Assessment of Groundwater Quality Using APCS-MLR Model: A Case Study in the Pilot Promoter Region of Yangtze River Delta Integration Demonstration Zone, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
2.3. Multivariate Statistical Analysis
3. Result and Discussion
3.1. Characteristics of the Groundwater Pollution
3.2. Pollution Sources Identified Based on the PCA Analysis
3.3. Source Apportionment Using APCS-MLR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, D.; Currell, M.J.; Cao, G. Deep challenges for China’s war on water pollution. Environ. Pollut. 2016, 218, 1222–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Y.; Xi, B.; Jiang, Y.; Guo, H.; Yang, Y.; Lian, X.; Han, S. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review. Sci. Total. Environ. 2018, 643, 967–993. [Google Scholar] [CrossRef] [PubMed]
- Burri, N.M.; Weatherl, R.; Moeck, C.; Schirmer, M. A review of threats to groundwater quality in the anthropocene. Sci. Total. Environ. 2019, 684, 136–154. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Zhang, F.; Zhang, E.; Wang, C.; Han, S.; Zheng, Y. Arsenic, fluoride and iodine in groundwater of China. J. Geochem. Explor. 2013, 135, 1–21. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Li, P.; Ji, Y.; Wang, Y.; Su, Z.; Elumalai, V. Groundwater Arsenic and Fluoride and Associated Arsenicosis and Fluorosis in China: Occurrence, Distribution and Management. Expo. Health 2020, 12, 355–368. [Google Scholar] [CrossRef]
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef]
- Datta, P.S.; Deb, D.L.; Tyagi, S.K. Assessment of groundwater contamination from fertilizers in the Delhi area based on 18O, NO3/- and K+ composition. J. Contam. Hydrol. 1997, 27, 249–262. [Google Scholar] [CrossRef]
- Gu, B.; Ge, Y.; Chang, S.X.; Luo, W.; Chang, J. Nitrate in groundwater of China: Sources and driving forces. Glob. Environ. Change 2013, 23, 1112–1121. [Google Scholar] [CrossRef]
- Tao, Y.; Deng, Y.; Du, Y.; Xu, Y.; Leng, Z.; Ma, T.; Wang, Y. Sources and enrichment of phosphorus in groundwater of the Central Yangtze River Basin. Sci. Total. Environ. 2020, 737, 139837. [Google Scholar] [CrossRef]
- Bhagure, G.R.; Mirgane, S.R. Heavy metal concentrations in groundwaters and soils of Thane Region of Maharashtra, India. Environ. Monit. Assess. 2011, 173, 643–652. [Google Scholar] [CrossRef]
- Bhutiani, R.; Kulkarni, D.B.; Khanna, D.R.; Gautam, A. Water Quality, Pollution Source Apportionment and Health Risk Assessment of Heavy Metals in Groundwater of an Industrial Area in North India. Expo. Health 2016, 8, 3–18. [Google Scholar] [CrossRef]
- Sharma, M.K.; Kumar, M. Sulphate contamination in groundwater and its remediation: An overview. Environ. Monit. Assess. 2020, 192, 74. [Google Scholar] [CrossRef]
- McCance, W.; Jones, O.A.; Edwards, M.; Surapaneni, A.; Chadalavada, S.; Currell, M. Contaminants of Emerging Concern as novel groundwater tracers for delineating wastewater impacts in urban and peri-urban areas. Water Res. 2018, 146, 118–133. [Google Scholar] [CrossRef]
- Zhou, F.; Huang, G.H.; Guo, H.; Zhang, W.; Hao, Z. Spatio-temporal patterns and source apportionment of coastal water pollution in eastern Hong Kong. Water Res. 2007, 41, 3429–3439. [Google Scholar] [CrossRef]
