast snowmelt temperature in the study area. FS is the
predicted duration of snowmelt within 24 h in the study area.

2.3. Inspection Index

The root–mean-squared error (RMSE) and the prediction accuracy (TT, temperature
forecast accuracy, and TS; prediction accuracy of the snowmelt temperature) were used as
test indexes, and the value of the corresponding correction technique value (SS) measured
the effect value of the revised forecast, relative to the original forecast. The predictions of
the three grid temperature forecast products (XJ, HG, and PJ) were compared and tested.

The RMSE was given by:

RMSE =

√√√√√ N
∑

t=1
(x(t) − y(t))

2

N
, (12)

where x(t) and y(t) are the predicted and real values of the factors, respectively, and N is the
number of samples involved in the test.

The temperature forecast accuracy was given as follows:

TT =
NA

NA + NB
× 100, (13)

where NA is the number of samples whose absolute error of the forecast value is less than
2 ◦C, and NB is the number of samples whose absolute error of the forecast value is
above 2 ◦C.

The prediction accuracy of the snowmelt temperature was given as follows:

TS =
NC

NC + ND + NE
× 100, (14)
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where NC is the number of correctly forecasting samples, ND is the number of empty
forecasting samples when the forecast value reaches the target, but the real value was not
reached, and NE is the number of missing forecasting samples when the forecast value did
not reach the target but the real value was reached.

Value of correction technique (SS): The RMSE (SS_RMSE*: the values of various
root–mean-squared error correction techniques) and prediction accuracy (SS_TT/TS) were
calculated by the following formula:

SS_RMSE∗ i = RMSE∗XJ − RMSE∗HG/PJ , (15)

SS_TT/TSi = TT/TSHG/PJ − TT/TSXJ (16)

In Equations (15) and (16), the subscript HG/PJ represented the index value of the re-
vised forecast product by dynamic unary regression correction/average-filtering correction,
while the subscript XJ represented the index value of the original forecast guidance product.
RMSE* represented RMSEDF, RMSEUP, or RMSE_Max, where RMSEDF was the RMSE
of daily snowmelt duration forecast, RMSEUP was the RMSE of daily temperature-rise
amplitude forecast, and RMSE_Max was the RMSE of the daily maximum temperature
forecast. In Equation (15), the RMSE correction technique of the corresponding prediction
algorithm yielded the value (original forecast XJ minus the revised forecast HG/PJ). In
Equation (16), the prediction accuracy correction technique of the corresponding prediction
algorithm yielded the value (the revised forecast HG/PJ minus the original forecast XJ).
When SS was positive, the correction technique was positive, and vice versa.

2.4. Test Method

The time series test method calculated and compared index values during 10 days
in 3 h intervals of the 3 grid temperature forecast products.

The spatial distribution test method calculated and compared the index values during
the whole forecast period of 10 days or of a certain range of forecast period among the
3 grid temperature forecast products.

3. Tests of Various Temperature Prediction Algorithms
3.1. Temperature Forecast Test
3.1.1. Time Series Comparison of Temperature Forecast

Figure 2a and Table 1 show that the mean–root errors of XJ, HG, and PJ products were
5.17, 6.77, and 4.59 ◦C, respectively. As compared to XJ, the RMSEs of HG and PJ were
increased by 1.6 ◦C and decreased by 0.58 ◦C, respectively, and the correction effect was
better within 72 h. The RMSE of PJ forecast products was lower than that of XJ, and the
correction technique values were positive, as compared to HG. The forecast period was
shorter than 33 h at 1400–1700 (Beijing time), and the RMSEs of HG and PJ were 0.6 and
1.93 ◦C lower than XJ, respectively. The forecast period was shorter than 81 h at 1100, 1400,
1700, 2000, and 2300 (Beijing time), and the RMSEs of the HG and PJ forecast products
increased by 0.23 ◦C and decreased by 1.74 ◦C, as compared to XJ, respectively.

