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Abstract: Dam safety is considerably affected by seepage, and uplift pressure is a key indicator of
dam seepage. Thus, making accurate predictions of uplift pressure trends can improve dam hazard
forecasting. In this study, a convolutional neural network, (CNN)-gated recurrent neural network,
(GRU)-based uplift pressure prediction model was developed, which included the CNN model’s
feature extractability and the GRU model’s learnability for time series correlation data. Then, the
model performance was verified using a dam as an example. The results showed that the mean
absolute errors (MAEs) of the CNN-GRU model were 0.1554, 0.0398, 0.2306, and 0.1827, and the root
mean square errors (RMSEs) were 0.1903, 0.0548, 0.2916, and 0.2127. The prediction performance was
better than that of the particle swarm optimization–back propagation (PSO-BP), artificial bee colony
optimization–support vector machines (ABC-SVM), GRU, long short-term memory network (LSTM),
and CNN-LSTM models. The method improves the utilization rate of dam safety monitoring results
and has engineering utility for safe dam operations.

Keywords: CNN-GRU; uplift pressure; time series correlation; performance verification

1. Introduction

Dams are the most important infrastructure in water conservancy and hydropower
projects and play an active role in flood control, irrigation, shipping, and power generation.
However, while dams bring great benefits, they also have a series of safety problems, and
a dam failure can have serious social and economic consequences downstream, causing
massive personal and property losses [1,2]. To reduce the damage caused by dam failure,
dam safety monitoring has been carried out in various countries. Uplift pressure is one
of the key tasks for monitoring the seepage of concrete dams and plays an important
role in reflecting the stability and durability of the dam [3,4]. Therefore, it is possible to
improve the accuracy of the dam hazard occurrence forecast by combining historical uplift
pressure-monitoring data with intelligent algorithms to establish a practical and effective
concrete dam safety monitoring model.

The dam safety monitoring model is a mathematical model established to reflect the
law of change in the amount of the effect of dam monitoring. Many studies have been
conducted on dam safety monitoring models; however, most of them focus on displace-
ment monitoring, whereas there are fewer theoretical research results devoted to uplift
pressure-monitoring models. In addition, the current monitoring models used in practical
engineering have problems, such as the poor adaptability of the monitoring model and
prediction accuracy, that are insufficient for meeting intelligent target requirements. The
traditional statistical model is employed as an example. Although the calculation is simple,
it is difficult to reflect the nonlinear relationship between the effect size and complex factors.
This results in poor extrapolation accuracy and low forecast accuracy [5]. In recent years,
the study of dam safety monitoring models has been enriched by the development of
artificial intelligence theory and the wide application of various intelligent algorithms in
data analysis and mining [6].
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Support vector machines (SVMs) give excellent performance in solving high-dimensional
nonlinear problems [7], so they have been introduced into dam safety monitoring research by
scholars. Rankovic V et al. used SVM for deformation prediction in the safety monitoring of
concrete dams, and the application results of engineering examples show that SVM prediction
accuracy is high [8]. SVMs are affected by parameters, so intelligent optimization algorithms,
such as particle swarm optimization (PSO) and artificial bee colony optimization (ABC), are
used to find the best one. Huaizhi Su et al. developed a PSO-SVM model for dam deformation
prediction, and the results showed that the parameter optimization by PSO can improve
the model accuracy and shorten the iteration time [9]. Junrong Zhang et al. established an
ABC-SVM model to predict landslide displacements by optimizing the SVM model with
the ABC algorithm, and the results showed that the SVM model has excellent prediction
performance in short-term prediction; however, in a long-term prediction, the prediction
accuracy of the SVM model decreases with the growth of prediction time [10].