- Gómez-Hernández, J.J.; Xu, T. Contaminant Source Identification in Aquifers: A Critical View. Math. Geosci. 2021, 54, 437–458. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef] [Green Version]
- Zamani, A.A.; Yaftian, M.R.; Parizanganeh, A. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant. Iran. J. Environ. Health Sci. Eng. 2012, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Nijenhuis, I.; Schmidt, M.; Pellegatti, E.; Paramatti, E.; Richnow, H.H.; Gargini, A. A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site. J. Contam. Hydrol. 2013, 153, 92–105. [Google Scholar] [CrossRef]
- Zhou, H.; Gómez-Hernández, J.J.; Li, L. Inverse methods in hydrogeology: Evolution and recent trends. Adv. Water Resour. 2014, 63, 22–37. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Zhou, F.; Gao, M.; Zhang, L.; Zhang, L.; Du, K.; Leng, Q.; Zhang, Y.; He, D.; Yang, F.; et al. A comparison of various approaches used in source apportionments for precipitation nitrogen in a mountain region of southwest China. Environ. Pollut. 2018, 241, 810–820. [Google Scholar] [CrossRef]
- Chen, Z.; Gómez-Hernández, J.J.; Xu, T.; Zanini, A. Joint identification of contaminant source and aquifer geometry in a sandbox experiment with the restart ensemble Kalman filter. J. Hydrol. 2018, 564, 1074–1084. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, T.; Gómez-Hernández, J.J.; Zanini, A. Contaminant Spill in a Sandbox with Non-Gaussian Conductivities: Simultaneous Identification by the Restart Normal-Score Ensemble Kalman Filter. Math. Geosci. 2021, 53, 1587–1615. [Google Scholar] [CrossRef]
- Xu, T.; Gómez-Hernández, J.J.; Chen, Z.; Lu, C. A comparison between ES-MDA and restart EnKF for the purpose of the simultaneous identification of a contaminant source and hydraulic conductivity. J. Hydrol. 2021, 595, 125681. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, T.; Gómez-Hernández, J.J.; Zanini, A.; Zhou, Q. Reconstructing the release history of a contaminant source with different precision via the ensemble smoother with multiple data assimilation. J. Contam. Hydrol. 2022, 104115. [Google Scholar] [CrossRef] [PubMed]
- Cloutier, V.; Lefebvre, R.; Therrien, R.; Savard, M.M. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J. Hydrol. 2008, 353, 294–313. [Google Scholar] [CrossRef]
- Li, P.; Tian, R.; Liu, R. Solute Geochemistry and Multivariate Analysis of Water Quality in the Guohua Phosphorite Mine, Guizhou Province, China. Expo. Health 2019, 11, 81–94. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, M.; Chen, Y.; Gao, W. Source apportionment of water pollutants in the upstream of Yangtze River using APCS-MLR. Environ. Geochem. Health 2020, 42, 3795–3810. [Google Scholar] [CrossRef]
- Thurston, G.D.; Spengler, J.D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. 1985, 19, 9–25. [Google Scholar] [CrossRef]
- Wang, H.; An, J.; Cheng, M.; Shen, L.; Zhu, B.; Li, Y.; Wang, Y.; Duan, Q.; Sullivan, A.; Xia, L. One year online measurements of water-soluble ions at the industrially polluted town of Nanjing, China: Sources, seasonal and diurnal variations. Chemosphere 2016, 148, 526–536. [Google Scholar] [CrossRef]