Figure 2b and Table 1 show that the average accuracy of temperature forecast for XJ,
HG, and PJ were 35.52, 41.65, and 41.83%, respectively. As compared to XJ, the temperature
forecast accuracy of HG and PJ increased by 9.13 and 9.30%, respectively; the positive
prediction accuracy correction techniques values of HG and PJ were within 129 and 165 h,
respectively, and the temperature forecast accuracy of HG and PJ increased by 22.68 and
25.17%, respectively; the accuracy correction effect on PJ was better than that of HG.
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Figure 2. Time series distribution of RMSE (a), forecast accuracy (b), and correction techniques of
three temperature forecast products in the mountainous areas of northern Xinjiang.

Table 1. Test effect on root–mean–square error, temperature prediction accuracy, and the correction
techniques of three prediction products. (↓: The test value is lower than the original forecast. ↑: The
test value is higher than the original forecast).

Average Value of
the Forecast Period 0–240 h Correction

Techniques 0–24 h 24–48 h 48–72 h 72–96 h 96–120 h 120–240 h

RMSE_XJ/◦C 5.17 4.04 4.11 4.22 4.3 4.55 6.19
RMSE_HG/◦C 6.77 −1.60 ↓ 4.37 5.37 5.9 5.47 6.66 8.01
RMSE_PJ/◦C 4.59 0.58 ↑ 2.97 3.18 3.39 3.54 4.11 6.21
TT_XJ/% 32.52 40.15 39.37 38.82 37.19 34.56 26.24
TT_HG/% 41.65 9.13 ↑ 55.36 47.9 44.92 42.91 38.39 29.14
TT_PJ/% 41.83 9.30 ↑ 58.04 53.82 50.1 46.8 40.3 27.31

3.1.2. Spatial Distribution Comparison of Temperature Forecast

Table 1 and Figure 3 show the temperature prediction accuracy of XJ, HG, and PJ in
the 24 h forecast period as 40.15, 55.36, and 58.04%, respectively, with PJ having the highest
prediction accuracy. After 72 h, the temperature forecast accuracy of the 3 products was
below 50%. Figure 3 shows the RMSE distributions of the temperature forecasts for XJ, HG,
and PJ, over 24, 48, and 72 h.
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Figure 3. Spatial distribution of RMSE for 0–24, 24–48, and 48–72 h temperature forecasts
(columns: XJ, HG, and PJ forecast from left to right; Rows: 0–24, 24–48, and 48–72 h from top
to bottom).

As shown in Table 1, as compared to the forecast product (XJ), there were 2496, 1536,
and 1219 grid points where the RMSE correction technique of HG was positive in the 24,
48, and 72 h periods, which accounted for 33.9, 20.8, and 16.5% of the temperature forecasts
in northern Xinjiang. Meanwhile, there were 5592, 5068, and 4747 grid points where the
RMSE correction techniques of PJ forecast products were positive during the 24, 48, and
72 h forecast periods, accounting for 75.9, 68.8, and 64.4% of the temperature forecasts in
northern Xinjiang. As compared to HG, the PJ forecast product correction techniques had
evident advantages.

Figure 3 shows a total of 5592 grid points where the RMSE correction technique
value of PJ in the future 24 h temperature forecast has a positive effect, 748 grid points
where the RMSE correction technique value exceeded 3 ◦C, and 220 grid points where the
RMSE correction technique value exceeded 5 ◦C, accounting for 75.9, 10.1, and 3.0% of the
mountainous areas in northern Xinjiang, respectively. The grid points with the positive
effect on the RMSE correction were distributed in most of the mountainous areas of northern
Xinjiang. The grid points with the correction effect exceeding 5 ◦C were distributed in the
areas with elevations above 3000 m in the Kharketau Mountain and 2000 m in the source
region of the Burjin River in northern Altai.

