Research Progress and Application Analysis of the Returning Straw Decomposition Process Based on CiteSpace
Abstract
:1. Introduction
2. Research Vein and Trend Analysis of Straw Returning
2.1. Statistical Analysis of Straw Returning Studies
2.1.1. Number of Published Papers
2.1.2. Research Trends of Straw Returning
2.2. Statistical Analysis of Straw Decomposition Agent Studies
2.2.1. Statistical Analysis of Straw Decomposition Agent Studies
2.2.2. Research Trend of Straw Decomposition Agent
3. Study on the Ecological Effects of Straw Returning to Farmland
3.1. Effects of Straw Returning on Soil Physical and Chemical Properties
3.2. Effects of Straw Returning on Saline Soil Properties
3.3. Effects of Straw Returning on Greenhouse Gases
4. Study on Accelerating Decomposition of Retuning Straw
4.1. Mechanism of Straw Decomposition Agent
4.2. Effects of Accelerating Straw Decomposition on Soil Properties
4.3. Effects of Accelerating Straw Decomposition on Crop Growth
5. Quantitative Characterization Experiment of Straw Decomposition
5.1. Materials and Methods
5.1.1. Experimental Sample
5.1.2. Experiment Design
5.1.3. Research Trends of the Straw Decomposition Agent
5.1.4. Data Analysis
5.2. Results and Discussion
5.2.1. Effect of the Decomposition Agent on the Wheat Straw Decomposition Rate
5.2.2. Effect of the Decomposing Agent on Straw Nutrient Release
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, X.H.; Guo, L.Y.; Li, C.H.; Liu, M.Z.; Wu, G.L.; Jiang, G.M. The total biomass nitrogen reservoir and its potential of replacing chemical fertilizers in China. Renew. Sustain. Energ. Rev. 2021, 135, 110215. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Wang, Z.F.; Can, M.Y.; Bai, H.; Ta, N. Analysis of yield and current comprehensive utilization of crop straws in China. J. China Agric. Univ. 2021, 26, 30–41. [Google Scholar]
- Zhang, Q.F. Problems and Countermeasures of Straw Returning. Sci. Technol. West China 2014, 13, 73+126. [Google Scholar]
- Saroj, D.; Charu, G.; Shankar Lal, J.; Parmar, M.S. Crop residue recycling for economic and environmental sustainability: The case of India. Open Agric. 2017, 2, 486–494. [Google Scholar]
- Bhuvaneshwari, S.; Hettiarachchi, H.; Meegoda, J.N. Crop residue burning in India: Policy challenges and potential solutions. Int. J. Environ. Health 2019, 16, 832. [Google Scholar] [CrossRef]
- Mahmoud, I.; Esawy, M.; Doaa, I. Assessing the impact of water treatment residuals and rice straw compost on soil physical properties and wheat yield in saline sodic Soil. Commun. Soil Sci. Plant Anal. 2020, 51, 2388–2397. [Google Scholar]
- Xu, X.; Pang, D.W.; Chen, J.; Luo, Y.L.; Zheng, M.J.; Yin, Y.P.; Li, Y.X.; Li, Y.; Wang, Z.L. Straw return accompany with low nitrogen moderately promoted deep root. Field Crop Res. 2018, 221, 71–80. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, L.J.; Lv, X.B.; Meng, Y.L.; Zhou, Z.G. Straw returning coupled with nitrogen fertilization increases canopy photosynthetic capacity, yield and nitrogen use efficiency in cotton. Eur. J. Agron. 2021, 126, 126–267. [Google Scholar] [CrossRef]
- Zhang, C.F.; Lin, Z.L.; Que, Y.X.; Fallah, N.; Tayyab, M.; Li, S.Y.; Luo, J.; Zhang, Z.C.; Abubakar, A.Y. Straw retention efficiently improves fungal communities and functions in the fallow ecosystem. BMC Microbiol. 2021, 21, 13. [Google Scholar] [CrossRef]
- Ali, U.; Shaaban, M.; Bashir, S.; Fu, Q.L.; Zhu, J.; Shoffikul Islam, M.; Hu, H.Q. Effect of rice straw, biochar and calcite on maize plant and Ni bio-availability in acidic Ni contaminated soil. Environ. Manag. 2020, 259, 109674. [Google Scholar] [CrossRef]