Neural networks have been introduced into dam safety monitoring research due to
their powerful nonlinear characterization of multiple features. Hai-Feng Liu et al. applied
the backpropagation (BP) neural network to the dam safety monitoring model, and the
prediction results showed a high prediction accuracy and stable prediction performance
of the model [11]. Neural networks have proven to be excellent at handling large-scale
data sampling problems; however, gradient vanishing and gradient explosion occur as
the size of data samples increases. In addition, due to its own structure, the traditional
neural network algorithm cannot learn from data with time series characteristics, and
the model that was built is not sufficiently adaptable or accurate. The Recurrent Neural
Network (RNN) is able to process time series data but is prone to gradient vanishing and
gradient explosion problems. The long- and short-term memory network (LSTM) not only
takes full consideration of the time series correlation information in the data, but it also
avoids the problems of RNN gradient vanishing to a certain extent. Therefore, the model
is used in the field of concrete dam deformation safety monitoring [12] and tailings dam
deformation safety monitoring [13], and the engineering application results all showed
that the LSTM model has a higher prediction accuracy and is closer to the actual measured
data. However, the LSTM model requires too many parameters for training and overfitting
occurs when the amount of data is insufficient [14]. Meanwhile, the gated recurrent neural
network (GRU) model ultimately improves this shortcoming by integrating the forget gate
and input gate of the LSTM model into the update gate, thereby reducing the number of
parameters [15]. The GRU model has also shown a better performance than the LSTM
model in engineering applications [16].

In summary, there is a wealth of theoretical research results for large intelligent
algorithm monitoring models, but the vast majority of dam safety monitoring-related
research is mainly displacement prediction models, with less research devoted to uplift
pressure monitoring, so there is an urgent need to supplement the research content of
the prediction model of uplift pressure. In addition, the adaptability and accuracy of the
intelligent algorithm models studied at this stage still have shortcomings, such as model
overfitting and underfitting, which keep them far from the application of real intelligent
scenarios. In this study, a CNN-GRU dynamic prediction model for uplift pressure was
developed to model uplift pressure-monitoring data with large-scale samples and time-
series features. Considering the inherent generalization limitations of a single model,
this study combines the CNN’s feature extractability in deep learning and the GRU’s
characteristics of long-term memory structure to automatically extract hidden features and
long-term temporal dependencies among historical dam monitoring data, which enhances
the stability of the model performance. In addition, using the GRU model instead of the
LSTM model avoids the phenomenon of overfitting due to insufficient data volume, which
affects model prediction accuracy [17]. Finally, the performance of the CNN-GRU uplift
pressure model is verified by engineering examples.
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2. Methodology
2.1. Problem Description

The complex mechanical, seepage, thermal, and chemical effects involved in the
variation of the uplift pressure of concrete dams make it very difficult to develop a physical
model that can capture this process. As the monitoring data of uplift pressure can effectively
reflect the dam’s service condition, predicting the trend of uplift pressure based on historic
monitoring data is the most effective method for assessing the dam’s operation status. In
this method, the basic idea is to establish a mathematical model that is capable of describing
the mapping relationship between the uplift pressure effect and the impact factor based on
historical monitoring information.

The change in uplift pressure is not only affected by environmental factors and load
factors (reservoir level, temperature, rainfall, etc.) but it also depends on the dam’s own
structure (permeability coefficient, cracks, seepage control facilities, etc.), as shown in
Figure 1, making the pressure trend show nonlinear characteristics. Concrete dams often
have a more complete online monitoring system. A large number of uplift pressure-
monitoring samples have been collected by online dam monitoring systems. These rich
data samples are critical for the establishment of a large sample monitoring model. In
addition, the weak permeability of the dam material causes the change in water pressure
in different parts of the dam base to lag behind the fluctuation in the reservoir level.
Additional time intervals are required to fill or drain the porous media of the dam and the
interior of the gauges, which results in a longer time for the gauges to reach a steady state
of water. The above factors cause the time lag effect of the uplift pressure, which leads to a
strong correlation between the uplift pressure values before and after the time series. In
summary, the uplift pressure prediction model developed in this paper needs to solve a
large-sample, time series, high-dimensional nonlinear problem.
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2.2. Extraction of Uplift Pressure Features Based on the CNN Network

CNN is a feed-forward neural network that can be used to mine effective features from
large amounts of dam safety monitoring data [18]. The CNN network structure is shown in
Figure 2, which consists of a convolution layer, a pooling layer, and a fully connected layer.
In this study, the hidden features in the dam monitoring data were first extracted by the
convolution operation. Then, the data were downscaled by the pooling operation to reduce
the dimensionality of the data as much as possible without changing the characteristics
of the data. Finally, the extracted uplift pressure features were fed into the GRU neural
network for learning. The expressions for the convolution and pooling operations are
as follows:
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Convolution operations:

s(t) = (x×ω)(t) =
∞

∑
a=−∞

x(a)ω(t− a)

where x is the input dataset, ω is the weight matrix, and t is the time.
Pooling operations:

Pj
k,m = max

{
Sj:j+N

k,m−1

}
where N denotes the length of the pooling operation area and Pj

k,m is the output at the jth
point of the kth group at the mth layer.