3.2. Daily Maximum Temperature Test
3.2.1. Time Series Comparison of Daily Maximum Temperature Forecast

Figure 4 and Table 2 show the average RMSEs of the daily maximum temperature
forecast of XJ, HG, and PJ in the following 1–10 days as 5.11, 7.85, and 4.61 ◦C, respectively.
As compared to the guide forecast product (XJ), HG increased by 2.74 ◦C, exhibiting a
negative effect overall, where only the correction technique value in the prediction of
1 day was positive; PJ decreased by 0.50 ◦C, on average, whereas the correction tech-
nique values for the 1–10 days in the future were all positive. The RMSEs of the daily
maximum temperature forecast of PJ in the following 1, 2, and 3 days were 2.26, 2.54,
and 2.87 ◦C, respectively, as compared to XJ, and the RMSEs were reduced by 1.48, 1.29,
and 1.1 ◦C, respectively.
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Figure 4. Time series distribution of RMSEs and the prediction accuracy during 1–10 days of daily
maximum temperature forecasts in mountainous areas of northern Xinjiang.

Table 2. RMSE and prediction accuracy of daily maximum temperature forecasts in mountainous
areas of northern Xinjiang. (↓: The test value is lower than the original forecast. ↑: The test value is
higher than the original forecast).

Average Value of Forecast
Period in 24 h Interval 240 h Correction

Techniques 1 d 2 d 3 d 4 d 5 d 10 d

RMSE_Max_XJ/◦C 5.11 3.74 3.83 3.97 4.20 4.75 6.82
RMSE_Max_HG/◦C 7.85 −2.74 ↓ 3.68 5.16 6.64 6.82 7.33 8.96
RMSE_Max_PJ/◦C 4.61 0.50 ↑ 2.26 2.54 2.87 3.23 4.06 6.68
TT_Max_XJ/% 32.77 42.47 41.63 40.08 37.77 32.66 25.27
TT_Max_HG/% 35.00 2.23 ↑ 62.91 53.02 44.11 36.59 30.05 22.52
TT_Max_PJ/% 43.73 10.96 ↑ 71.61 65.88 58.12 51.30 40.25 25.97

Figure 4 and Table 2 show the forecast accuracy of the daily maximum temperature of
XJ, HG, and PJ in during 1–10 days as 32.77, 35.00, and 43.7%, respectively.

Figure 4 shows that, as compared to the guide forecast product (XJ), the accuracies of
HG and PJ were increased by 2.23 and 10.96%, respectively. The correction technique values
were both positive, and PJ was higher. The forecast accuracies of the daily maximum tem-
perature of PJ for the following 1, 2, and 3 days were 71.61, 65.88, and 58.12%, respectively,
and increased to be 29.19, 24.25, and 18.04% higher than XJ, respectively. The accuracy
correction technique of the PJ daily maximum temperature forecasts in the mountainous
areas of northern Xinjiang was obviously superior to that of HG.

3.2.2. Spatial Distribution Comparison of Daily Maximum Temperature Forecast

Figure 5 shows that there were 3056, 1736, and 992 grid points where the RMSE
correction technique of HG, the daily maximum temperature forecast for the following 1, 2,
and 3 days, had positive effects, accounting for 47.6, 23.6, and 13.5% of the mountainous
areas in northern Xinjiang. There were 6164, 5430, and 4920 grid points where the RMSE
correction technique value of the daily PJ maximum temperature forecast for the following
1, 2, and 3 days had positive effects, accounting for 83.6, 73.7, and 66.7% of the mountainous
areas in northern Xinjiang. As compared to HG, the areas where the RMSE correction
technique values of the daily PJ maximum temperature forecast for the following 1, 2, and
3 days were positively increased by 42.0, 48.0, and 47.9%, respectively, indicating that the
correction technique value had evident advantages in the spatial area.
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Figure 5. Spatial distribution of RMSEs in the following 1, 2, and 3 days, for daily maximum
temperature forecasts in the mountainous areas of northern Xinjiang (columns: XJ, HG, and PJ
forecast from left to right; rows: 1, 2, and 3 days from top to bottom).

