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Abstract: When ships navigate in polar regions, they may collide with ice masses, which may cause
structural damage and endanger the safety of their occupants. Therefore, it is essential to promptly
detect sea ice, icebergs, and passing ships. However, individual data sources have limits and should
be combined and integrated to obtain more thorough information. A polar multi-target local-scale
dataset with five categories was constructed. Sea ice, icebergs, ice melt ponds, icebreakers, and
inter-ice channels were identified by a single-shot detector (SSD), with a final mAP value of 70.19%. A
remote sensing sea ice dataset with 15,948 labels was constructed. The You Only Look Once (YOLOVS5)
model was improved with Squeeze-and-Excitation Networks (SE), Funnel Activation (FReLU), Fast
Spatial Pyramid Pooling, and Cross Stage Partial Network (SPPCSPC-F). In the detection stage, a
slicing operation was performed on remote sensing images to detect small targets. Simulated sea
ice data were included to verify the model’s generalization ability. Then, the improved model was
trained and evaluated in an ablation experiment. The mAP, recall (R), and precision (P) values of
the improved YOLOVS5 were 75.3%, 70.3, and 75.4%, with value increases of 3.5%, 3.4%, and 1.9%,
respectively, compared to the original model. The improved YOLOv5 was also compared with other
models such as YOLOv3, Faster-RCNN, and YOLOv4-tiny. The results indicated that the performance
of the proposed model surpassed those of the other conventional models. This study achieved the
detection of multiple targets on different scales in a polar region and realized data fusion, avoiding the
limitations of using a single data source, and provides a method to support polar ship path planning.

Keywords: computer vision; single-shot detector (SSD); You Only Look Once (YOLOV5); multi-source
data; polar object; remote sensing image; sea ice

1. Introduction

Ice along the Arctic shipping waterways is gradually thawing under the influence of
global warming, and new shipping routes to polar areas are becoming available [1]. This
could greatly reduce the navigation time and increase safety [2]. Glacial surges, fog, and ice
flow will affect the navigation safety and may result in collisions with ice and ship damage.
Therefore, it is important to promptly detect sea ice, icebergs, and passing ships to avoid
ship—ice and ship-ship collisions [3]. A detection system should provide information about
the position and size of the objects on navigation routes, so as to support polar ship path
planning and make ship navigation safer and more energy efficient.

Field observation focuses mostly on ships and buoys. As described, visual observation
was combined with field measurements [4], determining for instance, ice thickness through
the on-site drilling of ice samples. However, on-site detection in the harsh polar environ-
ment is challenging, and data collection is limited [5,6]. In recent years, image processing
and remote sensing technology have been applied to the acquisition of polar information,
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and indirect detection techniques have been developed [7]. Methods such as ship walk
observation, shipborne radar observation, and unmanned aircraft observation are used for
local-scale detection, while active and passive microwave remote sensing is mainly used
for large-scale observations [8].

For local-scale environmental information, shipboard cameras are commonly used
to acquire and analyze optical images. Weissling et al. [9] developed a ship-based, ice
condition imagery acquisition, processing, and analysis system. Worby et al. [10] evaluated
the ice distribution characteristics in the Antarctic based on 20,000 images acquired during
Antarctic ship voyages. In addition, researchers are studying how to apply machine
learning and deep learning to polar target detection. Li et al. [11] proposed a two-stream
radiative transfer model for ponded sea ice. The upwelling irradiance from the pond surface
was determined and then its spectrum was transformed into RGB color space. Cai et al. [12]
employed convolutional neural networks to detect sea ice by instance segmentation using
a simulation ice pool dataset and estimated ice size and concentration.

