Pollution and Climatic Influence on Trees in the Siberian Arctic Wetlands
Abstract
:1. Introduction
- -
- What was the impact of SO2 emissions on the larch (Larix sibirica Ledeb.) trees and shrubs’ (Salix spp. and alder, Duschekia fruticosa) growth?
- -
- How has climate warming influenced larch trees and shrubs’ growth?
- -
- What are the temporal trends of the gross (GPP) and net (NPP) primary production and vegetation index NDVI (Normalized Difference Vegetation Index) within the zone of pollution influence?
2. Materials and Methods
2.1. Study Area
2.2. Field Studies
2.3. Dendrochronological Analysis
2.4. Eco-Climate Variables
2.5. Method of Groundcover Mapping
2.6. Statistical Analysis
3. Results
3.1. Tree and Test Plot Characteristics
3.2. Climate Variables
3.3. Pollution Sources and Emissions Transfer
3.4. Trees’ Growth Index Responses to Pollution Impact and Climate Variables
3.5. GPP, NPP, and NDVI Dynamics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chylek, P.; Folland, C.; Klett, J.D.; Wang, M.; Hengartner, N.; Lesins, G.; Dubey, M.K. Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models. Geophys. Res. Lett. 2022, 49, e2022GL099371. [Google Scholar] [CrossRef]
- Mack, M.C.; Walker, X.J.; Johnstone, J.F.; Alexander, H.D.; Melvin, A.M.; Jean, M.; Miller, S.N. Carbon loss from 650 boreal forest wildfires offset by increased dominance of deciduous trees. Science 2021, 372, 280–283. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Dvinskaya, M.L.; Im, S.T.; Golyukov, A.S.; Smith, K.T. Wildfires in the Siberian Arctic. Fire 2022, 5, 106. [Google Scholar] [CrossRef]
- Dolgikh, V.I. Phenomenon of Norilsk: History of the Norilsk Industrial Region; Polar Star: Moscow, Russia, 2006. [Google Scholar]
- Kozlov, M.V.; Zvereva, E.L.; Zverev, V.E. Impacts of Point Polluters on Terrestrial Biota: Comparative Analysis of 18 Bontaminatedreas; Springer: Dordrecht, The Netherlands, 2009; Volume XVII, p. 466. ISBN 978-90-481-2466-4. [Google Scholar] [CrossRef]
- Korets, M.A.; Ryzhkova, V.A.; Danilova, I.V. GIS-Based approaches to the assessment of the state of terrestrial ecosystems in the Norilsk industrial region. Contemp. Probl. Ecol. 2014, 7, 643–653. [Google Scholar] [CrossRef]
- Kirdyanov, A.V.; Prokushkin, A.S.; Tabakova, M.A. Tree-ring growth of Gmelin larch under contrasting local conditions in the north of Central Siberia. Dendrochronologia 2013, 31, 114–119. [Google Scholar] [CrossRef]
- Kirdyanov, A.V.; Krusic, P.J.; Shishov, V.V.; Vaganov, E.A.; Fertikov, A.I.; Myglan, V.S.; Barinov, V.V.; Browse, J.; Esper, J.; Ilyin, V.A.; et al. Ecological and conceptual consequences of Arctic pollution. Ecol. Lett. 2020, 23, 1827–1837. [Google Scholar] [CrossRef]
- Kharouk, V.I.; Winterberger, K.; Tsibul’skii, G.M.; Yakhimovich, A.P.; Moroz, S.N. Technogenic disturbance of pretundra forests in Noril’sk Valley. Russ. J. Ecol. 1996, 27, 406–410. [Google Scholar]
- Zubareva, O.N.; Skripal’shchikova, L.N.; Greshilova, N.V.; Kharuk, V.I. Zoning of landscapes exposed to technogenic emissions from the Norilsk mining and smelting works. Russ. J. Ecol. 2003, 34, 375–380. [Google Scholar] [CrossRef]
- Norilsk Nickel Annual Reports (2011–2021). Available online: https://www.nornickel.com/investors/reports-and-results (accessed on 10 October 2022).
- Telyatnikov, M.Y. Dynamics of the Phytodiversity of Natural Ecosystems Affected by Oil Products in the Norilsk Industrial District. Contemp. Probl. Ecol. 2022, 15, 160–179. [Google Scholar] [CrossRef]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 1983, 44, 69–75. [Google Scholar]
- Cook, E.R.; Holmes, R.L. User’s Manual for Program ARSTAN. In Tree-Ring Chronologies of Western North America: California, Eastern Oregon and Northern Great Basin; Holmes, R.L., Adams, R.K., Fritts, H.C., Eds.; Chronology Series 6; Laboratory of Tree-Ring Research: Tucson, AZ, USA, 1986; pp. 50–65. [Google Scholar]
- Hersbach, H.; Rosnay, P.; Bell, B.; Schepers, D.; Simmons, A.; Soci, C.; Abdalla, S.; Alonso-Balmaseda, M.; Balsamo, G.; Bechtold, P.; et al. Operational Global Reanalysis: Progress, Future Directions and Synergies with NWP. ECMWF ERA Report Series. 2018. Available online: https://www.ecmwf.int/en/elibrary/18765-operational-global-reanalysis-progress-future-directions-and-synergies-nwp (accessed on 15 October 2022).
