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Abstract: Complex interaction between urbanization and climate change has been showing sig-
nificant impacts on natural and human ecosystems. Increasing urban flooding and waterlogging
are associated with urbanization. The Guangdong-Hong Kong-Macao Greater Bay Area (GBA)
experiences a rapid and extensive urbanization, leading to intensified land use and cover changes.
Concurrently, the frequent occurrence of extreme precipitation events pose great challenges of urban
flood control and water resource management to GBA. This research statistically analyzes the spa-
tiotemporal evolution characteristics of precipitation extremes from 1979–2018 which relates to the
urbanization in GBA using various statistical methods including the Mann-Kendall test, bivariate
Moran’s test, and Spearman correlation analyses. The findings indicate that the impervious surface
area in GBA exhibited a nonlinear growth trend from 1985–2018, particularly concentrated in the five
major cities, i.e., Guangzhou, Foshan, Dongguan, Shenzhen, and Zhongshan. GBA urbanization can
be categorized into three stages including Stage I (pre-1990, no urbanization), Stage II (1991–2009,
rapid urbanization), and Stage III (2010–2018, slow urbanization). Compared to cities with low
urbanization, the highly urbanized areas of GBA, including Guangzhou, Foshan, Zhongshan, and
Dongguan, show statistically significant increases in precipitation extremes. The increasing trends
of seven extreme precipitation indices show significant positive, spatiotemporal correlations with
the change rate of urbanization in GBA. Moreover, the influence of urbanization on precipitation
extremes in highly urbanized regions of the GBA is progressively strengthened along with urban
development. During the stage of slow urbanization, urbanization contributes to 56.13% of increase
in annual precipitation totals in GBA, and its contribution to increases in precipitation extremes
ranges from 20–80%.

Keywords: urbanization; precipitation extremes; (Guangdong-Hong Kong-Macao Greater Bay Area)
GBA; climate change; statistical analyses

1. Introduction

Under the dual influence of global climate change and urbanization, the hydrolog-
ical cycle is undergoing rapid transformation [1,2]. This change exacerbates the uneven
spatial and temporal distribution of water resources, thereby significantly impacting the
occurrence of extreme precipitation. Extreme hydro-meteorological events, including heavy
precipitation, typhoons, and floods, have increasingly occurred with greater frequency
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and intensity. [3–5], posing substantial threats to human life and property safety [6,7].
Tellman et al. [8] pointed out that the percentage of the global population exposed to floods
increased 20–24% from 2000–2015 and will further increase by 2030. Urban areas are the
most densely populated regions, yet the continuous expansion of cities and changes in land
use have not only altered surface characteristics but also disrupted local hydrological pat-
terns [9]. Consequently, there has been a notable rise in impervious surfaces and a decline
in surface infiltration capacity, thereby exacerbating flood risks, especially during intense
rainfall events. With the swift progression of urbanization, urban regions have become
increasingly vulnerable, making them susceptible to the impacts of extreme precipitation
events. Hence, Considering the backdrop of ongoing climate change, thoroughly exploring
the close relationship between urbanization and extreme precipitation is of paramount and
urgent importance for disaster prevention and mitigation.

The influence of global climate change on extreme precipitation is undeniable [10], but
uncertainties persist regarding how extreme precipitation responds to urbanization [11].
Urbanization, a dramatic form of demographic transition and land conversion [12–14], has
caused obvious changes in the underlying surface, surface thermal characteristics, and
aerosol emissions of urban environments [15–17], these changes in turn have profound
effects on local climate. Especially against the backdrop of global climate change, the
urbanization process can be considered as an additional pressure that further exacerbates
the variability of local precipitation [18,19], which may increase the occurrence and intensity
of extreme precipitation [20,21]. Huff and Changnon [20] found that urbanization resulted
in a 13–47% increase in the maximum rainstorm in St. Louis and surrounding areas. Kong
et al. [21] indicated that the urbanization led to a 1.68% increase in the extreme precipitation
threshold in China.

In general, approaches for studying the impact of urbanization on precipitation in the
urban and adjacent suburban areas can be categorized into two approaches [22–25]. The first
utilizes observational data primarily derived from meteorological measurements [26,27],
radars precipitation products [28], remote sensing precipitation products [29], etc., and
employs statistical methods to perform comparative analyses between urban and suburban
regions. The second involves numerical models, which simulate individual precipitation
events or long-term climate characteristics of specific areas using numerical meteorological
models or theoretical physical models [25,30,31]. For instance, the Weather Research
and Forecasting Model (WRF) that coupled with Urban Canopy Model (UCM) [32–34].
Numerical models often operate at larger scales, while studies on urban impacts are often
focused on local scales, resulting in the potential incapacity of models to capture localized
precipitation variations. Additionally, numerical simulations require extensive data, and
the selection and adjustment of model parameters introduce significant uncertainties in
the simulated outcomes [26,35,36]. Especially when it comes to extreme precipitation,
numerical models often struggle to capture its characteristics [37,38]. In comparison,
observational data is directly based on actual observed results, accurately reflecting the
real conditions of precipitation and climate change. On the other hand, remote sensing
technology provides extensive and high temporal-spatial resolution data, facilitating a
comprehensive understanding of the long-term impact of urbanization on precipitation.
As a result, utilizing observational data and remote sensing technology to analyze the
effects of urbanization on extreme precipitation holds advantages in terms of accuracy,
comprehensiveness, and practicality.

Since 1978, the Guangdong–Hong Kong–Macau Greater Bay Area (GBA) has experi-
enced a significant urbanization transformation under the background of rapid economic
development [39]. The occurrence and intensity of extreme precipitation events have also
markedly increased [40–42]. As a result, the GBA is seriously threatened by flood disasters.
Therefore, it is fundamental to understand the role of urbanization on the variability of
extreme precipitation in GBA. Over the last two decades, numerous research have con-
sistently demonstrated the significant impact of urbanization on precipitation variability
in GBA. Liao et al. [40] analyzed the precipitation based on ground observation data and
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found that the urbanization process has caused a significant increase trend of precipitation
in Guangzhou Since the 1990s. Yan et al. [41] investigated the variation of precipitation
in Guangdong Province, China during the period of 1981–2015 using rain gauge data,
and the study revealed a notable upward trend in both heavy precipitation and extreme
precipitation frequencies across the Pearl River Delta region, characterized by substantial
urbanization. Similarly, Huang et al. [42] use rain gauge data to study extreme precipitation
in the Pearl River Basin, found that extreme precipitation indicators of Pearl River Delta
are higher, indicating a higher risk of flooding. Based on radars precipitation products,
some studies [43,44] have also found a positive correlation between extreme precipitation
and the urban extent in the GBA. Overall, current research shows that the urbanization
process in the GBA has exacerbated the occurrence of extreme precipitation. Nevertheless,
due to the intricate nature of the mechanisms underlying extreme precipitation changes, it
remains a challenge to quantify the effect of urbanization on extreme precipitation.