For large-scale ice detection, passive and active microwave remote sensing images are
mostly used. Some algorithms for calculating ice concentration were proposed, including
NASA Team (National Aeronautics and Space Administration), Bootstrap, and ASI (ARTIST
Sea Ice) [13]. For the identification and classification of sea ice, techniques such as the
maximum likelihood method, SVM (support vector machines), Markov random field
model, and neural networks have been utilized. Belchansky et al. [14] used SSM/I (Special
Sensor Microwave/Image) bright temperature data and remote sensing ice images acquired
by the ERS and Okean satellites as inputs to train neural networks. Karvoven et al. [15]
segmented and classified six types of ice from Synthetic Aperture Radar (SAR) images
using an impulse-coupled neural network. Ressel et al. [16] utilized an artificial neural
network to classify ice, and the results demonstrated that the method was resistant to image
noise. However, generally, the models used were not modified and improved according to
the characteristics of the remote sensing ice images to be analyzed.

The detection based on shipboard optical images is characterized by high resolution,
rapidity, and the ability to provide rich information [17], but it cannot allow a continuous
monitoring of the environment and is affected by adverse weather conditions. The detection
based on remote sensing images can be applied to wide polar regions and is independent of
the weather conditions, but its spatial distribution is relatively low, and it is not sufficiently
accurate to distinguish small targets. Most studies focused on ship detection rather than on
ice detection, and those that investigated ice detection systems mainly used a single data
source consisting of remote sensing or optical images.

In this paper, we combined data of local-scale optical images and remote sensing im-
ages to integrate their specific strengths. Polar datasets at different scales were constructed.
The SSD model was used for polar target detection at the local scale. For remote sensing
detection, the YOLOv5 model was improved according to the characteristics of the sea
ice, and ablation and comparison experiments were conducted to verify the model. We
performed a slicing operation on the images to ensure that small sea ice targets could be
detected and we constructed hybrid datasets to verify the proposed model.

2. Polar Multi-Target Detection at the Local Scale
2.1. Target Detection

The region proposal method and the end-to-end method are based on two primary
detection deep learning algorithms. Overfeat, R-CNN (Region-CNN), Faster R-CNN [18],
etc., are involved in the region proposal-based method while YOLO and SSD are part of
the end-to-end-based method [19]. The region proposal-based method has a significant
advantage in detection accuracy with respect to the end-to-end-based method because it
includes “two steps” and is more accurate for target localization and classification. On the
other hand, it has a significant disadvantage in the detection of speed because it requires a
long time to generate the region proposal. The end-to-end-based detection method directly
extracts features for object localization and classification using convolution. The SSD relies
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on the RPN (Region Proposal Network) mechanism of the Faster R-CNN, which combines
the detection speed of the end-to-end method with the detection accuracy of the region
nomination method. Therefore, in this paper, we chose the SSD model for polar multi-target
detection on the local scale.

2.2. SSD Model

The SSD model consists of two major components, a base network and additional net-
work layers, as shown in Figure 1. The base network uses the structure of Visual Geometry
Group (VGG 16) and converts the last two fully connected layers into convolutional layers,
Conv4_3 and Fc7. The additional network layers include four sets of convolutional layers:
Conv6_2, Conv7_2, Conv8_2, and Conv9_2. The SSD detection model operations are as
reported below.

Tvﬁ‘@\\ e — e e [

LI upto I_JHI Lt myers | 1] s LI | yere L | e Lgm
Rz T [ Jeomeal U [ Jcomre] T [ comaz] U [ comaa] Y
: T T R N B
300x300x3 " \ \ I \ |
| DR — ‘Normallzat10n| ‘ ‘ | ‘ ‘
e 1 v v ) v )
Detections per cla s77  [EMMGN 2166 N N 0OEN B
HCIECHONS PET TIAsS  (35uagxa) M(wxwxé)m(lo"lﬂxﬁ)m(5X5x")m3x3x4)m | Classifiest]
1 v v ! v i)
: " v :
_ _ L — _ _ _
| — F’_;a m | I ——a ==
i Fast Non-Maximum Suppression(Fast NMS) i
1
y ~—]
/= Output Image
[ |
PR

Figure 1. Structure of the SSD model.