- Rahman, M.S.; Bhuiyan, S.S.; Ahmed, Z.; Saha, N.; Begum, B.A. Characterization and source apportionment of elemental species in PM2.5 with especial emphasis on seasonal variation in the capital city "Dhaka", Bangladesh. Urban Clim. 2021, 36, 100804. [Google Scholar] [CrossRef]
- Choi, H.; Cho, Y.C.; Kim, S.H.; Yu, S.J.; Kim, Y.S.; Im, J.K. Water Quality Assessment and Potential Source Contribution Using Multivariate Statistical Techniques in Jinwi River Watershed, South Korea. Water 2021, 13, 2976. [Google Scholar] [CrossRef]
- Cho, Y.c.; Choi, H.; Lee, M.G. Sources Using Multivariate Statistical Techniques and APCS-MLR Model to Assess Surface Water Quality. Water 2022, 14, 793. [Google Scholar] [CrossRef]
- Proshad, R.; Kormoker, T.; Al, M.A.; Islam, M.S.; Khadka, S.; Idris, A.M. Receptor model-based source apportionment and ecological risk of metals in sediments of an urban river in Bangladesh. J. Hazard. Mater. 2022, 423, 127030. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Wang, Y.; Yang, M.; Zhu, L. Groundwater quality assessment and pollution source apportionment in an intensely exploited region of northern China. Environ. Sci. Pollut. Res. 2017, 24, 16639–16650. [Google Scholar] [CrossRef]
- Meng, L.; Zuo, R.; Sheng Wang, J.; Yang, J.; Guo Teng, Y.; Tao Shi, R.; Zheng Zhai, Y. Apportionment and evolution of pollution sources in a typical riverside groundwater resource area using PCA-APCS-MLR model. J. Contam. Hydrol. 2018, 218, 70–83. [Google Scholar] [CrossRef]
- Yu, L.; Zheng, T.; Yuan, R.; Zheng, X. APCS-MLR model: A convenient and fast method for quantitative identification of nitrate pollution sources in groundwater. J. Environ. Manag. 2022, 314, 115101. [Google Scholar] [CrossRef]
- Sheng, D.; Meng, X.; Wen, X.; Wu, J.; Yu, H.; Wu, M. Contamination characteristics, source identification, and source-specific health risks of heavy metal(loid)s in groundwater of an arid oasis region in Northwest China. Sci. Total. Environ. 2022, 841, 156733. [Google Scholar] [CrossRef]
- Xing, G.; Cao, Y.; Shi, S.; Sun, G.; Du, L.; Zhu, J. N pollution sources and denitrification in waterbodies in Taihu Lake region. Sci. China Ser. B Chem. 2001, 44, 304–314. [Google Scholar] [CrossRef]
- Li, D.; Jiang, X.; Wang, J.; Wang, K.; Zheng, B. Effect of sewage and industrial effluents on bacterial and archaeal communities of creek sediments in the Taihu Basin. Water 2017, 9, 373. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Jiang, B.; Feng, Z.; Yao, B.; Shi, X.; Sun, Y.; Wu, J. Comprehensive evaluation of shallow groundwater quality in Central and Southern Jiangsu Province, China. Environ. Earth Sci. 2017, 76, 400. [Google Scholar] [CrossRef]
- Jiang, Y.; Ni, H.; Zhou, Q.; Cheng, Z.; Duan, X.; Zhu, Z.; Wu, J.; Ren, H.; Fan, C.; Yang, J.; et al. Key technology of ecological restoration demonstration in the Yangtze River Economic Zone and its application. Geol. China 2021, 48, 1305–1333. [Google Scholar] [CrossRef]
- Li, L.; Xing, H.X.; Gong, J.S.; Wang, H.S.; Zhou, K.E.; Zhou, Y.E.; Deng, T.T. Hydrochemical characteristics and format mechanism of groundwater in northern Taihu Lake Basin. East China Geol. 2022, 43, 217–226. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Z.H.; Qiang, X.K.; Ma, C.Y.; Zhan, Q. Magnetic properties of minerals recorded by the borehole WJ and Late Quaternary transgressions in the Taihu plain, southern Yangtze Delta. Chin. J. Geophys. Chin. Ed. 2013, 56, 2748–2759. [Google Scholar] [CrossRef]