- Qiu, Y.; Lv, W.C.; Wang, X.P.; Xie, Z.K.; Wang, Y.J. Long-term effects of gravel mulching and straw mulching on soil physicochemical properties and bacterial and fungal community composition in the Loess Plateau of China. Eur. J. Soil Biol. 2020, 98, 103188. [Google Scholar] [CrossRef]
- Ma, Y.C.; Liu, D.L.; Schwenke, G.; Yang, B. The global warming potential of straw-return can be reduced by application of straw-decomposing microbial inoculants and biochar in rice-wheat production systems. Environ. Pollut. 2019, 252, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Witt, C.; Cassman, K.G.; Olk, D.C.; Biker, U.; Liboon, S.P.; Samson, M.I.; Ottow, J.C.G. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant Soil. 2000, 225, 263–278. [Google Scholar] [CrossRef]
- Chen, J.; Yi, T.; Ye, Y.L.; Zhang, X.L. Research Progress and Development Trend of Straw Decomposing Agent. Hunan Agric. Sci. 2021, 108–110. [Google Scholar]
- Chen, C.M. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.H.; Hu, Z.G. Review on the Application of CiteSpace at Home and Abroad. J. Mod. Inf. 2013, 33, 99–103. (In Chinese) [Google Scholar]
- Hu, L.N.; Zhang, J.F.; Xing, J. Research Hotspot and Evolution Trend of Green Economic Efficiency at Home and Abroad-Visual Analysis Based on CiteSpace. J. Commer. Econ. 2022, 4, 189–192. [Google Scholar]
- Chu, W.W.; Hafiz, N.R.M.; Mohamad, U.A.; Ashamuddin, H.; Tho, S.W. A review of STEM education with the support of visualizing its structure through the CiteSpace software. Int. J. Technol. Des. Educ. Online 2022, 33, 1–23. [Google Scholar] [CrossRef]
- Zong, X.; Wen, L.; Wang, Y.; Li, L. Research progress of glucoamylase with industrial potential. J. Food Biochem. 2022, 46, e14099. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, L.J.; Xing, Y.; Ma, S.M.; Zhang, X.D.; Chen, J. Effects of Chinese milk vetch intercropped with rape under straw mulching on soil aggregate and organic carbon character. Chin. J. Appl. Ecol. 2019, 30, 1235–1242. [Google Scholar]
- Lu, W.L. Effects of Tillage and Straw Return on Soil Physical and Chemical Properties and Flue-cured Tobacco Growth. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2019. [Google Scholar]
- Li, Q.; Li, H.B.; Zhang, L.; Zhang, S.Q.; Chen, Y.L. Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis. Field Crop Res. 2018, 221, 50–60. [Google Scholar] [CrossRef]
- Jin, Z.Q.; Shah, T.R.; Zhang, L.; Liu, H.Y.; Peng, S.B.; Nie, L.X. Effect of straw returning on soil organic carbon in rice-wheat rotation system: A review. Food Energy Secur. 2020, 9, 13. [Google Scholar] [CrossRef]
- Li, S.Y.; Li, Y.; Lin, H.X.; Feng, H.; Dyck, M. Effects of different mulching technologies on evapotranspiration and summer maize growth. Agric. Water Manag. 2018, 201, 309–318. [Google Scholar] [CrossRef]
- Yang, Y.H.; Ding, J.L.; Zhang, Y.H.; Wu, J.C.; Zhang, J.M.; Pan, X.Y.; Gao, C.M.; Wang, Y.; He, F. Effects of tillage and mulching measures on soil moisture and temperature, photosynthetic characteristics and yield of winter wheat. Agric. Water Manag. 2018, 201, 299–308. [Google Scholar] [CrossRef]
- Chang, L.; Han, F.X.; Chai, S.X.; Cheng, H.B.; Yang, D.L.; Chen, Y.Z. Straw strip mulching affects soil moisture and temperature for potato yield in semiarid regions. Agron. J. 2020, 112, 1126–1139. [Google Scholar] [CrossRef]
- Hou, X.Q.; Li, R. Interactive effects of autumn tillage with mulching on soil temperature, productivity and water use efficiency of rainfed potato in loess plateau of China. Agric. Water Manag. 2019, 224, 105747. [Google Scholar] [CrossRef]