Figure 5 shows there were 5322, 1505, and 603 grid points with RMSE correction values
for the daily maximum temperature forecasts of PJ for the following day exceeding 0, 3,
and 5 ◦C, respectively, accounting for 72.2, 20.4, and 8.2%, respectively, of the mountainous
areas in northern Xinjiang. The grid points with a positive effect on the RMSE correction
technique value of the daily maximum PJ temperature forecast were distributed in most
of the mountainous areas of northern Xinjiang, while the areas with a negative effect on
the correction technique values were located at 1300–1500 m south of Mulei in the eastern
Changji Prefecture. The grid points where the PJ correction effect exceeded 5 ◦C were
distributed in the areas with elevations above 3000 m at Kharketau Mountain and 2000 m
in the source region of the Burjin River in northern Altai.

3.3. Prediction and Test of Temperature Rise

From 23 to 30 April 2021, 7371 grid points for the daily maximum temperature average
rise reached 25.63 ◦C in the mountainous area of northern Xinjiang, among which the
single-grid maximum temperature rise was 32.96 ◦C. A total of 559 grid points had a
temperature rise of more than 30 ◦C, and 3894 grid points had a temperature rise of more
than 25 ◦C but less than or equal to 30 ◦C. Finally, 2388 grid points had a temperature rise
of more than 20 ◦C but less than or equal to 25 ◦C. The continuous temperature rise period
was selected for the daily temperature-rise amplitude forecast test.

3.3.1. Forecast Period Series Comparison of Daily Temperature-Rise Amplitude

Figure 6 and Table 3 show the average RMSEs for the forecast daily temperature-
rise amplitude of XJ, HG, and PJ, for the following 1–10 days, as 4.87, 6.41, and 4.25 ◦C,
respectively. As compared to XJ, the RMSE of HG increased by 1.54 ◦C, while that of PJ
decreased by 0.62 ◦C. As shown in Figure 6, as compared to the guidance product (XJ), the
RMSEs of the daily temperature-rise amplitude forecast of HG for the following 1, 2, and
3 days increased by 1.32, 0.61, and 0.69 ◦C, respectively, and PJ was reduced by 1.50, 1.31,
and 0.97 ◦C, respectively. The RMSEs of the daily temperature-rise amplitude forecast of
the PJ for the following 1, 2, and 3 days, in the mountainous area of northern Xinjiang, were
1.69, 2.10, and 2.53 ◦C, respectively, and the forecast had significantly improved.
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Figure 6. Time series distribution of RMSEs and correction technique of daily temperature-rise
amplitude forecast for the following 1–10 days in mountainous areas of northern Xinjiang.

Table 3. RMSEs for the daily temperature-rise amplitude forecast for mountainous area of northern
Xinjiang. (↓: The test value is lower than the original forecast. ↑: The test value is higher than the
original forecast).

Average Value of the Forecast
Period in 24 h Interval Range 1–10 d Correction

Techniques 1 d 2 d 3 d 4 d 5 d

RMSEUP_XJ/◦C 2.4–714.68 4.87 3.19 3.41 3.50 3.70 3.85
RMSEUP_HG/◦C 2.96–20.14 6.41 −1.54 ↓ 4.51 4.02 4.19 5.81 6.13
RMSEUP_PJ/◦C 2.84–7.35 4.25 0.62 ↑ 1.69 2.10 2.53 2.94 2.82

3.3.2. Spatial Distribution Comparison of Temperature-Rise Amplitude Forecast

Figure 7 and Table 3 show that as compared to XJ, there were 2768, 2875, and 2762 grid
points where the RMSE correction techniques of the HG daily temperature-rise amplitude
forecast for the following 1, 2, and 3 days were positive, accounting for 37.6, 39.0, and
37.5% of the mountainous areas in northern Xinjiang, respectively. Furthermore, there
were 5322, 5108, and 4545 grid points with positive correction technique values of the PJ
forecast product for the following 1, 2, and 3 d, accounting for 72.2, 69.3, and 61.7% of
the mountainous areas in northern Xinjiang, respectively. As compared to the prediction
results of HG, the number of grid points with a positive effect increased by 34.6, 30.3, and
24.2%, respectively, and the positive effect areas of PJ were significantly larger than HG.