Currently, although some progress has been made in studying the effect of urbaniza-
tion on extreme precipitation in the GBA, there are still certain limitations. Particularly,
there are limitations in studying the spatial and temporal variations of extreme precipi-
tation concerning urbanization development. Therefore, to comprehensively understand
the effects of urbanization on the spatiotemporal changes of extreme precipitation in the
GBA, this study conducted research in the following three aspects: (1) Analyzing the
urbanization process based on impervious surface area; (2) Analyzing the spatiotemporal
variation patterns of extreme precipitation using various Extreme Precipitation Indices
(EPIs); (3) Investigating the spatiotemporal relationship between the changes of extreme
precipitation and urbanization development. Additionally, this study will also explore the
extent to which different urbanization development processes impact extreme precipitation,
in order to provide a deeper understanding of this relationship.

2. Material and Methods
2.1. Study Area

The GBA is in the downstream of Pearl River Basin (PRB) (Figure 1a), and consists
of Hongkong, Macao and nine cities (Guangzhou, Shenzhen, Zhuhai, Foshan, Huizhou,
Dongguan, Zhongshan, Jiangmen, Zhaoqing) in Guangdong Province. The total area
of GBA is approximately 56,000 km2, the average elevation is about 130 m. Mountains
encircle the GBA from the east, west, and north, and the central part is mainly a low
altitude plain (Figure 1b). The GBA has a subtropical humid climate which is char-
acterized by dramatic change of temperature and precipitation in summer and winter,
with an annual mean temperature 21–23 ◦C [45], and an annual mean precipitation of
1300–2500 mm. As one of the most economically developed and urbanized regions in
China, the GBA had over 70 million permanent residents in 2018, an increase of 1.5 times
compared to the past two decades. And in 2018, the impervious surface was approximately
6731.665 km2 (Figure 1d), marking a 6.71-fold increase from the 1002.756 km2 recorded in
1985 (Figure 1c). Under such unique climate conditions and severe urbanization, GBA has
suffered from typhoons and extreme rainstorms constantly, which have seriously threatened
the safety of people’s lives and properties. For example, in August 2017, the strong typhoon
“Hato” landed in GBA area, causing 9 deaths and economic losses of 11.922 billion yuan
(http://smzt.gd.gov.cn/, accessed on 2 October 2022). Then in September 2018, another
typhoon “Mangosteen” appeared in GBA, causing 4 deaths and economic losses of 4.249 bil-
lion yuan(http://smzt.gd.gov.cn/, accessed on 2 October 2022). And the 22 May 2020, a
flooding event occurred, resulting in 5 deaths and the economic losses of approximately
2.8 billion RMB [46].

http://smzt.gd.gov.cn/
http://smzt.gd.gov.cn/
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FS, ZS, ZH, GZ, DG, HZ, SZ, HK, MC represent Zhaoqing, Jiangmen, Foshan, Zhongshan, Zhuhai, 
Guangzhou, Dongguan, Huizhou, Shenzhen, Hong-kong, Macao. 
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This dataset was created utilizing Landsat datasets and the random forest classification 
method on the GEE platform, resulting in an overall accuracy of 80% [47,48]. The spatial 
resolution is 30 m, the temporal resolution is once a year, and only available in 1985 and 
1990–2018. The land cover classification scheme comprises 9 types: cropland, forest, shrub, 
grassland, water, snow/ice, barren, impervious, wetland. The change of impervious sur-
face is an important manifestation of urbanization, therefore, we take impervious surface 
as an indicator of urbanization. The pre-processing processes of CLCD, such as projection 
conversion, clipping, binarization, etc. are mainly carried out on ARCGIS 10.2. Besides, to 
capture the spatiotemporal characteristics of urbanization, the study employed a gridded 
vector layer with a 5-km resolution, and the impervious surface in 1985 and during 1990–
2018 were assigned to each grid in the vector layer, and our study only analyzed spatial 
units that consist entirely of land. Finally, the urbanization level of each grid was defined 
as follow: 
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Ni,j·RS ×100% (1)

Figure 1. (a) The geographic location of GBA in PRB. China; (b) The elevation of GBA; (c) The land
cover types of GBA in 1985; (d) The land cover types of GBA in 2018; The abbreviation of ZQ, JM,
FS, ZS, ZH, GZ, DG, HZ, SZ, HK, MC represent Zhaoqing, Jiangmen, Foshan, Zhongshan, Zhuhai,
Guangzhou, Dongguan, Huizhou, Shenzhen, Hong-kong, Macao.

2.2. Data Source
2.2.1. Data for Urbanization Level Extraction

We acquired the land cover data for extracting urbanization levels from the annual
China Land Cover Dataset (CLCD). from the annual China Land Cover Dataset (CLCD).
This dataset was created utilizing Landsat datasets and the random forest classification
method on the GEE platform, resulting in an overall accuracy of 80% [47,48]. The spatial
resolution is 30 m, the temporal resolution is once a year, and only available in 1985
and 1990–2018. The land cover classification scheme comprises 9 types: cropland, forest,
shrub, grassland, water, snow/ice, barren, impervious, wetland. The change of impervious
surface is an important manifestation of urbanization, therefore, we take impervious
surface as an indicator of urbanization. The pre-processing processes of CLCD, such as
projection conversion, clipping, binarization, etc. are mainly carried out on ARCGIS 10.2.
Besides, to capture the spatiotemporal characteristics of urbanization, the study employed a
gridded vector layer with a 5-km resolution, and the impervious surface in 1985 and during
1990–2018 were assigned to each grid in the vector layer, and our study only analyzed
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spatial units that consist entirely of land. Finally, the urbanization level of each grid was
defined as follow:

Pi,j =
Ni,j·R

S
×100% (1)

where Pi,j is the urbanization level of the grid i in year j. The parameter Ni,j represent the
total number of impervious surface cells in grid i for year j, R is the resolution of CLCD,
and S represents the l area of each grid (5 km × 5 km).