- Deligios, P.A.; Farina, R.; Tiloca, M.T.; Francaviglia, R.; Ledda, L. C-sequestration and resilience to climate change of globe artichoke cropping systems depend on crop residues management. Agron. Sustain. Dev. 2021, 41, 20. [Google Scholar] [CrossRef]
- Hu, Y.F. Study on the improvement of farmland soil organic matter by straw returning. Agric. Ecosyst. Environ. 2020, 1, 131. [Google Scholar]
- Nie, S.A.; Lei, X.M.; Zhao, L.X.; Brookes, P.C.; Wang, F.; Chen, C.R.; Yang, W.H.; Xing, S.H. Fungal communities and functions response to long-term fertilization in paddy soils. Appl. Soil Ecol. 2018, 130, 251–258. [Google Scholar] [CrossRef]
- Tian, L.; Shi, S.H.; Zhang, J.F.; Gao, Q.; Tian, C.J. Effects of Long-term Fertilization and Straw Return on Diversity lndices of AMF and Bacteria in Maize Rhizosphere. Soils Crops 2017, 6, 291–297. [Google Scholar]
- Lai, R.; Lagomarsino, A.; Ledda, L.; Roggero, P.P. Variation in soil C and microbial functions across tree canopy projection and open grassland microenvironments Turk. J. Agric. For. 2014, 38, 62–69. [Google Scholar]
- Song, Y.; Song, C.; Shi, F.; Wang, M.; Ren, J.; Wang, X.; Jiang, L. Linking plant community composition with the soil C pool, N availability and enzyme activity in boreal peatlands of Northeast China. Appl. Soil Ecol. 2019, 140, 144–154. [Google Scholar] [CrossRef]
- Jin, Y.T.; Li, X.F.; Cai, Y.; Hu, H.X.; Liu, Y.F.; Fu, S.W.; Zhang, B.R. Effects of Straw Returning with Chemical Fertilizer on Soil Enzyme Activities and Microbial Community Structure in Rice-Rape Rotation. Environ. Sci. 2021, 42, 3985–3996. [Google Scholar]
- Zhuang, M.H.; Zhang, J.; Kong, Z.Y.; Fleming, R.M.; Zhang, C.Y.; Zhang, Z.Y. Potential environmental benefits of substituting nitrogen and phosphorus fertilizer with useable crop straw in China during 2000–2017. J. Clean. Prod. 2020, 267, 122125. [Google Scholar] [CrossRef]
- Yang, S.Q.; Han, R.Y.; Xing, L.; Liu, H.Y.; Wu, H.J.; Yang, Z.L. Effect of slope farmland soil and water and soil nitrogen and phosphorus loss based on different crop and straw applications and ridge patterns in the basin of the main stream of the Songhua River. Acta Petrol. Sin. 2018, 38, 42–47. [Google Scholar] [CrossRef]
- Xu, C.; Han, X.; Zhuge, Y.P.; Xiao, G.P.; Ni, B.; Xu, X.C.; Meng, F.Q. Crop straw incorporation alleviates overall fertilizer-N losses and mitigates N2O emissions per unit applied N from intensively farmed soils: An in situ 15N tracing study. Sci. Total Environ. 2020, 764, 142884–142894. [Google Scholar] [CrossRef]
- Hua, K.K.; Zhu, B.; Li, C.C. Pathways of Dissolved Unreactive Phosphorus Loss under Long-Term Crop Straw and Manure Application. Nutr. Cycl. Agroecosyst. 2021, 120, 161–175. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, B.Q.; Bao, H.; Chen, Q.; Cao, Y.L.; He, Y.Q.; Li, L.Z. Potential of crop straw incorporation for replacing chemical fertilizer and reducing nutrient loss in Sichuan Province, China. Environ. Pollut. 2023, 320, 121034. [Google Scholar] [CrossRef]
- Dai, W.C.; Gao, M.; Lan, M.L.; Huang, R.; Wang, J.Z. Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields. Chin. J. Eco-Agric. 2017, 25, 188–199. [Google Scholar]
- FAO. Global Map of Salt Affected Soils; Version 1.0; FAO: Rome, Italy, 2021. [Google Scholar]
- Luo, S.S.; Wang, S.J.; Tian, L.; Shi, S.H.; Xu, S.Q.; Yang, F.; Li, X.J.; Wang, Z.C.; Tian, C.J. Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils. Geoderma 2018, 329, 108–117. [Google Scholar] [CrossRef]
- Wang, Z.J.; Zhuang, J.J.; Zhao, A.P.; Li, X.X. Types, harms and improvement of saline soil in Songnen Plain. IOP Conf. Ser. Mater. Sci. Eng. C. 2018, 322, 052059. [Google Scholar] [CrossRef]