Firstly, the input image is converted to a three-channel RGB (Red Green Blue) image
with a resolution of 300 x 300 or 500 x 500. The image is fed into the network to extract
multi-scale feature information, and the scales of each feature layer are 38 x 38, 19 x 19,
10 x 10,5 x 5,3 x 3and 1 x 1.

Then, target feature extraction is performed through six feature layers of different
scales. Default boxes are generated for each point of the feature map, and the number of
default boxes is different for each layer.

Finally, all the generated default boxes are integrated, analyzed by non-maximum
suppression (NMS) and filtered with an intersection over union (IOU) higher than 0.5.
The final output contains information about the location, category, and confidence level of
the target.

The SSD is characterized by its efficiency as a single-stage detector, performing detec-
tion directly in a single forward pass without the need for region proposals, which results
in a faster detection compared to other models. It leverages multi-scale features and default
boxes and can detect objects of various sizes. These advantages make SSD an effective
model widely applied in practical scenarios.

2.3. Construction of a Local-Scale Polar Multi-Target Dataset

Due to the lack of a publicly accessible dataset for polar targets, constructing a new
dataset is an important step. A total of 650 images were obtained through searching, de-
weighting, annotation, and review to create a local-scale polar multi-objective dataset. Some
of the images were downloaded from The Norwegian Institute (https://icewatch.met.no,
accessed on 19 August 2022). The dataset was divided into 5 categories, namely, sea ice (first-
year ice), icebreakers, icebergs, inter-ice waterways, and melting pools on ice. Labellmg, an
image annotation tool, was used to label the images as fy, icebreaker, iceberg, channel, and
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pool, respectively [20,21]. Finally, the dataset is randomly divided into training and testing
sets at the ratio of 8:2. The details are shown in Table 1.

Table 1. Local-scale polar multi-target dataset.

Category Name Label Name Image Number Label Number
Sea ice fy 150 2446
Icebreakers icebreaker 150 160
Icebergs iceberg 150 167
Inter-Ice Waterways channel 100 100
Melting pools on ice pool 100 558

The majority of the images were captured by shipboard cameras and UAVs (Un-
manned Aerial Vehicles), and the photographed scenes corresponded to polar ship naviga-
tion scenarios. Some of the sample images are shown in Figure 2.

Figure 2. Local-scale polar multi-target dataset. (a) Sea ice; (b) icebergs; (c) icebreakers; (d) melt pond

and inter-ice waterway:.

2.4. Results

The model training and testing configurations are shown in Table 2. The detailed
training parameters are shown in Table 3.

Table 2. Configurations and versions.

Configuration Version

Operating System Window10
Central processing unit CPU Intel Xeon W-2255
Graphics GPU NVIDIA Quadro P620
Deep Learning Platform Pytorch

Pytorch version 1.10.2

CUDA version 11.3
CUDNN version 8.2.1

Python version 3.9

Table 3. Training parameters.

Parameters Values
num_calsses 4
learning_rate_base 0.002
batch_size 4
momentum 0.937
num_workers 4
epoch 1000

weight_decay 0.0005
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The steps in the training were as follows. Firstly, the training process was mainly used
to predict the results and calculate the loss value by the forward propagation algorithm.
Secondly, the parameter gradient value was calculated by backward propagation, and the
parameters were optimized and updated. Finally, the training was completed by iterating
the gradient descent algorithm to the maximum number of iterations. The process was
stopped when the model reached loss convergence; then, a model was generated for the
subsequent training and target detection tasks.

Average precision (AP), F1 score, and mean average precision (mAP) were determined
to evaluate the detection accuracy [22]. The precision (P) value can quantify the effectiveness
of sample classification, and the recall (R) value can evaluate the capacity to detect positive
samples. Considering only precision or only recall is not sufficient to evaluate a model;
so, the F1 score was used to harmonize P and R. The calculation of mAP can be divided
into two steps: the first step consists of the calculation of the AP (average precision) of
each category, while the second step involves determining the sum of the average precision
values of each category and then its average value to obtain mAP. These parameters were
calculated according to Equations (1)—(5):

TP

Precision zm 1)
TP
Recall = TP+ EN (2)
P-R
1
AP = / P.RdR )
0
Li 1 AP;
mAP = B %)

where TP (true positives) is the number of correctly classified positive samples, FP (false
positives) is the number of incorrectly classified positive samples, TN (true negatives) is
the number of correctly classified negative samples, and FN (false negatives) is the number
of incorrectly classified negative samples; k is the category number.