Figure 7 shows that there were 5322, 1505, and 603 grid points with the RMSE cor-
rection techniques of the PJ daily temperature-rise amplitude forecast in the following
day that exceeded 0, 3, and 5 ◦C, respectively, accounting for 72.2, 20.4, and 8.2%, respec-
tively, of the mountainous areas in northern Xinjiang. Positive results were found in most
of the mountainous areas in northern Xinjiang, while the correction techniques of Yili
Zhaosu at an altitude of 1500–2000 m and some areas in the south of Urumqi showed
negative results.
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Figure 7. Spatial distribution of RMSEs for daily temperature-rise amplitude forecast for the following
1, 2, and 3 days in the mountainous areas of northern Xinjiang (columns: XJ, HG, and PJ forecast from
left to right; rows: 1, 2, and 3 days from top to bottom).

3.4. Snowmelt Temperature Tests
3.4.1. Time Series Comparison of Snowmelt Temperature

From March to May, spring 2021, the average snowmelt temperature forecast accu-
racies of XJ, HG, and PJ were 79.36, 74.10, and 81.99%, respectively. As compared to
the guidance product (XJ), the forecast accuracy of HG decreased by 5.4%, while the PJ
scheme increased by 2.45% (Figure 8 and Table 4). For a total of 80 forecast periods during
the 10-day forecast period, the positive correction technique values of HG were accurate
13 and 77 times, respectively, and the correction technique value of PJ was relatively high.
At 02:00, 11:00, 14:00, and 17:00 (Beijing time), the correction technique values of HG were
higher than those of XJ. The average accuracy of the snowmelt temperature forecast of XJ
and HG at these times was 82.16 and 84.36%, respectively.
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Table 4. Regional and time division comparison of snowmelt temperature forecast accuracy for three
kinds of forecast products. (↓: The test value is lower than the original forecast. ↑: The test value is
higher than the original forecast).

Average Forecast Period Range 240 h Correction
Techniques 24 h 48 h 72 h 96 h 120 h 240 h

TS_XJ 0.09–99.84 79.36 82.35 82.65 80.94 82.64 82.1 66.29
TS_HG 0.26–99.07 74.1 −5.4 ↓ 71.72 68.8 65.93 63.6 64.68 68.01
TS_PJ 1.45–98.98 81.99 2.45 ↑ 85.12 84.78 83.22 83.06 81.71 66.75

At 02:00, 11:00, 14:00, and 17:00 (Beijing time), the correction technique values of HG
were relatively high. The average accuracies of the snowmelt temperature forecast of XJ
and HG at these times were 82.16 and 84.36%, respectively. At 11:00, 14:00, 17:00, and
23:00 (Beijing time), the correction technique of PJ was relatively high, and the predic-
tion accuracies of the snowmelt temperature of XJ and PJ at these times were 84.59 and
91.60%, respectively.

3.4.2. Spatial Distribution Comparison of Snowmelt Temperature

The number of correct snowmelt grid points in CLDAS, XJ, HG, and PJ were 7324,
6609, 6641, and 6598, respectively.

Figure 9 and Table 4 show that, as compared to the original prediction (XJ), the average
correction technique values of the PJ algorithm at 24, 48, and 72 h were 3.29, 3.11, and 2.42,
respectively, and the positive correction technique values had 3109, 3115, and 3194 grid
points, respectively. The average correction technique values of the HG algorithm at 24, 48,
and 72 h were −9.8, −12.28, and −14.77, respectively, among which there were 1475, 1054,
and 980 positive correction grid points, respectively.
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Figure 9. Spatial distribution of snowmelt temperature forecast accuracy at 24, 48, and 72 h (columns:
XJ, HG, and PJ forecast from left to right; rows: 24 h, 48 h, and 72 h forecast periods, from top to
bottom, respectively).