- Xian, X.X.; Pang, M.Y.; Zhang, J.L.; Zhu, M.K.; Kong, F.L.; Xi, M. Assessing the effect of potential water and salt intrusion on coastal wetland soil quality: Simulation study. J. Soils Sediments 2019, 19, 2251–2264. [Google Scholar] [CrossRef]
- Santos, J.S.; Introíni, G.O.; Veiga-Menoncello, A.C.P.; Blasco, A.; Rivera, M.; Recco-Pimentel, S.M. Comparative sperm ultrastructure of twelve leptodactylid frog species with insights into their phylogenetic relationships. Micron 2016, 91, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Song, X.L.; Sun, R.J.; Chen, W.F.; Wang, M.H. Effects of surface straw mulching and buried straw layer on soil water content and salinity dynamics in saline soils. Can. J. Soil Sci. 2019, 100, 58–68. [Google Scholar] [CrossRef]
- Xie, W.J.; Wu, L.F.; Zhang, Y.P.; Wu, T.; Li, X.P.; Ouyang, Z. Effects of straw application on coastal saline topsoil salinity and wheat yield trend. Soil Tillage Res. 2017, 169, 1–6. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Pang, H.C.; Zhao, Y.G.; Lu, C.; Zhang, X.L.; Li, Y.Y. Water and salt exchange flux and mechanism in a dry saline soil amended with buried straw of varying thicknesses. Geoderma 2020, 365, 114213. [Google Scholar] [CrossRef]
- Liao, X.; Yang, F.; Wang, Z.C.; Guan, Q.J.; He, M.L.; An, F.H.; Yang, H.T.; Zhao, D.D.; Zhu, W.D. Effects of decomposed straw and desulfurized gypsum on salt leaching in saline-sodic soils. Soils Crops 2020, 9, 74–82. [Google Scholar]
- Yang, H.J.; Xia, J.B.; Xie, W.J.; Wei, S.C.; Cui, Q.; Shao, P.S.; Sun, J.K.; Dong, K.K.; Qi, X.C. Effects of straw returning and nitrogen addition on soil quality of a coastal saline soil: A field study of four consecutive wheat-maize cycles. Land Degrad. Dev. 2022, 34, 2061–2072. [Google Scholar] [CrossRef]
- Lenka, N.K.; Lal, R. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil Tillage Res. 2013, 126, 78–89. [Google Scholar] [CrossRef]
- Zhao, H.; Shar, A.G.; Li, S.; Chen, Y.L.; Shi, J.L.; Zhang, X.Y.; Tian, X.H. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil Tillage Res. 2018, 175, 178–186. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.Y.; Ren, G.X.; Khan, A.; Feng, W.Z.; Yang, G.H.; Wang, H.Y. Integrated use of straw mulch with nitrogen fertilizer improves soil functionality and soybean production. Environ. Int. 2019, 132, 105092. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Yu, M.; Xi, H.; Lv, J.L.; Ma, Z.H.; Kou, C.L.; Shen, A. Soil microbial community shifts with long-term of different straw return in wheat-corn rotation system. Sci. Rep. 2020, 10, 6360. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Qaswar, M.; Jing, H.; Wenjun, D.; Geng, S.; Kailou, L.; Ying, M.; Ao, T.; Mei, S.; Chao, L.; et al. Tillage practices improve rice yield and soil phosphorus fractions in two typical paddy soils. Soil Sediments 2020, 20, 850–861. [Google Scholar] [CrossRef]
- Bai, Y.L.; Wang, L.; Lu, Y.L.; Yang, L.P.; Zhou, L.P.; Ni, L.; Cheng, M.F. Effects of long-term full straw return on yield and potassium response in wheat-maize rotation. J. Integr. Agric. 2015, 14, 2467–2476. [Google Scholar] [CrossRef]
- Mao, L.L.; Guo, W.J.; Yuan, Y.C.; Qin, D.L.; Wang, S.L.; Nie, J.J.; Zhao, N.; Song, X.L.; Sun, X.Z. Cotton stubble effects on yield and nutrient assimilation in coastal saline soil. Field Crop. Res. 2019, 239, 71–81. [Google Scholar] [CrossRef]
- Huo, L.L.; Yao, Z.L.; Zhao, L.X.; Luo, J.; Zhang, P.Z. Contribution and Potential of Comprehensive Utilization of Straw in GHG Emission Reduction and Carbon Sequestration. Trans. Chin. Soc. Agric. Mach. 2022, 53, 349–359. [Google Scholar]
- Piao, S.L.; He, Y.; Wang, X.H.; Chen, F.H. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Sci. China (Earth Sci.) 2022, 65, 641–651. [Google Scholar] [CrossRef]