2.3. Prediction Model for Uplift Pressure Based on the GRU Network

GRU is a performance-enhanced RNN variant with a long-term memory structure
that allows temporal features in the data to be fully understood [19]. Furthermore, the
GRU model is able to fit nonlinear features due to the nonlinear activation function (RULE
activation function is used in this study). In this study, the GRU model was used to develop
a mapping relationship between the uplift pressure and the environmental monitoring data
of the concrete dam to predict the uplift pressure. The structure of the GRU unit is shown
in Figure 3.
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There are two gating structures in the GRU model prediction, the reset gate and the
update gate, which are used to control the impact of the previous moment’s uplift pressure
information on the current moment, thus fully learning the temporal characteristics of the
uplift pressure data. The equations for the reset gate and update gate are as follows:

rt = σ(Wr[grht−1, xt] + br)

zt = σ(Wz[ht−1, xt] + bz)
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where xt refers to the output of the upper layer CNN network at moment t; ht is the
uplift pressure information retained at moment t; ht−1 is the uplift pressure information
retained at moment t − 1; Wr and br are reset gate parameters; σ is the nonlinear activation
function, where the rule activation function is chosen; and gr is the gating vector. Wz
and bz are updated gate parameters; all parameters are automatically optimized by the
backpropagation algorithm.

The propagation equations for the candidate hidden information h̃t at moment t and
the retained uplift pressure information ht at moment t can be obtained from the equations
of the update gate and the reset gate as follows:

h̃t = tanh(Wh·[rtht−1, xt])

ht = (1− zt)ht−1 + zth̃t

This equation indicates that the updated amount of ht is controlled by both h̃t and ht−1.

2.4. Construction of the CNN-GRU Model for Uplift Pressure Prediction

The model simulation platform for this study is TensorFlow2.3, a deep learning
framework under the Minconda3 configuration, and the script compilation language uses
Python3.8. The concrete dam uplift pressure is affected by a variety of factors, such as
water level and temperature. To correlate this characteristic information affecting the uplift
pressure, the value of the uplift pressure at the same moment was represented as a vector
in a series with the value of each factor, and the data were entered using a sliding window
with a time sliding window designed in steps of 30 days. In this study, a CNN network was
designed to extract effective features from uplift pressure-monitoring data samples. This
network included 2 layers of convolution layers and 2 layers of pooling layers for better
feature extraction. The GRU network was used to understand the feature vectors generated
by the upper layer CNN network containing feature information. To improve the nonlinear
computability of the GRU network structure and ultimately the model prediction capability,
multiple GRU units were connected to form a chain-structured network. However, the
multilayer GRU network structure inevitably exhibited exponential growth in parameters
during the training process, which may affect the model prediction outcome. Therefore, the
Adam optimization algorithm was used to update and optimize the model parameters [20].
The structure of the CNN-GRU uplift prediction model is presented in Figure 4, and the
specific parameter settings are shown in Table 1.

Table 1. CNN-GRU model parameter setting.

Network Structure Experimental Parameters Parameter Value

Overall Structure
optimization algorithm Adam

batch size 128
epochs 100

CNN structure (2 layers)

convolution kernels 16, 32
kernel size 2

strides 2
activation relu
pool size 2
strides 2

GRU structure (3 layers)
hidden neurons 64, 64, 64

dropout 0.2
activation relu

Fully connected layer (1 layer) units 1
activation None
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The mean absolute error (MAE) was used as the optimized loss function of the CNN-
GRU model, and the equations for the loss function are as follows:

Lloss =
1
N

N

∑
i=1
|ŷi − yi|

where ŷi indicates the predicted value of uplift pressure; yi indicates the value of the uplift
pressure monitoring.

2.5. Background of a Dam Project

The dam uplift pressure of the Shuikou Hydropower Station project is predicted. The
dam is a concrete gravity dam located on the main stream of the Minjiang River in the Fujian
Province, China. The normal water level in front of the dam is 65.00 m, the flood limit water
level is 61.00 m, the dead water level is 55.00 m, and the seismic precautionary intensity is
VII. The dam has a total length of 783 m, a maximum height of 101 m, a maximum bottom
length of 72 m, and a top elevation of 74 m. It consists of 42 dam sections, including the
water blocking section, the power generation and diversion section, and the water discharge
section. Table 2 shows the distribution of each dam section. Uplift pressure was monitored
by a piezometer and a vibrating wire piezometer. Figure 5 illustrates the arrangement of
uplift pressure measurement points. In this study, the uplift pressure-monitoring values
of the four measuring points, UP17, UP26, UP35, and UP51, were selected as measuring
points to verify the performance of the model. Figure 5 shows that UP17 and UP26 are in
the diversion dam section and UP35 and UP51 are in the spillway dam section.
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Table 2. The distribution of each dam section.