- Hua, W.; Wang, C.; Chen, G.; Yang, H.; Zhai, Y. Measurement and simulation of soil water contents in an experimental field in delta plain. Water 2017, 9, 947. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.; Ma, P.; Hu, X.; Huang, B.; Lin, H. Surface response and subsurface features during the restriction of groundwater exploitation in Suzhou (China) inferred from decadal SAR interferometry. Remote Sens. Environ. 2021, 256, 112327. [Google Scholar] [CrossRef]
- Haji Gholizadeh, M.; Melesse, A.M.; Reddi, L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci. Total. Environ. 2016, 566–567, 1552–1567. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.; Guo, S.; Fu, K.; Liao, L.; Xu, Y.; Cheng, S. Groundwater pollution source apportionment using principal component analysis in a multiple land-use area in southwestern China. Environ. Sci. Pollut. Res. 2020, 27, 9000–9011. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, S.; Li, H.; Fu, K.; Xu, Y. Groundwater pollution source identification and apportionment using PMF and PCA-APCA-MLR receptor models in a typical mixed land-use area in Southwestern China. Sci. Total. Environ. 2020, 741, 140383. [Google Scholar] [CrossRef]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Shrestha, S.; Kazama, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environ. Model. Softw. 2007, 22, 464–475. [Google Scholar] [CrossRef]
- Chen, R.; Chen, H.; Song, L.; Yao, Z.; Meng, F.; Teng, Y. Characterization and source apportionment of heavy metals in the sediments of Lake Tai ( China ) and its surrounding soils. Sci. Total. Environ. 2019, 694, 133819. [Google Scholar] [CrossRef]
- Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, J.M.; Fernandez, L. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res. 2000, 34, 807–816. [Google Scholar] [CrossRef]
- Liu, L.; Tang, Z.; Kong, M.; Chen, X.; Zhou, C.; Huang, K.; Wang, Z. Tracing the potential pollution sources of the coastal water in Hong Kong with statistical models combining APCS-MLR. J. Environ. Manag. 2019, 245, 143–150. [Google Scholar] [CrossRef]
- Li, W.; Wu, J.; Zhou, C.; Nsabimana, A. Groundwater Pollution Source Identification and Apportionment Using PMF and PCA-APCS-MLR Receptor Models in Tongchuan City, China. Arch. Environ. Contam. Toxicol. 2021, 81, 397–413. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Zhang, W.; Yuan, J.; Xu, C. Potential drivers of the level and distribution of nitrogen in the hyporheic zone of Lake Taihu, China. Water 2017, 9, 544. [Google Scholar] [CrossRef] [Green Version]
- Vadde, K.K.; Wang, J.; Cao, L.; Yuan, T.; McCarthy, A.J.; Sekar, R. Assessment of water quality and identification of pollution risk locations in Tiaoxi River (Taihu Watershed), China. Water 2018, 10, 183. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Zhu, J.; Deng, X.; Zhao, Y.; Li, S. Assessment and uncertainty analysis of groundwater risk. Environ. Res. 2018, 160, 140–151. [Google Scholar] [CrossRef]