- Liu, P.; He, J.; Li, H.W.; Wang, Q.J.; Lu, C.Y.; Zheng, K.; Liu, W.Z.; Lou, S.Y. Effect of straw retention on crop yield, soil properties, water use efficiency and greenhouse gas emission in China: A meta-analysis. Int. J. Plant Sci. 2019, 13, 347–367. [Google Scholar] [CrossRef]
- Jin, L.; Li, Y.E.; Gao, Q.Z.; Liu, Y.T.; Wan, Y.F.; Qin, X.B.; Shi, F. Estimate of carbon sequestration under cropland management in China. Sci. Agric. Sin. 2008, 41, 734–743. [Google Scholar]
- Sun, J.F.; Zheng, J.F.; Cheng, K.; Pan, G.X. Estimate of the quantity of collectable straw resources and competitive utilization potential. J. Plant Nutr. Fertil. 2018, 24, 404–413. [Google Scholar]
- Chen, H.X.; Liu, J.J.; Zhang, A.F.; Chen, J.; Cheng, G.; Sun, B.H.; Pi, X.M.; Dyck, M.; Si, B.C.; Zhao, Y.; et al. Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China: A field study of 2 consecutive wheat-maize rotation cycles. Sci. Total Environ. 2017, 579, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.H.; Yan, C.G.; Liu, Q.; Ding, W.L.; Chen, B.Q.; Li, Z. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Sci. Total Environ. 2019, 651, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qin, T.; Liu, T.Q.; Guo, L.J.; Li, C.F.; Zhai, Z.B. Inclusion of microbial inoculants with straw mulch enhances grain yields from rice fields in central China. Food Energy Secur. 2020, 9, e230. [Google Scholar] [CrossRef]
- Czyrnek-Deletre, M.M.; Smyth, B.M.; Murphy, J.D. Beyond carbon and energy: The challenge in setting guidelines for life cycle assessment of biofuel systems. Renew. Energy 2017, 105, 436–448. [Google Scholar] [CrossRef]
- Poeschl, M.; Ward, S.; Owende, P. Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energy 2010, 87, 3305–3321. [Google Scholar] [CrossRef]
- Wall, D.M.; O’Kiely, P.; Murphy, J.D. The potential for biomethane from grass and slurry to satisfy renewable energy targets. Bioresour. Tech. 2014, 149, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Arthurson, V. Closing the global energy and nutrient cycles through application of biogas residue to agricultural land-Potential benefits and drawbacks. Energies 2009, 2, 226–242. [Google Scholar] [CrossRef]
- Mancini, M.; Volpe, M.L.; Badaracco, P.; Cravero, V.P. Lignocellulosic materials characterization of wild and cultivated cardoon. Acta Hortic. 2016, 1147, 183–187. [Google Scholar] [CrossRef]
- De Menna, F.; Malagnino, R.A.; Vittuari, M.; Molari, G.; Seddaiu, G.; Deligios, P.A.; Solinas, S.; Ledda, L. Potential Biogas Production from Artichoke Byproducts in Sardinia, Italy. Energies 2016, 9, 92. [Google Scholar] [CrossRef]
- Niu, W.J.; Huang, G.Q.; Liu, X.; Chen, L.J.; Han, L.J. Chemical Composition and Calorific Value Prediction of Wheat Straw at Different Maturity Stages Using Near-Infrared Reflectance Spectroscopy. Energy Fuels 2014, 28, 7474–7482. [Google Scholar] [CrossRef]
- Li, M.H.; Tang, C.G.; Chen, X.; Huang, S.W.; Zhao, W.W.; Cai, D.Q.; Wu, Z.Y.; Wu, L.F. High Performance Bacteria Anchored by Nanoclay to Boost Straw Degradation. Materials 2019, 12, 1148. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.B.; Fu, R.G.; Jia, W.; Tang, Q.Y. Rapid decomposition of straw: Effect on rice yield and nitrogen use efficiency in the rice region of southern China. J. Agric. 2019, 9, 1–6. [Google Scholar]
- Wu, C.L.; Tang, C.S.; Yu, L.; Zhang, J.Y.; Wang, P. Application of straw decomposing agent in straw returning to field in northeast China. Mod. Agric. 2022, 12, 29–31. [Google Scholar]
- Su, Y.; Jia, S.Q.; He, Z.C.; Yang, Y.H.; Yu, M.; Chen, X.J.; Shen, A.L. Optimization of straw decomposition with inoculants by using response surface method. Acta Agric. Zhejiangensis 2019, 31, 798–805. [Google Scholar]