2.2.2. Data for Extreme Precipitation Detection

In this study, the China Meteorological Forcing Dataset (CMFD) [49] are obtained
to detect the extreme precipitation for GBA. The dataset was created through fusion of
remote sensing products, reanalysis dataset and in-situ observation data at meteorological
stations [49,50]. It includes 7 near-surface meteorological elements of 2-m air temperature,
surface pressure, specific humidity, 10-m wind speed, downward shortwave radiation,
downward longwave radiation, and precipitation rate. The spatial resolution is 0.1◦ and
the temporal resolution is three hours (http://data.tpdc.ac.cn/, accessed on 20 October
2022). It has an accuracy better than the existing satellite precipitation data and reanalysis
data [29]. At present, it is only available for the period 1979–2018. Additionally, the dataset
was resampled to a 5 km spatial resolution, consistent with the urbanization level data.

2.3. Methods
2.3.1. Extreme Precipitation Indices

We chose 11 Extreme Precipitation Indices (EPIs) (Table 1) and the Annual Total
Precipitation (ATP) to explore the spatiotemporal variations patterns of extreme precip-
itation in this study. The definition of each EPI is shown in Table 1, and the selected
EPIs are derived from the Expert Team on Climate Change Detection and Indices (ETC-
CDI, http://etccdi.pacificclimate.org/, accessed on 20 August 2022), which have been
extensively employed to examine the variation of extreme precipitation [51,52].

Table 1. Definitions of EPIs.

Index Descriptive Name Definition Units

PRCPTOT Annual total precipitation Annual total precipitation in wet days(RR ≥ 1 mm) mm
NW Wet days Annual count of days when RR ≥ 1 mm days
SDII Simple daily intensity index Average precipitation in wet days mm/day
Rx1 Day Maximum 1-day precipitation Annual maximum 1-day precipitation mm
Rx5 Day Maximum 5-day precipitation Annual maximum consecutive 5-day precipitation mm
R95P Very wet day precipitation Annual total precipitation when RR ≥ 95th percentage mm
R99P Extreme wet day precipitation Annual total precipitation when RR ≥ 99th percentage mm
CWD Consecutive wet days Maximum number of consecutive wet days days
R10 mm Heavy precipitation days Annual count of days when RR ≥ 10 mm days
R20 mm Very heavy precipitation days Annual count of days when RR ≥ 20 mm days
R50 mm Extremely precipitation days Annual count of days when RR ≥ 50 mm days

2.3.2. Theil-Sen Estimator and Mann-Kendall Trend Test

The Mann-Kendall [53] is a nonparametric statistical test method that doesn’t necessi-
tate data to adhere to a particular distribution and is more resilient to outliers and missing
values. The Theil-Sen Estimator method [54] is often integrated with the Mann-Kendall
trend test to assess long-term trend patterns, both of them have been widely used in
meteorology and hydrology [55,56].

http://data.tpdc.ac.cn/
http://etccdi.pacificclimate.org/
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For the time series variables x1, x2, x3, . . ., xn, the calculation formula of Theil-Sen
Estimator is expressed as Equation (2). When β is great than 0, it indicates an increasing
trend, while when β is less than 0, it signifies a decreasing Trend.

β = mean
( xi − xj

i− j

)
, ∀i > j (2)

The mathematical formula of Mann-Kendall trend test is shown as Equations (3)–(6).
First, calculate the value of S:

S =
n−1

∑
j−1

n

∑
i=j+1

f (x i − xj) (3)

f (x i − xj) =


−1, xi − xj< 0
0, xi − xj= 0
1, xi − xj> 0

(1 ≤ j < i ≤ n) (4)

Second, calculate the MK test statistic, Z, the variance VAR(S) of the statistics S is
calculated using Equation (6). Where tr is the number of ties for the rth value and g is the
number of tied values.

Z =


S−1√
VAR(S)

, S > 0

0, S = 0
S+1√
VAR(S)

, S < 0
(5)

VAR(S) =
1

18
[n(n− 1)(2n + 5)−

g

∑
r=1

tr(t r − 1)(2t r +5)] (6)

Third, the trend is considered significant, if Z is more than the significance levels such
as α = 10% ( Z ≥ Z1/α = |±1.65|), or α = 5% ( Z ≥ Z1/α = |±1.96|). The positive values of
Z indicate that the trend is positive while the negative values represent a negative trend in
the time series.

2.3.3. Mann-Kendall Mutation Test

Besides, the Mann-Kendall mutation test [57,58] was used in this paper to detect
mutations in extreme precipitation time series. This test considers the relative values of all
terms in the time series (x1, x2, x3, . . ., xn). It involves the following steps.

i. The test statistic Sk is obtained by Equation (7), and one order series, ri, is conducted
by comparing the magnitudes of xj (j = 1, . . ., n) with xk, (k = 1, . . ., j − 1), shown as
Equation (8)

Sk =
j

∑
1

rj (7)

rj =

{
1, xj> xk
0, else

(8)

ii. The Equations (9) and (10) are employed to calculate the mean and variance of
the Sk:

E(S k) = n(n− 1)/4 (9)

VAR(S k) = j(j− 1)(2j + 5)/72 (10)

iii. The successive UFk values are calculated by Equation (11), and UBk is the inverse
order of UFk.

UFk = [Sk − E(S k)]/
√

VAR(S k) (11)
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If the UFk > 0 it indicates that the data exhibits an increasing trend, and vice versa.
The UFk ≥ UF(t)1−α/2 = |±1.96|, here, UF(t)1−α/2 is the critical value of the standard
normal distribution with a probability value greater than α/2, the data exhibit a significant
increasing or decreasing trend. The intersection points of UFk and UBk exist between the
credibility lines represent the potential mutations of the trend within a time series [59].