- Wei, W.; Nghiem, A.; Ma, R.; Sun, Z.; Gong, X.; Zhou, A.; Prommer, H. Factors controlling iodine enrichment in a coastal plain aquifer in the North Jiangsu Yishusi Plain, China. J. Contam. Hydrol. 2021, 243, 103894. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Cao, H.; Xie, X.; Wang, Y. Prediction modeling of geogenic iodine contaminated groundwater throughout China. J. Environ. Manag. 2022, 303, 114249. [Google Scholar] [CrossRef]
- Griffioen, J. Potassium adsorption ratios as an indicator for the fate of agricultural potassium in groundwater. J. Hydrol. 2001, 254, 244–254. [Google Scholar] [CrossRef]
- Kendall, C.; Elliott, E.M.; Wankel, S.D. Tracing Anthropogenic Inputs of Nitrogen to Ecosystems. In Stable Isotopes in Ecology and Environmental Science; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; Chapter 12; pp. 375–449. [Google Scholar] [CrossRef]
- Chen, X.; Wo, F.; Chen, C.; Fang, K. Seasonal changes in the concentrations of nitrogen and phosphorus in farmland drainage and groundwater of the Taihu Lake region of China. Environ. Monit. Assess. 2010, 169, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Zanotti, C.; Rotiroti, M.; Fumagalli, L.; Stefania, G.A.; Canonaco, F.; Stefenelli, G.; Prévôt, A.S.; Leoni, B.; Bonomi, T. Groundwater and surface water quality characterization through positive matrix factorization combined with GIS approach. Water Res. 2019, 159, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Salam, M.M.M.; El-Ghitany, E.M.A.; Kassem, M.M.M. Quality of bottled water brands in Egypt part I: Physico-chemical analyses. J. Egypt Public Health Assoc. 2008, 83, 369–388. [Google Scholar] [PubMed]
- Huang, H.; Liu, M.; Wang, J.; He, J.; Chen, H. Sources Identification of Nitrogen Using Major Ions and Isotopic Tracers in Shenyang, China. Geofluids 2018, 2018, 8683904. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Z. Evaluation of Shallow Groundwater Contamination and Associated Human Health Risk in an Alluvial Plain Impacted by Agricultural and Industrial Activities, Mid-west China. Expo. Health 2016, 8, 311–329. [Google Scholar] [CrossRef]
- Ghahremanzadeh, H.; Noori, R.; Baghvand, A.; Nasrabadi, T. Evaluating the main sources of groundwater pollution in the southern Tehran aquifer using principal component factor analysis. Environ. Geochem. Health 2017, 40, 1317–1328. [Google Scholar] [CrossRef]
- Wu, F.; Sun, F.; Wu, S.; Yan, Y.; Xing, B. Removal of antimony(III) from aqueous solution by freshwater cyanobacteria Microcystis biomass. Chem. Eng. J. 2012, 183, 172–179. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef]
Parameters | Abbreviations | Units | Analytical Equipments |
---|---|---|---|
Water temperature | WT | °C | SX-620/SX-630 |
Pondus Hydrogenii | pH | pH unit | SX-620 pH Testor |
Dissolved oxygen | DO | mg/L | SX-630 ORP Testor |
Total dissolved solids | TDS | mg/L | Hanna DiST |
Chloride | mg/L | Dionex-2500 | |
Sulfate | mg/L | Dionex-2500 | |
Ammonical nitrogen | mg/L | AutoAnalyzer3 | |
Nitrate nitrogen | mg/L | Dionex-2500 | |
Nitrite nitrogen | mg/L | TU-1950 | |
Potassium | mg/L | ICAP 6300Duo | |
Sodium | mg/L | ICAP 6300Duo | |
Calcium | mg/L | ICAP 6300Duo | |
Magnesium | mg/L | ICAP 6300Duo | |