- Zhang, Z.Y.; He, J.; Fan, X.P.; Xia, Y.; Zhang, F.L.; Liu, D.B.; Wu, M.Q. Characteristics of straw decomposition and nutrient release in rice and wheat rotation system. Soil Fertil. Sci. China 2022, 8, 221–230. [Google Scholar]
- Malhi, S.S.; Nyborg, M.; Goddard, T.; Puurveen, D. Long-term tillage, straw and N rate effects on quantity and quality of organic C and N in a Gray Luvisol soil. Nutr. Cycl. Agroecosyst. 2011, 90, 1–20. [Google Scholar] [CrossRef]
- Marschner, P.; Umar, S.; Baumann, K. The microbial community composition changes rapidly in the early stages of decomposition of wheat residue. Soil Biol. Biochem. 2011, 43, 445–451. [Google Scholar] [CrossRef]
- Li, G.Y.; Yan, Z.L.; Li, Q.; Wei, L.; Guan, X.K.; Wang, T.C. Effects of Straw Returning with Fertilizer and Decomposition Inoculants on Soil Enzyme Activity and Yield of Winter Wheat. J. Agric. Sci. 2016, 45, 59–63. [Google Scholar]
- Hu, C.; Chen, Y.F.; Qiao, Y.; Liu, D.H.; Zhang, S.T.; Li, S.L. Effect of returning straw added with straw-decomposing inoculants on soil melioration in low-yielding yellow clayey soil. J. Plant Nutr. 2016, 22, 59–66. [Google Scholar]
- Wang, J.; Xiao, G.J.; Zhang, F.J.; Wang, J.; Xu, X. Effect of returning straw with straw-decomposing inoculants on saline-alkali soil in North Yinchuan of China. Agric. Res. Arid. Areas 2017, 35, 209–215+283. [Google Scholar]
- He, Z.F.; Yang, X.R.; Xiang, J.; Wu, Z.L.; Shi, X.Y.; Gui, Y.; Liu, M.Q.; Kalkhajeh, Y.K.; Gao, H.J.; Ma, C. Does Straw Returning Amended with Straw Decomposing Microorganism Inoculants Increase the Soil Major Nutrients in China’s Farmlands? Agronomy 2022, 12, 890. [Google Scholar] [CrossRef]
- Yang, G.H.; Zhang, J.J.; Yang, G.L. Preliminary study on effect of straw decomposition additive in rice/rape pattern. Soil Tillage Res. 2013, 4, 20–22. [Google Scholar]
- Zhao, S.C.; Qiu, S.J.; Xu, X.P.; Ciampitti, I.A.; Zhang, S.Q.; He, P. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils. Appl. Soil Ecol. 2019, 138, 123–133. [Google Scholar] [CrossRef]
- Li, D.D.; Li, Z.Q.; Zhao, B.Z.; Zhang, J.B. Relationship between the chemical structure of straw and composition of main microbial groups during the decomposition of wheat and maize straws as affected by soil texture. Biol. Fert. Soils Coop. J. Int. Soc. Soil Sci. 2020, 56, 11–24. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.X.; Geng, P.; Yang, Q.; Chen, K.; Liu, N.; Fan, Y.L.; Zhan, X.M.; Han, X.R. Effects of different returning method combined with decomposer on decomposition of organic components of straw and soil fertility. Sci. Rep. 2021, 11, 15495. [Google Scholar] [CrossRef]
- Liu, S.R.; Hu, R.G.; Cai, G.C.; Lin, S.; Zhao, J.S.; Li, Y.Y. The role of UV-B radiation and precipitation on straw decomposition and topsoil C turnover. Soil Boil. Biochem. 2014, 77, 197–202. [Google Scholar] [CrossRef]
- Naruo, M.; Wanida, N.; Nongluck, P.; Tomohide, S.; Praison, R.; Suphakarn, L.; Kensuke, K. Soil carbon sequestration on a maize-mung bean field with rice straw mulch, no-tillage, and chemical fertilizer application in Thailand from 2011 to 2015. Soil Sci. Plant Nutr. 2020, 67, 190–196. [Google Scholar]
- Qin, S.J.; Jiao, K.B.; Lyu, D.G.; Shi, L.; Liu, L.Z. Effects of maize residue and cellulose-decomposing bacteria inocula on soil microbial community, functional diversity, organic fractions, and growth of Malus hupehensis Rehd. Arch. Agron. Soil Sci. 2015, 61, 173–184. [Google Scholar] [CrossRef]