2.3.4. Bivariate Moran’s I

The Bivariate Moran’s I [60,61] was developed from the traditional spatial correlation
analysis, global Bivariate Moran’s I and local Bivariate Moran’s I (bivariate LISA) were
employed in our study. Global Bivariate Moran’s I can identify whether there is exist a
spatial correlation relationship between two attributes across the entire area at a certain
significance level, the values range is [−1, 1], negative values indicating negative spatial
correlation, 0 implies no spatial correlation, while positive values represent positive spatial
correlation, whereas local Bivariate Moran’s I can illustrate the relationship between two
attributes in each space unit and its neighboring units.

We applied the following equations for calculation:

Iab =
n ∑n

i ∑n
j 6=i wi,jza

i zb
j

(n− 1)∑n
i ∑n

j 6=i wi,j
(12)

I
′
ab= za

i ∑n
j=1 wi,jzb

j (13)

where Iab and I
′
ab are the global and local Bivariate Moran’s I, respectively. n is the number

of space units. wi,j is the spatial weights matrix for measuring spatial correlation between
the space units i and j, which was generated based on geospatial weight method. za

i
represents the standardized value of attribute a for the geographical unit i. zb

j represents
the standardized value of attribute b for the geographical unit j.

According to Equations (12) and (13), we used the Bivariate Moran’s I to analyze the
relationship between EPIs trends and the rate of urbanization change, aiming to identify
areas where precipitation is impacted by urbanization. The bivariate LISA [62] technique
allows us to visualize spatial correlations through the creation of Moran scatter plots,
cluster maps, and associated significance maps. The Moran scatter plots divide the spatial
correlations into four types, represented by four quadrants. (a) Quadrant I: The High-High
type (HH), which signifies the space unit with a high value of attribute a is surrounded by
units with high value of attribute b. (b) Quadrant II: The High-Low type (HL), represents
high values of attribute a is surrounded by low values of attribute b. (c) Quadrant III: The
Low-High type (LH), denotes low values of attribute a is surrounded by high values of
attribute b. (d) Quadrant IV: The Low-Low type (LL), indicates low values of attribute a is
surrounded by low values of attribute b.

2.3.5. Spearman Correlation Coefficient

To understand the temporal correlation between extreme precipitation and urbaniza-
tion, the Spearman Correlation Coefficient was applied. It is a nonparametric measure of
rank correlation, which generally considered to be the Person’s linear correlation coefficient
of the permuted variables, represented by Equation (14):

ρ = 1−
6 ∑i d2

i

n(n 2−1)
(14)

where n is the number of data points of the two variable, di is the difference in ranks of
the “ith” element. The correlation coefficient ρ varies between −1 and 1, a ρ value close to
1 means the higher values of one variable are associated with higher values of the other
variable, whereas a ρ value close to−1 suggest that higher values of one are associated with
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lower values of the other, and when a ρ value close to 0, the association is weak between
the two variables.

3. Results and Discussion
3.1. Urbanization Development in the GBA

Utilizing the CLCD dataset for the GBA in 1985 and the period from 1990 to 2018 we
counted the change data of impervious surface area (Figure 2, the data for 1986–1989 was
obtained by linear fitting), calculated the urbanization level in each 5 km grid according to
Equation (1), the temporal and spatial changes of urbanization are shown in Figure 3 and
Table 2.

As illustrated in Figure 2a, the findings indicate that during the period of 1985–2018,
the impervious surface area of the GBA exhibited a non-linear increasing trend, the imper-
vious surface area increased from 1002.76 km2 in 1985 to 6731.65 km2 in 2018. According
to the change of the annual increase area (Figure 2b), it is observed that since 1990, the
annual increase area has demonstrated a fluctuating upward trajectory. As the urbanization
process has slowed down, the annual increase impervious surface in urbanized area has
gradually decreased, reaching an average of only 126.87 km2 after 2010. Overall, the growth
rate of impervious surfaces in the GBA showcased a pattern of initial increase followed by
subsequent decrease between 1985 and 2018.
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Figure 2. The temporal change of impervious surface. (a) The impervious surface area of GBA during
1985–2018; (b) The annual increased impervious surface area over GBA during 1985–2018.
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Table 2. The percentage of impervious surfaces in the GBA during the period of 1985–2018.

Citys 1985 1990 1995 2000 2005 2010 2015 2018 Change

Foshan 4.58% 5.36% 10.85% 16.74% 21.74% 26.84% 29.79% 31.23% 26.65%
Guangzhou 3.17% 3.64% 6.47% 9.68% 12.73% 15.47% 16.94% 17.88% 14.72%
Dongguan 3.77% 4.66% 12.36% 22.30% 32.44% 38.51% 41.47% 43.28% 39.51%
Zhongshan 3.07% 3.62% 8.68% 13.79% 19.61% 25.06% 28.38% 30.73% 27.66%
Shenzhen 2.55% 4.00% 12.00% 22.23% 30.31% 35.29% 37.35% 38.43% 35.88%
Huizhou 0.49% 0.62% 1.40% 2.11% 2.70% 3.56% 4.21% 4.69% 4.20%
Jiangmen 1.46% 1.77% 2.59% 3.52% 4.22% 5.04% 5.66% 6.08% 4.62%
Zhaoqing 0.69% 0.74% 0.95% 1.30% 1.52% 1.84% 2.11% 2.31% 1.62%
Zhuhai 1.76% 2.16% 5.02% 8.27% 10.67% 13.78% 16.51% 18.38% 16.62%
Hong Kong 6.47% 7.25% 9.13% 11.15% 12.08% 12.54% 12.86% 13.09% 6.62%
Macau 14.99% 15.95% 22.73% 26.96% 30.11% 32.82% 33.81% 34.38% 19.40%
GBA 1.80% 2.14% 4.14% 6.45% 8.49% 10.31% 11.41% 12.10% 10.30%