After training, the model was applied to the test set, and finally, an mAP value of
70.19% was obtained. The accuracy of the icebreaker category was the highest at 92%,
followed by those of the iceberg category, which was 85%, and of the fy (first-year ice)
category, which reached 77%. The accuracies of channel and pool were the lowest, 52%
and 45%, respectively, due to the low number of images or labels for these two categories.
The detection results for each category are shown in Figure 3. Some of the test results are
shown in Figure 4. The SSD model works well for the detection of large targets at close
range, but it is not effective in detecting small targets at a distance.
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MAP = 70.19%

icebreaker 0.92

iceberg

channel

pool

0.0 0.2 0.4 0.6 0.8 10
Average Precision

Figure 3. Detection results for each category.

- iceberg 0.93
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Figure 4. Example of the test results.

3. Sea Ice Detection by Remote Sensing

The detection on a local scale does not fully meet the requirements of navigating
in polar regions, and using a single data source has certain limitations. The ship optical
cameras cannot obtain large-scale and long-time series images and cannot monitor non-
navigable areas. If sea ice in remote sensing images can be identified and located, and
data fusion between local-scale and large-scale data can be performed, the advantages of
different data sources can be fully utilized [23].

3.1. Introduction of the YOLOv5 Model

In remote sensing images, the ice masses appear very small and densely clustered, and
the SSD model is not able to analyze them. After improving its accuracy and efficiency, the
YOLOv5 model was applied to the detection of ice through remote sensing. The backbone,
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neck, and head are the three basic structural components of the YOLOv5 model, as shown
in Figure 5.
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Figure 5. Structure of the YOLOv5 model.

The YOLOVS backbone utilizes CSPDarknet as the backbone for extracting features
from images, which is composed of cross stage partial networks. The focal module is
responsible for efficiently downsampling the images. It is designed to transmit the images
through the channel while maintaining primitive information. The backbone layer incor-
porates the utilization of the C3, C3_F, and Spatial Pyramid Pooling Fast (SPPF) modules.
The C3 and C3_F modules can enhance the extraction of image features and augment the
overall speed.

The neck module in YOLOV5 utilizes PANet to produce a feature pyramid network.
These aggregated features are subsequently forwarded to the head module for prediction.
The neck layer integrates the structures of the feature pyramid network (FPN) and the
path aggregation network (PAN). Deep-feature images possess a higher degree of semantic
information but a lower degree of location information, whereas shallow-feature images
exhibit the reverse characteristics. The FPN model can transmit semantic information from
a deep-feature image to a shallow-feature image. In contrast, PAN can transmit location
information from a shallow-feature image to a deep-feature image. The integration of FPN
and PAN enables the consolidation of parameters across various detection layers.

The YOLOVS5 head is composed of layers that produce predictions from the anchor box.
The head can be categorized into the loss function and non-maximum suppression (NMS).
The binary cross entropy loss function is employed for the computation of classification
loss and confidence loss, whereas the complete IoU (CloU) loss function is utilized for the
estimation of location loss. The CioU loss function incorporates three crucial parameters:
the overlap area, the distance from the center, and the aspect ratio. NMS is employed to
eliminate redundant detection while retaining the candidate box with the highest prediction
probability as the ultimate prediction box.
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3.2. Improved YOLOuv5 Model

The YOLOv5 model was improved in three aspects. Firstly, the Squeeze-and-Excitation
Networks (SE) attention module was added to the backbone of the original model. Secondly,
the Fast Spatial Pyramid Pooling and Cross Stage Partial Network module (SPPCSPC-F)
were used to augment the characterization capabilities. Finally, Funnel Activation (FReLU)
was introduced to replace the Sigmoid-Weighted Linear Unit (SiLU) and improve the
accuracy of ice detection.