At 24 h, the positive correction technique value grid points of the PJ algorithm were
concentrated in the areas of the Yili Prefecture, 1500–2000 m above sea level; the Iren-
habirgaa and Borokonu mountains at 2000–3500 m above sea level; and 3000 m above
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sea level, for the central Tianshan reaches east to Igo, except for the Tomulti Peak and the
North Tower Mountain northward 1500 m above the Altai Mountains, as well as from
the northwest of Tachen to the area of Hobuxell. The correction technique values greater
than 5 had 2180 grid points in the concentrated areas, which were located in the Borokonu
Mountain, Green River, and Bukser region.

3.5. Daily Snowmelt Duration Tests
3.5.1. Time Series Comparison of Snowmelt Duration

Figure 10 and Table 5 show the RMSEs of the XJ, HG, and PJ snowmelt duration
forecast for the following 1–10 days as 2.22, 1.4, and 1.29 h, respectively. As compared
to XJ, the mean square errors of HG and PJ daily snowmelt durations were decreased by
0.81 and 0.93 h, respectively. Figure 10 shows that the RMSEs of HG forecast products
for the following 1, 2, and 3 days were 0.72, 0.93, and 1.03 h, respectively, which were
reduced by 1.18, 0.98, and 0.9 h, relative to XJ. The RMSEs of the PJ prediction products
for the following 1, 2, and 3 days were 0.66, 0.80, and 0.92 h, respectively, which were
reduced by 1.24, 1.11, and 1.01 h, relative to XJ, and 0.06 h, 0.13 h, and 0.11 h, relative to
HG, respectively. Thus, the RMSE correction technique of the PJ snowmelt duration in the
mountainous area of northern Xinjiang was superior.
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Table 5. RMSEs in the daily snowmelt duration forecast for mountainous areas of northern Xinjiang.
(↑: The test value is higher than the original forecast).

Average Value of the Forecast
Period in 24 h Interval Range 1–10 d Correction

Techniques 1 d 2 d 3 d 4 d 5 d 10 d

RMSEDF_XJ/h 0–14.62 2.22 1.90 1.91 1.93 1.97 2.07 2.04
RMSEDF_HG/h 0–7.2 1.40 0.81 ↑ 0.72 0.93 1.03 1.07 1.03 1.85
RMSEDF_PJ/h 0–5.68 1.29 0.93 ↑ 0.66 0.80 0.92 0.95 1.10 0.81

3.5.2. Spatial Distribution Comparison of Snowmelt Duration Forecast

Figure 11 and Table 5 show that, as compared to XJ forecast products, there were
4373, 3964, and 3778 grid points where the RMSE correction technique values of HG daily
snowmelt duration forecast products were positive in the following 1, 2, and 3 d, accounting
for 59.3, 53.8, and 51.3% of the northern mountainous areas of Xinjiang, respectively. As
compared to XJ, 4445, 4143, and 3952 grid points with positive correction techniques of PJ
forecast products for the following 1, 2, and 3 days accounted for 60.3, 56.2, and 53.6% of
the mountainous areas in northern Xinjiang, respectively. As compared to HG, the areas
of the PJ forecast products’ positive correction technique values in the following 1, 2, and
3 days increased by 1.0, 2.4, and 2.4%, respectively.
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Figure 11 shows that the grid with the RMSE correction technique of the PJ daily
snowmelt duration forecast for the following day covered all study areas, among which
there were 334 grid points with the correction technique exceeding 5 h, concentrated in
the areas above 3000 m altitude in the Yili region, the upper Burtin River in the northern
Altai Mountains, and partial areas that were 3000 m above sea level at the eastern end of
Mount Borokonu.

4. Conclusions
4.1. Algorithm Test Results

Through the afore-described comparative test analysis, we obtained the following
conclusions:

(1) Temperature forecast test by forecast period: In the 10-day, 3 h interval forecast,
as compared to the guidance forecast product (XJ), the RMSEs of the HG and PJ tempera-
ture forecast products increased by 1.6 ◦C and decreased by 0.58 ◦C, respectively, and the
temperature forecast accuracy increased by 9.13 and 9.30%, respectively. The RMSEs and
the prediction accuracy of the temperature forecast, as well as the effects on the PJ intelli-
gent grid temperature forecast correction technique, were significantly better than those
of HG.