Figure 3a–h portrays the spatial distribution of urbanization levels at 5-year intervals.
It is evident that the urbanization process in the GBA was notably pronounced from 1985 to
2018. Regions with elevated urbanization levels were primarily concentrated in Guangzhou,
Foshan, Dongguan, Shenzhen, and Zhongshan. This conclusion is further supported by
the change rate of urbanization levels depicted in Figure 3i, which highlights similar
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concentration patterns in the mentioned cities. Locations with change rates exceeding
9% are predominantly clustered in the southern areas of Guangzhou, Foshan, Dongguan,
Shenzhen, and Zhongshan. Table 2 records the changes in impervious surface coverage in
11 cities within the GBA. Several key observations can be made from Table 2: Firstly, prior to
1990, there were relatively minor changes in impervious surface coverage, with an increase
of only 0.34% in the GBA between 1985 and 1990. However, in the periods 1990–1995,
1995–2000, and 2000–2005, the rate of increase in impervious surface coverage notably
accelerated, with increments of 2%, 2.31%, and 2.04%, respectively. Secondly, certain cities
exhibited substantial changes in impervious surface coverage, with the order of increase
being Dongguan, Shenzhen, Zhongshan, Foshan, Macau, Zhuhai, and Guangzhou, among
others. Particularly noteworthy is that Dongguan and Shenzhen experienced an increase
in impervious surface coverage exceeding 30%. In summary, from 1985 to 2018, the levels
and change rates of urbanization in the GBA displayed distinct spatial and temporal
characteristics. Notably, cities such as Dongguan, Shenzhen, Zhongshan, Foshan, and
Guangzhou underwent concentrated and significant urbanization processes.

From the aforementioned analysis, it becomes evident that the urbanization process
within the GBA does not exhibit a simple linear increase; rather, its pace of development
demonstrates a pattern of initial growth followed by a decrease. To explore these distinct
stages of urbanization within the GBA, we employ the MK method to detect mutations in
the urbanization trajectory (as depicted in Figure 4). As shown in Figure 4, the urbanization
pace within the GBA exhibited an ascending trajectory from 1993 to 2009, subsequently
transitioning to a descending trend post-2008. Notably, after 2013, the urbanization pace
underwent a substantial and statistically significant downward shift (Significance test
passed at α = 0.05 level). The intersection point (2009) between the UFk and UBk curves
falls within the range of−1.96 and +1.96 and given that UFk surpassed the critical threshold
of −1.96 in 2014, the intersection is statistically significant [54]. This intersection point
is regarded as a mutation point in the urbanization development process. In conclusion,
Combining the findings from Table 2 and Figure 4, the urbanization development process
of the GBA can be categorized into three stages: Stage I (Pre-1990, absence of urbanization),
Stage II (1991–2009, rapid urbanization), and Stage III (2010–2018, gradual urbanization).
Additionally, the initial change point (1991) in urbanization development was identified
through manual assessment.
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3.2. Characteristics of Extreme Precipitation
3.2.1. Spatio-Temporal Distribution of EPIs

Based on the CMFD dataset for the period 1979–2018, we calculated the ATP and
11 EPIs of the GBA. The spatial distributions of these 12 indicators are shown in Figure 5
(40-year average). Additionally, Figure 6 presents the values of 12 indicators during
different urbanization development stages.
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Figure 5. The spatial pattern of average EPIs from 1979 to 2018. (a) ATP; (b) PRCPTOT; (c) NW;
(d) SDII; (e) Rx1 day; (f) Rx5 day; (g) R95P; (h) R99P; (i) CWD; (j) R10 mm; (k) R20 mm; (l) R50 mm.
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Figure 6. The statistical results of 12 indicators at different urbanization stages in the GBA during
the period of 1979–2018. (a) ATP; (b) PRCPTOT; (c) NW; (d) SDII; (e) Rx1 day; (f) Rx5 day; (g) R95P;
(h) R99P; (i) CWD; (j) R10 mm; (k) R20 mm; (l) R50 mm.
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As depicted in Figure 5, the mean values of EPIs and ATP (except NW and CWD)
show a consistent spatial pattern, with a gradual decrease from the coast towards the inland
areas. Furthermore, there is a notable center of high extreme precipitation in the northern
part of Guangzhou City, which is likely related to the urbanization process in the GBA. On
the other hand, the spatial distribution analysis of NW and CWD reveals that although
these two indices are influenced by ground station data and exhibit a bull’s-eye effect,
certain highly urbanized areas (such as Guangzhou, Foshan, Shenzhen) have relatively
lower NW and CWD values, indicating a higher likelihood of extreme rainfall occurrences
in these regions.

To examine temporal changes in extreme precipitation within the GBA, this paper un-
dertakes a concise analysis of extreme precipitation disparities across different urbanization
stages in the GBA (Figure 6). The research findings indicate that, except for CWD and NW,
the means and medians of the other indicators are higher in both urbanization stages II and
III compared to stage I. Additionally, some indicators such as SDII, Rx1 day, R95P, R99P,
R50 mm, and others exhibit relatively higher means and medians in urbanization stage
III compared to stage II. Furthermore, guided by the analysis in Section 3.1, we classify
Stage II as a phase of high-speed urbanization, Stage III as a period of gradual urbanization,
and Stage I as a non-urbanization phase. As a result, we postulate that the urbanization
process exerts a certain impact on the extreme precipitation patterns in the GBA, with
varying degrees of influence across different urbanization stages. To quantitatively assess
the effects of urbanization on extreme precipitation during distinct urbanization stages, the
subsequent sections of this paper delve into relevant research.

3.2.2. Spatio-Temporal Variations of EPIs

To explore the spatiotemporal variations of extreme precipitation in GBA from 1979 to
2018, we used Theil-Sen Estimator and Mann-Kendall test to calculate the trends (Figure 7)
and significance (Figure 8) of 12 indices.
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Figure 7. The spatial pattern of trends from 1985 to 2018. (a) ATP (mm/decade); (b) PRCPTOT
(mm/decade); (c) N −W (days/decade); (d) SDII (mm/day/decade); (e) Rx1 day (mm/decade);
(f) Rx5 day (mm/decade); (g) R95P (mm/decade); (h) R99P (mm/decade); (i) CWD (days/decade);
(j) R10 mm (days/decade); (k) R20 mm (days/decade); (l) R50 mm (days/decade).
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As illustrated in Figures 7 and 8, the outcomes for most indicators (ATP, PRCPTOT,
Rx1 day, Rx5 day, R95P, R99P, R10 mm, R20 mm, R50 mm) indicate a notable upward
trend in extreme precipitation for cities such as Guangzhou, Foshan, Zhongshan, and
Dongguan (statistically significant at the 0.05 level).And for cities like Zhaoqing, Huizhou,
Jiangmen, Zhuhai, and Shenzhen, the trend in extreme precipitation exhibits either an
insignificant increase or decrease (not statistically significant at the 0.1 level). Furthermore,
the analysis results from Section 3.1 support the observation that the urbanization pace in
Guangzhou, Foshan, Zhongshan, and Dongguan significantly surpasses that of other cities.
Consequently, these findings provide further confirmation that the urbanization process in
the Greater Bay Area indeed amplifies its occurrences of extreme precipitation.