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Kharuk, V.I. Air pollution impact on subarctic forests at Norilsk, Siberia. In Forest Dynamics in Heavily Polluted Regions; Innes, J.L., Oleksyn, J., Eds.; CABI International: Wallingford, UK, 2000; pp. 77–86. [Google Scholar]
- Ministry of Ecology and Environmental Management of the Krasnoyarsk Region. The Governmental Report on the State and Protection of the Environment in Krasnoyarsk Region in 2018; Polygraph-Avanta Ltd.: Krasnoyarsk, Russia, 2018; pp. 2006–2021. [Google Scholar]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the global mass change data record: GRACE Follow-On instrument and science data performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Running, S.; Mu, Q.; Zhao, M. MOD17A2H MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2015. [CrossRef]
- Running, S.; Zhao, M. MOD17A3HGF MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500 m SIN Grid V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2019. [CrossRef]
- Vermote, E. MOD09Q1 MODIS/Terra Surface Reflectance 8-Day L3 Global 250m SIN Grid V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2015.
- Vermote, E. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2015.
- Trishchenko, A.P.; Luo, Y.; Khlopenkov, K.V. A method for downscaling MODIS land channels to 250-m spatial resolution using adaptive regression and normalization. Remote sensing for environmental monitoring, GIS applications, and geology. Proc. SPIE 6366 2006, VI, 636607. [Google Scholar] [CrossRef]
- Che, X.; Feng, M.; Jiang, H.; Song, J.; Jia, B. Downscaling MODIS surface reflectance to improve water body extraction. Adv. Meteorol. 2015, 2015, 424291. [Google Scholar] [CrossRef] [Green Version]
- Burges, C.J. A Tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Russell, G.; Congalton, K.G. Assessing the Accuracy of Remotely Sensed Data Principles and Practices, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2020; p. 348. ISBN 9780367656676. [Google Scholar]
- Pekel, J.F.; Cottam, A.; Gorelick, N. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Tobler, W. Measuring spatial resolution. In Proceedings of the Land Resources Information Systems Conference, Beijing, China; 1987; pp. 12–16. [Google Scholar]
- Ryan, S.E.; Porth, L.S. A Tutorial on the Piecewise Regression Approach Applied to Bedload Transport Data; Gen. Tech. Rep. RMRS-GTR-189; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2007; p. 41.
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Conover, W.J. Practical Nonparametric Statistics, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics; Wiley: Chichester, NY, USA, 1999; pp. 336–350. [Google Scholar]
- Fernandes, R.; Leblanc, S.G. Parametric (modified least squares) and non-parametric (Theil–Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors. Remote Sens. Environ. 2005, 95, 303–316. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Im, S.T.; Petrov, I.A. Alpine ecotone in the Siberian Mountains: Vegetation response to warming. J. Mt. Sci. 2021, 18, 3099–3108. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ranson, K.J.; Im, S.T.; Petrov, I.A. Climate-induced larch growth response within Central Siberian permafrost zone. Environ. Res. Lett. 2015, 10, 125009. [Google Scholar] [CrossRef] [Green Version]
- Kharuk, V.I.; Ranson, K.J.; Petrov, I.A.; Dvinskaya, M.L.; Im, S.T.; Golyukov, A.S. Larch (Larix dahurica Turcz) Growth Response to Climate Change in the Siberian Permafrost Zone. Reg. Environ. Chang. 2019, 19, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ba, X.; Chang, Y.; Chen, Z. Increased sensitivity of Dahurian larch radial growth to summer temperature with the rapid warming in Northeast China. Trees 2016, 30, 1799–1806. [Google Scholar] [CrossRef]
- Kharouk, V.I.; Middleton, E.M.; Spencer, S.L.; Rock, B.N.; Willams, D.L. Aspen bark photosynthesis and its significance to remote sensing and carbon budget estimates in the boreal ecosystem. J. Water Air Soil Pollut. 1995, 82, 483–497. [Google Scholar] [CrossRef]
- Pimenov, A.V.; Efimov, D.Y.; Pervunin, V.A. Topo-ecological differentiation of vegetation in the Norilsk industrial region. Sib. J. Ecol. 2014, 6, 923–931. (In Russian) [Google Scholar]
- Emmett, B.A. The Impact of Nitrogen on Forest Soils and Feedbacks on tree Growth. Water Air Soil Pollut. 1999, 116, 65–74. [Google Scholar] [CrossRef]
- Bontemps, J.-D.; Hervé, J.-C.; Leban, J.-M.; Dhôte, J.F. Nitrogen footprint in a long-term observation of forest growth over the twentieth century. Trees 2010, 25, 237–251. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharuk, V.I.; Petrov, I.A.; Im, S.T.; Golyukov, A.S.; Dvinskaya, M.L.; Shushpanov, A.S. Pollution and Climatic Influence on Trees in the Siberian Arctic Wetlands. Water 2023, 15, 215. https://doi.org/10.3390/w15020215
Kharuk VI, Petrov IA, Im ST, Golyukov AS, Dvinskaya ML, Shushpanov AS. Pollution and Climatic Influence on Trees in the Siberian Arctic Wetlands. Water. 2023; 15(2):215. https://doi.org/10.3390/w15020215
Chicago/Turabian StyleKharuk, Viacheslav I., Il’ya A. Petrov, Sergei T. Im, Alexey S. Golyukov, Maria L. Dvinskaya, and Alexander S. Shushpanov. 2023. "Pollution and Climatic Influence on Trees in the Siberian Arctic Wetlands" Water 15, no. 2: 215. https://doi.org/10.3390/w15020215
APA StyleKharuk, V. I., Petrov, I. A., Im, S. T., Golyukov, A. S., Dvinskaya, M. L., & Shushpanov, A. S. (2023). Pollution and Climatic Influence on Trees in the Siberian Arctic Wetlands. Water, 15(2), 215. https://doi.org/10.3390/w15020215