(2) Test of daily maximum temperature forecast: In the 10-day forecast, as compared
to the guidance forecast product (XJ), the RMSE of the daily maximum temperature of
the HG and PJ temperature forecast products increased by 2.74 ◦C and decreased by
0.5 ◦C, respectively, and the temperature forecast accuracy increased by 2.23 and 10.96%,
respectively. The accuracy correction technique of the PJ daily maximum temperature
forecast in the mountainous areas of northern Xinjiang evidently outperformed HG.

(3) Daily temperature-rise prediction test: In the 10-day forecast, as compared to the
guidance forecast product (XJ), the RMSE of the daily temperature-rise amplitude of HG
increased by 1.55 ◦C, and the correction technique exhibited a negative effect overall, while
PJ decreased by 0.62 ◦C, which exhibited a positive effect overall.

(4) Test of snowmelt temperature forecast: In the 10-day, 3 h interval forecast, as
compared to the guidance forecast product (XJ), the accuracy of the snowmelt temperature
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forecast of HG and PJ decreased by 5.4% and increased by 2.45%, respectively. Among
the 80 forecasts within 10 days, the positive correction techniques of HG and PJ were
accurate 13 and 77 times, respectively, and the accuracy correction techniques of PJ were
relatively high.

(5) Test of snowmelt daily duration forecast: In the 10-day forecast, as compared to the
guidance product (XJ), the mean square error of the HG and PJ snowmelt duration forecast
decreased by 0.81 h and 0.93 h, respectively. The effect on the PJ correction technique was
superior to that of HG.

According to the comprehensive test of the time series and spatial distribution, the
original forecast products corrected by the average filter algorithm were superior to those
corrected by the dynamic unary regression algorithm and the original forecast products.

4.2. Limitations and Novelty

Herein, SCMOC was selected as the original forecast product and used to design two
correction algorithms. The dynamic linear regression and the average filter correction
algorithms were selected according to numerous experiments using the meteorological
observation station forecasts. Only the average filtering algorithm had a strong adaptability,
which effectively reduced the prediction error of the grid prediction products. Though
other correction algorithms exist, all must forecast and test the temperature-rise process of
snowmelt in mountainous areas to determine their suitability.

The dynamic linear regression algorithm dynamically updated the coefficients in the
equation. The average filtering algorithm dynamically improved the error. The different
improvement points of the two algorithms were based on the Kalman filter correction theory
and used the latest live data to continuously update the forecast data [29]. In order to predict
the temperature-rise process more accurately, we designed four innovative temperature
forecast methods, including daily maximum temperature, daily temperature-rise range,
snowmelt temperature, and daily snowmelt duration. Subsequently, the algorithm could
be applied to test other areas and combined with the advantages of other algorithms to
design a comprehensive approach. Laypeople need more accurate temperature forecast
values; thus, the algorithm in this paper can provide a technical reference for independent
meteorological/commercial organizations.

We studied an intelligent grid temperature prediction technology for snowmelt warm-
ing in mountainous areas during spring. These efforts to obtain optimal grid point tem-
perature forecasting products during snowmelt in mountainous areas contributes to the
growing technical support for predicting snowmelt flood periods and estimating flood-
peak discharge. To monitor and forecast the temperature-rise change process of each grid
in mountainous areas during snowmelt seasons, we provided a scientific assessment of
the snowmelt time, speed, and snowmelt quantity as well as a quantitative analysis of
snowmelt flood changes in the river basin, and we provided a scientific basis for guid-
ing agricultural production layout, water resource management, and accurate disaster
prevention and avoidance.

4.3. Discussion

This paper discusses the problem of the temperature forecast during the snowmelt pe-
riod. However, there are many factors affecting snowmelt, such as evapotranspiration [41],
the amount of sunshine, the structure of the snow, the surface coverage of the snow
cover [42] and precipitation [43,44], etc., which have an effect on snowmelt, considering
these factors, more aspects should be considered in the later stage of this study.
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