Moreover, examining the trends in NW, CWD, and SDII, it becomes evident that a
significant reduction in rainy days is observed across most regions of the GBA, coupled
with a substantial increase in precipitation intensity. This phenomenon suggests that global
climate change is also contributing to the enhancement of extreme precipitation within
the GBA.

3.3. Association between EPIs and Urbanization
3.3.1. The Spatial Correlation between EPIs and Urbanization

From Section 3.2, we know that the extreme precipitation in highly urbanized cites
of GBA (Guangzhou, Foshan, Zhongshan, Dongguan) exhibit a significant increase trend,
therefore, to quantitatively express the spatial distribution relationship between the ur-
banization process and the change of extreme precipitation, this study calculated the
Bivariate Moran’s I between the change rate of urbanization level and the trend of extreme
precipitation from 1985 to 2018 in GBA, the results are shown in Table 3 and Figure 8.
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Table 3. The global Bivariate Moran’s I between the trends of EPIs and change rate of urbanization.

Index Moran’s I p-Value z-Value Index Moran’s I p-Value z-Value

ATP 0.335 * <0.001 34.944 R95P 0.192 * <0.001 20.721
PRCPTOT 0.328 * <0.001 34.223 R99P −0.014 0.05 −1.577
NW 0.259 * <0.001 27.452 CWD 0.120 * <0.001 12.926
SDII 0.038 * <0.001 4.194 R10 mm 0.415 * <0.001 41.726
Rx1 day −0.024 0.004 −2.610 R20 mm 0.377 * <0.001 38.121
Rx5 day −0.122 * <0.001 −13.018 R50 mm 0.087 * <0.001 9.126

* Statistically significant at 1% level.

The global Bivariate Moran’s I values (Table 3) indicate significant positive spatial
correlations (Moran’s I > 0 and p < 0.001) between the trends of indicators and the change
rate of urbanization (such as PRCPTOT, NW, SDII, R95P, CWD, R10 mm, R20 mm, R50 mm).
This suggests that areas with higher urbanization levels, such as Guangzhou, Foshan,
Zhongshan, and Dongguan, exhibit a notable increase in extreme precipitation. However,
the magnitude of positive correlation varied with extreme precipitation indices. Strong
positive correlations exist between urbanization and R10 mm, R20 mm, ATP, PRCPTOT,
NW, and R95P. Weaker positive correlations are found for R50 mm and SDII, while low
negative correlations are observed between R99P, Rx1 day, Rx5 day, and urbanization.,
which means the spatial patterns of Rx1 day, Rx5 day and R99P may not be sensitive to
the urbanization process in the GBA, As a result, other more sensitive indicators should be
considered when studying extreme precipitation in the region.

The bivariate LISA map (Figure 9) illustrates four unique spatial aggregation patterns
concerning the trend of 12 indicators and the change rate of urbanization. Notably, the
HH clusters, characterized by high trends of 12 indicators and a high change rate of
urbanization, are prominently concentrated within or on the periphery of urban areas.
These clusters encompass portions of well-developed cities such as Guangzhou, Dongguan,
Shenzhen, Zhuhai, Zhongshan, and Foshan. Conversely, LL clusters, signifying low trends
of 12 indicators and a low change rate of urbanization, are dispersed across the northeastern
and southwestern mountainous regions of the study area, including cities like Huizhou
and Jiangmen. Another geographical cluster of LL is observed in Zhaoqing city. Similarly,
HL clusters, denoting high trends of extreme precipitation indices and a low change rate of
urbanization, are also clustered in the same mountainous areas, encompassing cities like
Zhaoqing, Huizhou, and Jiangmen. These LL and HL clusters are primarily characterized
by cropland and extensive natural areas, including forests, shrubbery, and grasslands. LH
clusters, indicating low trends of extreme precipitation indices and a high change rate of
urbanization, are situated around the HH clusters and are mainly concentrated in urban
areas adjacent to the coastline, such as Shenzhen, Dongguan, Zhuhai, and Zhongshan. Due
to the predominant influence of oceanic conditions on precipitation, the LH areas with
high urbanization experience lower trends than the HH areas. Figure 10 illustrates the
trends of the 12 indices across five cluster types in the LISA maps. Notably, the HH cluster
exhibits higher trends compared to the other clusters (Insig, LL, LH, HL), implying that the
variability of precipitation in urbanized regions surpasses that of other areas.

3.3.2. The Correlation between EPIs and Urbanization in Time Scale

To evaluate the relationship between urbanization and extreme precipitation over
time, we focused on the High-High (HH) areas characterized by both a high urbanization
change rate and a strong tendency of extreme precipitation (including ATP, PRCPTOT, NW,
SDII, R95P, CWD, R10 mm, R20 mm, R50 mm). We generated scatter plots illustrating the
relationship between EPIs and urbanization levels in these HH regions from 1985 to 2018
(Figure 11). Additionally, we calculated Spearman’s correlation coefficient between the
average EPIs and the average urbanization level in the HH region for the period from 1985
to 2018 (Table 4).
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Figure 10. The trends of 12 indicators in different cluster area. (a) ATP (mm/decade); (b) PRCPTOT
(mm/decade); (c) NW (days/decade); (d) SDII (mm/days/decade); (e) Rx1 day (mm/decade);
(f) Rx5 day (mm/decade); (g) R95P (mm/decade); (h) R99P (mm/decade); (i) CWD (days/decade);
(j) R10 mm (days/decade); (k) R20 mm (days/decade); (l) R50 mm (days/decade).
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Figure 11. Scatter plots of EPIs and urbanization level during 1985–2018. (a) ATP; (b) PRCPTOT;
(c) NW; (d) SDII; (e) R95P; (f) CWD; (g) R10 mm; (h) R20 mm; (i) R50 mm.