3.2.1. Squeeze-and-Excitation Networks (SE) Attention Mechanism

Due to the large size of the remote sensing images and the small size of the ice targets,
it is easy to lose some useful information. The Squeeze-and-Excitation Networks (SE)
attention mechanism was added to the YOLOvV5 backbone [24]. The SE module was
inserted after the convolutional layers. The module consists of two operations: squeeze and
excitation. It is integrated to adaptively adjust the importance of each channel by learning
their weights. The structure of the SE attention mechanism is shown in Figure 6.

Fex
HxwxC  LTTT—NTTEE  HxWxC

/F' 1x1xC 1x1xC \ﬁ
sq

Figure 6. Structure of the SE attention mechanism.

In the squeeze phase (Fsq), global average pooling is applied to the input feature
map, compressing it from three dimensions to one dimension. This one-dimensional tensor
captures global information for each channel. In the excitation phase (Fex), a set of fully
connected layers operates on the output of the squeeze phase. These layers model the
importance of each channel and generate a channel attention vector. Finally, a rescale
operation (Fsc) normalizes the weights and multiplies them onto each feature channel.

3.2.2. SPPCSPC-F

The Spatial Pyramid Pooling Fast (SPPF) is a module designed to enhance feature
representation. SPPF is the improved version of Spatial Pyramid Pooling (SPP) and is faster
than SPP under the same conditions. The structure of the SPPF module is shown in Figure 7.

Maxpool - Maxpool <+ Maxpool

Figure 7. Structure of the SPPF module.
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The input feature map passes through three 5 x 5 maximum pooling layers, and three
different sizes of receptive fields are obtained. Although maximum pooling can expand the
receptive field, it will reduce the resolution of the feature map and cause the loss of some
useful information. SPPCSPC is a structural module that combines the concepts of SPP and
Cross Stage Partial Network (CSP) [25]. In this paper, we present the SPPCSPC-F to replace
the SPPF concerning the idea of SPPCSPC. The structure of SPPCSPC-F is shown in Figure 8.

Maxpool—»Maxpool—*Maxpool

Inpu_t%»

Conv

>

Conv —~ Conv Conv |+ Conv

[

— »

Conv

Figure 8. Structure of the SPPCSPC-F module.

The input feature map is passed through the SPPCSPC-F module, with one path
performing convolutional operations to extract lower-level features, and the other path
preserving the original features. Next, the module performs multi-scale pooling operations
on the feature map to capture features with different receptive fields. Finally, the fused
features are further processed by subsequent convolutional layers. The order of pooling is
modified to increase the speed while keeping the feeling field constant.

3.2.3. FReLU Activation Function

In the YOLOVS5, the Sigmoid-Weighted Linear Unit (SiLU) is used as the activation
function. When the input values move away from zero, the derivative of the SiLU can
approach zero, leading to gradient saturation. It is difficult for the network to converge or
cause training instability. The FReLU was used to replace the SiLU. The FReLU activation
function incorporates learnable parameters, enabling the network to adaptively adjust the
shape of the activation function through learning [26]. This flexibility enhanced the model’s
learning capacity and improved its adaptation to the sea ice characteristics. Combining
SE attention with FReLU enables YOLOVS to extract high-quality features, concentrate on
key objects, reduce overfitting, and improve generalization ability, especially for detecting
small objects in polar regions. The FReLU is defined by Equations (6) and (7):

f (e ) = max(xe, iy, T(¥e, i) ©)

T(xc,i,j) = xgj ;- pe )
w< .
cif
p? denotes the coefficient on this window which is shared in the same

where T'(-) denotes the funnel condition, x
g,)i,j’
channel, and (-) denotes dot multiply. The FReLU activation function is shown in Figure 9.

denotes a kj, X ky, Parametric Pooling Window
centered on x
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Funnel Condition

NN

NNV

Figure 9. FReLU activation function.