Manganese | g/L | ICAP Q | |
Total phosphorus | g/L | ICAP 6300Duo | |
Iodine | I | g/L | ICAP Q |
Antimony | g/L | ICAP Q |
Parameters | Min | Max | Mean | Standard Deviation | Coefficients of Variation (%) | National Standards, Class III |
---|---|---|---|---|---|---|
18.4 | 29.7 | 23.2 | 2.4 | 10 | / | |
6.80 | 8.19 | 7.20 | 0.28 | 4 | 6.5–8.5 | |
1.4 | 24.0 | 3.5 | 2.8 | 80 | / | |
40 | 792 | 383 | 146 | 38 | 1000 | |
1.7 | 170.0 | 47.9 | 32.7 | 68 | 250 | |
2.0 | 146.0 | 41.4 | 26.1 | 63 | 250 | |
0.02 | 4.19 | 0.36 | 0.90 | 250 | 0.5 | |
0.01 | 39.29 | 4.06 | 5.90 | 145 | 20 | |
0.002 | 2.413 | 0.290 | 0.538 | 186 | 1 | |
1.3 | 90.3 | 20.8 | 18.6 | 89 | / | |
6.7 | 174.0 | 56.3 | 33.2 | 59 | 200 | |
27.6 | 148.0 | 70.0 | 26.0 | 37 | 75 | |
3.2 | 75.2 | 20.9 | 14.2 | 68 | 150 | |
0.10 | 1610.00 | 78.31 | 266.27 | 340 | 100 | |
6.4 | 2510.0 | 484.7 | 556.7 | 115 | / | |
I | 4.4 | 446.0 | 83.3 | 92.2 | 111 | 80 |
0.10 | 6.28 | 1.63 | 1.45 | 89 | 5 |
Parameters | VF1 | VF2 | VF3 | VF4 | VF5 |
---|---|---|---|---|---|
−0.19 | 0.31 | 0.47 | −0.45 | −0.22 | |
−0.12 | 0.33 | −0.20 | −0.41 | 0.46 | |
−0.19 | −0.09 | 0.04 | 0.18 | 0.78 | |
0.83 | 0.03 | 0.13 | 0.23 | −0.17 | |
0.91 | 0.10 | 0.03 | −0.06 | −0.15 | |
0.13 | 0.15 | 0.13 | 0.78 | 0.22 | |
0.13 | 0.12 | 0.85 | 0.01 | −0.15 | |
−0.19 | 0.50 | −0.31 | 0.55 | −0.11 | |
0.02 | 0.52 | 0.54 | −0.05 | −0.25 | |
0.01 | 0.82 | 0.06 | 0.16 | 0.05 | |
0.94 | −0.09 | −0.06 | −0.09 | −0.08 | |
0.61 | −0.07 | 0.33 | 0.43 | −0.21 | |
0.79 | −0.39 | 0.19 | 0.23 | −0.12 | |
0.26 | −0.26 | 0.63 | 0.20 | 0.13 | |
−0.16 | 0.78 | 0.06 | −0.06 | 0.18 | |
I | 0.70 | −0.47 | 0.22 | −0.03 | −0.12 |
−0.26 | 0.23 | −0.21 | 0.02 | 0.64 | |
Eigenvalues | 4.20 | 2.55 | 2.06 | 1.70 | 1.60 |
% of Variance | 24.72 | 15.02 | 12.09 | 10.02 | 9.38 |
Cumulative % | 24.72 | 39.74 | 51.83 | 61.85 | 71.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Zhou, Q.; Lv, J.; Jiang, Y.; Yang, H.; Yang, H.; Mei, S.; Jia, Z.; Zhang, H.; Jin, Y.; et al. Assessment of Groundwater Quality Using APCS-MLR Model: A Case Study in the Pilot Promoter Region of Yangtze River Delta Integration Demonstration Zone, China. Water 2023, 15, 225. https://doi.org/10.3390/w15020225
Chen Z, Zhou Q, Lv J, Jiang Y, Yang H, Yang H, Mei S, Jia Z, Zhang H, Jin Y, et al. Assessment of Groundwater Quality Using APCS-MLR Model: A Case Study in the Pilot Promoter Region of Yangtze River Delta Integration Demonstration Zone, China. Water. 2023; 15(2):225. https://doi.org/10.3390/w15020225
Chicago/Turabian StyleChen, Zi, Quanping Zhou, Jinsong Lv, Yuehua Jiang, Hai Yang, Hui Yang, Shijia Mei, Zhengyang Jia, Hong Zhang, Yang Jin, and et al. 2023. "Assessment of Groundwater Quality Using APCS-MLR Model: A Case Study in the Pilot Promoter Region of Yangtze River Delta Integration Demonstration Zone, China" Water 15, no. 2: 225. https://doi.org/10.3390/w15020225
APA StyleChen, Z., Zhou, Q., Lv, J., Jiang, Y., Yang, H., Yang, H., Mei, S., Jia, Z., Zhang, H., Jin, Y., Liu, L., & Shen, R. (2023). Assessment of Groundwater Quality Using APCS-MLR Model: A Case Study in the Pilot Promoter Region of Yangtze River Delta Integration Demonstration Zone, China. Water, 15(2), 225. https://doi.org/10.3390/w15020225