Table 4. Spearman Correlation between EPIs and urbanization during 1985–2018 in HH areas.

Indices R-Value p-Value Indices R-Value p-Value

ATP 0.312 * 0.072 CWD −0.289 0.113
PRCPTOT 0.319 * 0.066 R10 mm 0.336 * 0.064
NW −0.148 0.402 R20 mm 0.401 ** 0.025
SDII 0.661 ** <0.001 R50 mm 0.420 ** 0.019
R95P 0.301 * 0.093

* Statistically significant at 0.1 level. ** Statistically significant at 0.05 level.

As depicted in Figures 10 and 11, it’s evident that ATP, PRCPTOT, SDII, R95P, R10 mm,
R20 mm, and R50 mm exhibit an upward trend as urbanization levels increase, whereas NW
and CWD display a decline with rising urbanization levels. And the results of Spearman
Correlation (Table 5) also represented that the EPIs (except NW and CWD, the R of other
indicators are all greater than 0.30) are positively temporally correlated with the urban-
ization. The strongest correlation was found between SDII and urbanization (R = 0.661),
followed by R50 mm (R = 0.420) and R20 mm (R = 0.401), these three correlation coefficients
all statistically significant at 0.05 level. Correlations between R10 mm, PRCPTOT, ATP,
and R95P with urbanization are significant at the 0.1 level (R ranging from 0.301 to 0.336).
While the correlation coefficients between CWD and urbanization (R = −0.289), NW and
urbanization (R = −0.148) are less than 0, it shows that they are negatively correlated with
the urbanization, but the correlations is not statistically significant.
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Table 5. The contributions of different urbanization stages to extreme precipitation.

Urbanization
Process Stage 1 Stage 2-1

(1991–2000)
Stage 2-2
(2001–2009)

Stage 2
(1991–2009)

Stage 3
(2010–2018)

Increase
(Stage 2 to Stage 3)

ATP / 49.14% 51.95% 50.58% 56.13% 5.55%
PRCPTOT / 50.70% 53.23% 52.00% 57.29% 5.29%
SDII / 12.30% 13.42% 12.84% 22.28% 9.44%
R95P / 38.90% 40.47% 39.55% 53.10% 13.55%
R10 mm / 65.07% 60.42% 62.89% 78.06% 15.17%
R20 mm / 39.93% 35.42% 37.63% 44.36% 6.73%
R50 mm / 11.72% 23.49% 15.39% 20.63% 5.24%

3.4. Discussion

In this paper, our study examined the evolving patterns of urbanization and extreme
precipitation in the GBA from 1985 to 2018 and explored the spatial and temporal correla-
tions between urbanization and extreme precipitation changes. The study revealed that
extreme precipitation in the GBA exhibited a consistent upward trend, particularly in urban-
ized areas and their surrounding regions. (Section 3.2). The research results clearly indicate
that there is a pronounced spatiotemporal correlation between the urbanization process in
the Greater Bay Area (GBA) and the trends in extreme precipitation. (Section 3.3). And these
results are in accordance with previous studies [41,45], which analyzed precipitation differ-
ences between urban and rural areas using rain gauge data from meteorological stations.
Similarly, Wai et al. [30] and Li et al. [31] employed the WRF-SLUCM model to demonstrate
that urbanization in the GBA indeed intensified precipitation. Our study offers the benefits
of mapping the enduring spatial and temporal alterations in extreme precipitation and
urbanization, it can explore the impact of urbanization on extreme precipitation from a
continuous spatio-temporal scale. However, several issues remain to be addressed. Firstly,
how does extreme precipitation change alongside GBA urbanization? To address this issue,
this paper uses the MK mutation test method to try to obtain some relevant information,
the results are shown in Section 3.4.1. Secondly, how can the urbanization contribution
to extreme precipitation be quantified across different urbanization stages? Addressing
this, Section 3.4.2 further analyzes statistical values of extreme precipitation under distinct
urbanization processes, quantifying the extent to which urbanization contributes to extreme
precipitation in GBA.

3.4.1. Changes of Extreme Precipitation at Different Urbanization Stages

To investigate how extreme precipitation has evolved in the highly urbanized areas of
the GBA (HH) at different stages of urbanization, we conducted a 40-year analysis from
1979 to 2018 using the Mann-Kendall (MK) trend test, and the findings are illustrated in
Figure 12.

Figure 12 presents the results of MK test for the average EPIs in HH areas during the
period of 1985–2018. The results reveal diverse trends in extreme precipitation during vari-
ous urbanization stages, which indicates that different urbanization stages have different
impacts on extreme precipitation. First, the UFk curves of all EPIs were less than zero in
stage I (Slow urbanization), this suggests that extreme precipitation shows a decreasing
trend due to the other environmental factors such as monsoon climate [63], circulation [64]
before the urbanization process. Second, in the stage II (Rapid urbanization), except for
NW (Figure 12c) and CWD (Figure 12f), the UFk curves of other EPIs all shifted from a
downward trend (UFk < 0) to an upward trend (UFk > 0), and the time nodes for trend
changes are all between 1996–1998 (The purple line in Figure 10). Before the transition time
nodes, those EPIs mainly show a downward trend, and after the transition time node, those
EPIs mainly show an upward trend, but the UFk curves of SDII and R50 mm are obviously
different from the UFK curves of ATP, PRCPTOT, R95P, R10 mm and R20 mm, the two
curves eventually exceeded the critical line of 1.96 (Significantly increased at 0.05 level) and
the UFk curves of ATP, PRCPTOT, R95P, R10 mm and R20 mm only change between [0, 1].
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Third, in the stage III (Stable stage), except for NW (Figure 12c) and CWD (Figure 12f),
the UFk curves of other EPIs rise further and all greater than that in the stage I (Slow
urbanization) and stage II (Rapid urbanization), it means that in the third stage, extreme
precipitation has further intensified.
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3.4.2. Influence of Urbanization on Extreme Precipitation at Different Urbanization Stages