- Zhao, J.; Ni, T.; Xun, W.B.; Huang, X.L.; Huang, Q.W.; Ran, W.; Shen, B.; Zhang, R.F.; Shen, Q.R. Influence of straw incorporation with and without straw decomposer on soil bacterial community structure and function in a rice-wheat cropping system. Appl. Microbiol. Biot. 2017, 101, 4761–4773. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, X.L.; Wei, T.; Yang, Z.; Jia, Z.K.; Yang, B.P.; Han, Q.F.; Ren, X.L. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China. Soil Tillage Res. 2016, 160, 65–72. [Google Scholar] [CrossRef]
- Du, X.Z.; Hao, M.; Guo, L.J.; Li, S.H.; Hu, W.L.; Sheng, F.; Li, C.F. Integrated assessment of carbon footprint and economic profit from paddy fields under microbial decaying agents with diverse water regimes in central China. Agric Water Manag. 2022, 262, 107403. [Google Scholar] [CrossRef]
- Liu, G.; Yu, H.Y.; Ma, J.; Xu, H.; Wu, Q.Y.; Yang, J.H.; Zhuang, Y.Q. Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields. Sci. Total Environ. 2015, 518–519, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.J.; Kong, F.X.; Wang, Z.; Luo, Y.; Lv, X.B.; Zhou, Z.G.; Meng, Y.L. Growth and yield of cotton as affected by different straw returning modes with an equivalent carbon input. Field Crop Res. 2019, 243, 107616. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Liao, G.X.; Chen, Y.C.; Li, S.Q.; Yu, C.Q.; Chen, L. Application effect of rape straw returning rotten technology on rice. Mod. Agric. Sci. Technol. 2020, 14, 18+20. [Google Scholar]
- Yang, X.R.; Xu, B.; He, Z.F.; Wu, J.; Zhuang, R.H.; Ma, C.; Chai, R.S.; Yusef, K.K.; Ye, X.X.; Zhu, L. lmpacts of Decomposing Microorganism Inoculum on Straw Decomposition and Crop Yield in China: A Meta-Analysis. Sci. Agric. Sin. 2020, 53, 1359–1367. [Google Scholar]
- Xiong, W.; Guo, S.; Jousset, A.; Zhao, Q.Y.; Wu, H.S.; Li, R.; Kowalchuk, G.A.; Shen, Q.R. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome. Soil Boil. Biochem. 2017, 114, 238–247. [Google Scholar] [CrossRef]
- Kalkhajeh, Y.K.; He, Z.F.; Yang, X.R.; Lu, Y.; Zhou, J.; Gao, H.J.; Ma, C. Co-application of nitrogen and straw-decomposing microbial inoculant enhanced wheat straw decomposition and rice yield in a paddy soil. J. Agric. Food Res. 2021, 4, 100134. [Google Scholar] [CrossRef]
- He, H.; Li, J.H.; Wei, C.Z.; Zhuang, Y.T. Decomposition characteristics and nutrient release rules of maize straw under different returning amounts. Appl. Ecol. Environ. Res. 2019, 17, 3695–3707. [Google Scholar] [CrossRef]
- Wang, K.K.; Hu, W.S.; Xu, Z.Y.; Xue, Y.H.; Zhang, Z.; Liao, S.P.; Zhang, Y.Y.; Li, X.K.; Ren, T.; Cong, R.H.; et al. Seasonal Temporal Characteristics of In Situ Straw Decomposition in Different Types and Returning Methods. J. Soil Sci. Plant Nut. 2022, 22, 4228–4240. [Google Scholar] [CrossRef]
- Zhang, L.P.; Liu, Z.W.; Gao, X.B.; Du, H.X.; Gao, W.J. Study on Decomposition of Different Mixed Leaf Litter. J. Northwest For. Univ. 2006, 21, 57–60. [Google Scholar]
- Heitkamp, F.; Wendland, M.; Offenberger, K.; Gerold, G. Implications of input estimation, residue quality and carbon saturation on the predictive power of the Rothamsted Carbon Model. Geoderma 2012, 170, 168–175. [Google Scholar] [CrossRef]
- Li, F.Y.; Sun, X.F.; Feng, W.Q.; Qin, Y.S.; Wang, C.Q.; Tu, S.H. Nutrient release patterns and decomposing rates of wheat and rapeseed straw. J. Plant Nutr. Fertil. 2009, 15, 374. [Google Scholar]
- Wang, Y.Q.; Guo, X.S. Decomposition characteristics of crop-stalk under different incorporation methods. Chin. J. Eco-Agric. 2008, 16, 607. [Google Scholar]
- Li, M.H. Study on the Degradation of Wheat Straw by Nano-Carrier Bacteria; University of Science and Technology of China: Anhui, China, 2019. [Google Scholar]