3.3. Construction of a Remote Sensing Sea Ice Dataset

The remote sensing sea ice dataset was mainly derived from the Google Earth (http:
/ /earthengine.google.com/, accessed on 25 December 2022) and the Northwestern Poly-
technical University (NWPU) datasets [27]. A total of 600 images, obtained after de-
duplication, annotation, and review, constituted the dataset. The tag name was ice, and the
number of tags was 15,948. It was randomly divided into a training set and a test set at the
data ratio of 8:2. Some of the sample images in the dataset are shown in Figure 10.

Figure 10. Remote sensing sea ice dataset.

Neural networks need a large amount of data and a high data quality to improve their
performance and robustness. The YOLOV5 uses Mosaic, adaptive cutout, and other data
processing methods for data enhancement [28].

The main idea of Mosaic is to randomly crop and scale several images and then
randomly arrange and splice them to form a single image, to enrich the dataset and
improve the training speed of the network. In the normalization operation, several images
are calculated at one time, which can reduce the demand for computer memory. The data
augmentation process is shown in Figure 11.
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Original picture

Figure 11. Data augmentation. (a) Mosaic; (b) perspective, flip left-right and rotation processing.

There are many challenges in the detection of remote sensing images, as some targets
are relatively small in size and usually clustered together. If the images are directly sent
into the network for detection, many small targets cannot be effectively identified.

To solve this problem, in the detection stage, a sliding window was used to cut a
specified-size (such as a 416 x 416) image as the input. The cutout adjacent images had a
15% overlap. The slicing operation on the remote sensing image is shown in Figure 12. The
purpose of the overlap is to ensure that every region is completely detected. Although this
causes duplicate detection, overlapping sections can be filtered out by the NMS. Finally,
the results of each cutout image were combined to obtain the detection results.

Figure 12. Slicing operation.

In order to verify the accuracy of the improved YOLOv5 model, we combined simu-
lated sea ice images and real sea ice images into a hybrid dataset. The simulated images
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were constructed as follows. Firstly, we built a large flat ice field. Secondly, we fragmented
the flat ice field to obtain a broken ice field. The Voronoi diagram is morphologically similar
to an ice field with large pieces of broken ice and consists of a set of continuous polygons
formed by the perpendicular bisectors of lines connecting two neighboring points. We
used the RayFire plug-in of 3ds Max to fragment the flat ice field according to the Voronoi
diagram, as shown in Figure 13a. Finally, the size of the broken ice field was reduced by
80% to enlarge the gaps between the ice blocks, as shown in Figure 13b.

(a)

Figure 13. Sea ice modeling process. (a) Broken sea ice field; (b) operation of enlarging the gaps
between the ice blocks.

3.4. Results
3.4.1. Ablation Study

The ablation study was conducted to facilitate the comparison of the different improve-
ment methods. They were trained with the same configuration used in the local-scale polar
objection. The epoch was set as 300, the initial learning rate was 0.001, the momentum param-
eter was 0.9, the weight decay parameter was 0.0005, and the NMS threshold was 0.5. The
evaluation was carried out after every 30 training epochs. The results are shown in Table 4.

Table 4. Ablation study results.

Method P R F1 mAP

YOLOvV5 0.719 0.684 0.701 0.719
YOLOvV5+SE 0.731 0.701 0.716 0.738
YOLOvV5+CSPCF 0.737 0.688 0.712 0.743
YOLOvV5+FReLU 0.723 0.706 0.714 0.747
YOLOv5+SE+SPPCSPC-F+FReLU 0.753 0.703 0.727 0.754

In Table 5, it can be observed that the mAP of the original YOLOv5 model was 0.719,
the lowest among those of the evaluated models. The implementation of SE resulted in
an increase in the mAP to 0.738, i.e., by 1.9%. The inclusion of SPPCSPC-F resulted in a
2.4% increase in the mAP, which reached the value of 0.743. However, the R value was
relatively low, i.e., 0.688. The inclusion of FReLU resulted in a 2.8% increase in the map, to
the value of 0.747. When adding SE, SPPCSPC-F, and FReLU, the mAP was improved by
3.5%, reaching the highest value among those of all the examined models.