The above research results show that extreme precipitation changes have a high
temporal and spatial correlation with the urbanization process, and different urbanization
stages have different effects on extreme precipitation. Extreme precipitation is influenced
not only by the urbanization process but also by climate change. To quantitatively assess the
influence of different urbanization stages on extreme precipitation in the GBA, based on the
research results in Sections 3.2 and 3.3, this chapter selects the HH areas in the GBA where
there is a strong correlation between extreme precipitation trends and urbanization change
rate, s and the HL areas which are either not influenced by urbanization or are affected
to a lesser extent, to study the impact of urbanization on extreme precipitation in GBA.
The change of extreme precipitation in HL areas can be attributed to climate change, and
the extreme precipitation in HH region experiences the influence of both urbanization and
climate change. And the two regions are under the same regional climate background, so
the influence of climate change on extreme precipitation in the two regions can be regarded
as equivalent. Therefore, we can obtain the difference in extreme precipitation between the
HH region and the HL region, remove the impact of regional climate change on extreme
precipitation, thus evaluate the impact of urbanization on extreme precipitation.

Before urbanization (Stage 1 in Section 3.1), the extreme precipitation in the highly
urbanized area (HH) is labeled as EPIu1, and the suburban area (HL) is EPIr1. After
urbanization (Stage 2 and Stage 3 in Section 3.1), extreme precipitation in the highly
urbanized areas (HH) can be expressed as EPIu2 = EPIu1 + ∆Purbanization + ∆Pclimate, and
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for suburban area (HL) as EPIr2 = EPIr1 + ∆Pclimate. Then we can calculate the amount of
precipitation influenced by urbanization as ∆Purbanization= EPIu2−EPIu1− (EPIr2 − EPIr1),
the contribution of urbanization is denoted as ρ =

∣∣∣∆Purbanization
EPIu2−EPIu1

∣∣∣×100%. To assess the impact
of urbanization on extreme precipitation accurately, we selected seven sensitive indicators,
ATP, PRCPTOT, SDII, R95P, R10 mm, R20 mm and R50 mm, which are positively correlated
with the urbanization process, and according to three stages (Section 3.1, no urbanization,
rapid urbanization, and slow urbanization) to explore the impact of urbanization on
extreme precipitation of GBA, the results are shown in Table 5.

Based on the findings presented in Table 5, it is evident that the influence of urbaniza-
tion on extreme precipitation in the highly urbanized areas of the GBA (HH) has become
increasingly pronounced, this effect is particularly notable during the later phases of ur-
banization, where urbanization accounted for a substantial 20% to 80% of the escalation
in extreme precipitation. During the initial phase of rapid urbanization (Stage2-1), the
contribution of urbanization to ATP increase was 49.14%, and regarding the other six EPIs,
the contribution from high to low were as follows: 65.07% (R10 mm), 50.70% (PRCPTOT),
39.93% (R20 mm), 38.90% (R95P), 12.30% (SDII), and 11.72% (R50 mm). During this stage
of urbanization, the largest contribution was observed for the R10 mm, while the smallest
contributions were seen for the rainfall intensity indicator SDII and the indicator for days
with rainfall exceeding 50 mm (R50 mm). In the later stage of rapid urbanization (Stage2-2),
both ATP and various extreme precipitation indicators demonstrate a further increase in the
contribution of the urbanization process to extreme precipitation (except for slight decreases
in the R10 mm and R20 mm indicators), and the extent to which extreme precipitation
indicators R10 mm, PRCPTOT, R95P, and ATP are influenced by urbanization exceeds
40%. During the stage of slow urbanization (2010–2018), the impact of the urbanization
process on extreme precipitation further intensifies. Among them, the R10 mm indicator
demonstrates a contribution of urbanization to extreme precipitation exceeding 78.06%
(an increase of 15.17% compared to Stage 2). The PRCPTOT, R95P, and ATP indicators
also reach levels of over 53%, while the influence of urbanization on the SDII and R50 mm
indicators rises to more than 20%.

4. Conclusions

In conclusion, this study provides a comprehensive analysis of the urbanization
development and the spatiotemporal evolution of extreme precipitation in the GBA from
1985 to 2018, revealing a close relationship between urbanization and extreme precipitation.
Specifically, the main conclusions drawn from this study include.

(1) During the period from 1985 to 2018, the impervious surface area in the GBA ex-
hibited a nonlinear growth trend, the impervious surface area increased from 1002.76 km2

in 1985 to 6731.65 km2 in 2018. Regions with elevated urbanization levels were primarily
concentrated in Guangzhou, Foshan, Dongguan, Shenzhen, and Zhongshan. The urban-
ization development of the GBA can be categorized into three stages: Stage I (pre-1990,
no urbanization), Stage II (1991–2009, rapid urbanization), and Stage III (2010–2018, slow
urbanization).

(2) Compared to cities with lower levels of urbanization, the highly urbanized areas
within the GBA, including Guangzhou, Foshan, Zhongshan, and Dongguan, demonstrated
a significant upward trend in extreme precipitation. On the other hand, the GBA also saw a
reduction in the count of rainy days coupled with an elevation in precipitation intensity,
indicating that global climate change might also contribute to the intensification of extreme
precipitation in the GBA.

(3) The trends of ATP, PRCPTOT, SDII, R95P, R10 mm, R20 mm, and R50 mm exhibit
significant positive spatiotemporal correlations with the change rate of urbanization in
GBA. Specifically, R10 mm displays the highest spatial correlation at 0.415, while SDII
demonstrates the highest temporal correlation at 0.661. Consequently, this study focused
on these seven indicators, which are notably responsive to the urbanization process, for
assessing the influence of urbanization on extreme precipitation.
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(4) The influence of urbanization on extreme precipitation in highly urbanized regions
of the GBA is progressively intensifying along with urban development. During the stage
of slow urbanization, urbanization contributes to a 56.13% increase in ATP in the GBA, and
its contribution to the increase in extreme precipitation ranges from 20% to 80%. Notably,
R10 mm exhibited the highest contribution at 78.06%, while even R50 mm demonstrated a
contribution exceeding 20%.
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