- Chen, S.; Liu, Z.R.; Zeng, K. Effect of straw-decomposing inoculant on decomposition of rice straw. Chin. J. Environ. Eng. 2016, 10, 840–844. [Google Scholar]
- Wang, J.Z.; Lu, C.A.; Zhang, W.J.; Feng, G.; Wang, X.J.; Xu, M.G. Decomposition of organic materials in cropland soils across China: A meta analysis. Acta Pedol. Sin. 2016, 53, 16–27. [Google Scholar]
- Kamble, P.N.; Baath, E. Comparison of fungal and bacterial growth after alleviating induced N-limitation in soil. Soil Boil. Biochem. 2016, 103, 97–105. [Google Scholar] [CrossRef]
- Baldrian, P. Increase of laccase activity during interspecific interactions of white-rot fungi. Fems. Microbiol. Ecol. 2004, 50, 245–253. [Google Scholar] [CrossRef]
- Liang, J.J.; Fang, X.X.; Lin, Y.Q.; Wang, D.H. A new screened microbial consortium OEM2 for lignocellulosic biomass deconstruction and chlorophenols detoxification. J. Haz. Mat. 2018, 347, 341–348. [Google Scholar] [CrossRef]
- Guo, T.F. The Mechanism of Carbon and Nitrogen Interaction During Rice Straw Decomposition. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing China, 2019. [Google Scholar]
- Zhao, S.C.; Ignacio, A.C.; Qiu, S.J.; Xu, X.P.; He, P. Characteristics of maize residue decomposition and succession in the bacterial community during decomposition in Northeast China. J. Integr. Agric. 2021, 20, 2–11. [Google Scholar] [CrossRef]
- Murayama, S. Decomposition kinetics of straw saccharides and synthesis of microbial saccharides under field conditions. J. Soil Sci. 2010, 35, 231–242. [Google Scholar] [CrossRef]
- Wu, J.; Guo, X.S.; Lu, J.W.; Wan, S.X.; Wang, Y.Q.; Xu, Z.Y.; Zhang, X.L. Decomposition characteristics of wheat straw and effects on soil biological properties and nutrient status under different rice cultivation. Acta. Ecol. Sin. 2013, 33, 565–575. [Google Scholar]
- Devêvre, O.C.; Horwath, W.R. Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures. Soil Boil. Biochem. 2000, 32, 1773–1785. [Google Scholar] [CrossRef]
- Borjigin, Q.; Yu, X.F.; Gao, J.L.; Wang, Z.G.; Borjigin, N.; Wang, Z.; Hu, S.P.; Gao, L.; Hu, H.H. Study on degradation of corn stalk by decomposing microbial inoculants. J. Northwest A F Univ. Nat. Sci. Ed. 2016, 44, 107–116. [Google Scholar]
- Li, H.D.; Liu, Y.; Cong, R.H. The characteristics of returning straw to the field with different carbon-nitrogen ratios. Soil Fertil. Sci. China 2022, 9, 102–106. [Google Scholar]
Treatment | D (%) | k | R2 | ||
---|---|---|---|---|---|
7 d | 15 d | 30 d | |||
CK | 84.30 | 78.00 | 73.05 | 0.013 ± 0.004 | 0.995 |
T1 | 84.12 | 76.67 | 71.57 | 0.014 ± 0.004 | 0.996 |
T2 | 87.17 | 81.27 | 73.33 | 0.012 ± 0.002 | 0.998 |
T3 | 80.07 | 73.50 | 63.63 | 0.018 ± 0.002 | 0.994 |
T4 | 83.50 | 78.13 | 69.28 | 0.014 ± 0.002 | 0.996 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Shan, Q.; Wang, C.; Feng, S.; Li, Y. Research Progress and Application Analysis of the Returning Straw Decomposition Process Based on CiteSpace. Water 2023, 15, 3426. https://doi.org/10.3390/w15193426
Wang Y, Shan Q, Wang C, Feng S, Li Y. Research Progress and Application Analysis of the Returning Straw Decomposition Process Based on CiteSpace. Water. 2023; 15(19):3426. https://doi.org/10.3390/w15193426
Chicago/Turabian StyleWang, Yitong, Qiujie Shan, Chuan Wang, Shaoyuan Feng, and Yan Li. 2023. "Research Progress and Application Analysis of the Returning Straw Decomposition Process Based on CiteSpace" Water 15, no. 19: 3426. https://doi.org/10.3390/w15193426
APA StyleWang, Y., Shan, Q., Wang, C., Feng, S., & Li, Y. (2023). Research Progress and Application Analysis of the Returning Straw Decomposition Process Based on CiteSpace. Water, 15(19), 3426. https://doi.org/10.3390/w15193426