Similarly, the P, R, and F1-scores of the original YOLOv5 model were 0.719, 0.684, and
0.701. However, for the proposed method, the P, R, and F1-scores were 0.753, 0.703, and
0.727, that is, they increased by 3.4%, 1.9%, and 1.8%, respectively. Therefore, the improved
YOLOV5 model revealed superior accuracy and enhanced performance in the domain of
remote sensing sea ice detection.
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Table 5. The performance of different models in sea ice detection.

Method P R F1 mAP
YOLOvV3 0.858 0.407 0.552 0.604
YOLOv4-tiny 0.757 0.548 0.636 0.648
Faster-RCNN 0.641 0.632 0.636 0.655
YOLOvV5 0.719 0.684 0.701 0.719
Ours 0.753 0.703 0.727 0.754

3.4.2. Contrast Study

In order to further validate the advantage benefits and efficacy of the improved
YOLOvV5 model, incorporating the three mentioned modules, a comparative experiment
was conducted. We compared the improved model with other conventional models, such
as Faster-RCNN, YOLOv3, and YOLOv4-tiny; the values of loss and mAP are shown in
Figure 14.
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Figure 14. The values of loss and mAP of the different models tested.

In the first 40 epochs, the loss of each model fell quickly, indicating that the training
did not achieve a stable state. When the training is stable, the loss in the curve is flat rather
than sharp. The loss of our model was lower than that of the others when training reached
a steady stage. The mAP rose sharply in the first 80 epochs. All models tended to become
more stable after 250 training epochs, and the mAP of our model was the highest.

The values of the evaluation indicators are shown in Table 5. Compared with those of
YOLOvV3, YOLOv4-tiny, Faster-RCNN, and original YOLOV5, the mAP of YOLOv3 was the
lowest, at 60.4%, whereas the mAP of our model was the highest, at 75.4%. YOLOv3 and
YOLOv4-tiny showed a higher P value but a lower R value, which indicated that these two
models largely miss their ice targets when detecting sea ice. Based on the above results, the
improved YOLOVS can better perform in sea ice detection.

The improved YOLOv5 was used to test a remote sensing image with a resolution
of 3660 x 3660. Since some sea ice targets were too dense, the confidence degree was
hidden in the results. The detection results of the original YOLOv5 are shown in Figure 15a.
Figure 15b shows zoomed-in local images using the original YOLOVS5, in which the number
of detected sea ice masses was 14 and 55. Figure 15¢ shows zoomed-in local views of the
image detected by the improved YOLOVS5, in which the number of detected sea ice masses
was 53 and 88. When using the improved YOLOVS5, the number of detected ice targets
increased by 39 and 33 units, and most of them were small.
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Figure 15. Comparison of the detection results. (a) Detection results for the original YOLOV5;
(b) localized zoomed-in views using the original YOLOV5; (c) localized zoomed-in view using the
improved YOLOVS.

The results with the confidence degree are shown in Figure 16. Both a real image
and a simulated sea ice image are presented. The results demonstrated that the improved
YOLOvV5 model was able to detect ice targets in simulated sea ice images with strong
generalization ability and robustness.

(b)

Figure 16. Test detection results using the hybrid dataset. (a) Detection result for a real ice image;

(b) detection result for a simulated ice image.

Local scale detection covers from tens to hundreds of meters. Correspondingly, remote
sensing scale detection covers from tens to hundreds of kilometers. If a ship navigates in
the polar regions using only local-scale data, the planned path may be optimal at the local
scale but not on the whole, as it could be unnecessarily long. If only remote sensing data
are used, the planned path may be the best on a large scale, but it may miss some obstacles
that will jeopardize the safety of ship navigation on a local scale. In this paper, local-scale
and remote sensing data were combined to take advantage of their respective strengths.
Our results indicated that the use of this combination for the detection of obstacles can
improve the safety and efficiency of polar navigation.

4. Discussion

The instability of polar condition makes navigation difficult. Sea ices which float on
the surface are difficult to detect and are prone to collision with the hull or the propeller. In
this paper, polar datasets at different scales were constructed. The SSD model was used for
multi-target detection at the local scale. For remote sensing images, hybrid datasets were
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constructed and a slicing operation was performed, the YOLOv5 model was improved and
tailored to detect sea ices. Ablation and comparison experiments were conducted to verify
the proposed model.

For the source of data, most studies mainly adopt remote sensing or optical image as a
single data source. For example, Li et al. [29] who developed a novel method to extract sea
ice cover using Sentinel-1 data based on the support vector machine (SVM). Xu et al. [30]
proposed a Recurrent Attention Convolutional Neural Network (RA-CNN) to classify
different ships. In this paper, the fusion of remote sensing and optical images is used to
take advantage of the complementary strengths.

For ice detection, some studies did not change their model according to the character-
istic of ices. Moreover, many studies used only real datasets to verify the accuracy of their
model. For example, Frederik et al. [31] proposed a deep learning model based on YOLOv3
for distinguishing icebergs and ships. Markus et al. [32] detected the ice on rotor blades. In
this paper, the YOLOv5 mode was improved to ensure that small ices can be detected. The
hybrid dataset was constructed to verify the proposed model and the results showed that
the model had a good generalization ability.

Although this study successfully detected multi-scale polar objects, it still has some
limitations. The lower detection accuracy of some categories on the local scale was due to
the small amount of data. The datasets used can be expanded to increase the accuracy [33].
This study focused on rectangular detection boxes; if more detailed sea ice information is
needed, in the future, the ice images can be processed with instance segmentation [34].

5. Conclusions

In order to avoid the limitations caused by the use of a single dataset, we constructed
multi-scale datasets by combining data from different sources. The SSD model was used
to detect local-scale targets, and the improved YOLOv5 model was used to detect remote
sensing sea ice targets. The following conclusions can be drawn:

1. The SSD model can be used for the detection of polar targets on a local scale. The
dataset it uses includes sea ice, icebergs, icebreakers, ice melt ponds, and inter-ice
waterways; the mAP can reach 70.19%; icebergs and icebreakers were detected with
the highest average accuracy of 84% and 81%.

2. An improved YOLOv5 model was obtained through Squeeze-and-Excitation Net-
works (SE), Funnel Activation (FReLU), Fast Spatial Pyramid Pooling, and Cross
Stage Partial Network (SPPCSPC-F). The utilization of SE and SPPCSPC-F allowed the
characteristics of objects to be strengthened, thereby augmenting the overall detection
efficacy and precision of the model. The FReLU activation function was used to
enhance the learning capacity and enable better adaptation to sea ice characteristics. A
slicing operation was performed on remote sensing images to detect small ice masses.
Simulated ice images were included to verify the precision of the proposed model.

3. In comparison to other conventional models such as Faster-RCNN, YOLOv3, and
YOLOV4-tiny, the proposed model demonstrated higher accuracy, with an mAP of
up to 75.4%, which verified its generalization ability and robustness. The proposed
method is tailored to detect remote sensing sea ice, compared to the original model,
the mAP value increased 3.5%.

4. For future research, large and diverse polar datasets need to be established. These
datasets should contain polar images from different seasons, weather conditions,
and periods, so that the model can better adapt to changes in the polar environment.
Additionally, improved detection can provide support to avoid polar ship collision
with ice masses and improve navigation path planning. It can also provide some help
for the calculation of the ice pressure load for ships [35,36].
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