Dam Section
Left Bank Water

Blocking
Section

Diversion
Section

Discharge
Section

Spillway
Section

Bottom
Outlet
Section

Ship Lock
Right -Shore

Water Blocking
Section

Number 1#~7# 8#~21# 22# 23#~35# 36# 37#~38# 39#~42#
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3. Results
3.1. Denoising of Uplift Pressure-Monitoring Data

There will be some noise in the uplift pressure-monitoring data due to aging electronic
components, sensor induction distortion, signal channel disturbance, human factors, and
other sudden abnormal factors. Real data mixed with noise will reduce the accuracy and
stability of the prediction model. Therefore, the original data must be denoised to ensure
validity of the data. Commonly used data denoising methods include the Kalman filter,
Wiener filter, wavelet transform, empirical mode decomposition, etc. However, the Wiener
filter and Kalman filter are not effective enough to address the problem of nonstationary
sequence signals. The wavelet transform needs to set the basis function in advance during
operation, and empirical mode decomposition is prone to spurious components and mode
mixing during the decomposition of sequential signals. VMD overcomes the problems of
mode mixing and spurious components of traditional methods and has been widely used
in the field of data signal noise reduction [21–24].

Therefore, VMD-SE was used to denoise the uplift pressure-monitoring data. The
UP17 measurement point was used as an example. The monitored nonlinear, nonstationary
historical uplift pressure data series was first decomposed into six intrinsic mode functions
(IMFs) with gentle frequency changes and relative stability using variational modal decom-
position (VMD). The VMD decomposition of the UP17 measurement point uplift pressure
data is presented in Figure 6. Then, the noisy sequences were identified by calculating
the value of sample entropy (SE) [25,26]. In this paper, the SE threshold was set to 0.5, i.e.,
sequences with SE values greater than 0.5 are noisy sequences. The SE values of each IMF
component are presented in Table 3. IMF5 is a noisy sequence. Finally, the remaining IMF
components are reconstituted to form the denoised data samples. A comparison of the
denoised data samples with the original uplift pressure samples is shown in Figure 7.
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3.2. Impact Factor and Input Data Set Analysis

In the case of a stable dam, the change in the uplift pressure of a concrete dam is
mainly affected by upstream and downstream water levels, rainfall, temperature, and time
effects [27]. The impact factors selected for this study include the following:

Water pressure component (HU, (HU)2, HU(2–3), HU(4–7), HU(8–15), HU(16–30), HU(31–60),
HD), where HU denotes the upstream water level at the current monitoring date, HU (q-r)
denotes the average upstream water level from q to r days before the current monitoring
date and HD is the downstream water level at the current monitoring date; temperature
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component (T0–1, T2–7, T8–15, T16–30, T31–60, T61–120), where Tq-r denotes the average temper-
ature from q to r days before the current monitoring date; rainfall component (R0–1, R2–3,
R4–7, R8–15, R16–30, R31–60), where Rq-r denotes the cumulative value of rainfall from q to
r days before the current monitoring date; time effects (θ, lnθ), where θ = t/100, t is the
cumulative number of monitoring days from the observation date to the reference date.

The selection of input factors has an influential impact on the prediction accuracy
of the model. Input factors with low correlation will not only increase the complexity of
model iteration but also affect the accuracy of forecast results. Therefore, it is essential to
select factors with substantial impacts. Since the Pearson correlation coefficient method
has a large bias in dealing with nonlinear problems, the maximum information coefficient
(MIC) is introduced in this paper to optimize the influence factors and determine the final
set of input factors [28]. The results of the MIC calculations are presented in Table 4. It
can be seen that the timing factor had a strong correlation with the uplift pressure, so it
was retained; the water pressure component had a certain degree of correlation with the
uplift pressure, and (HU(8–15), HU(16–30), HU(31–60), HD) were selected as input factors; the
temperature component had a large MIC value, and (T16–30, T31–60, T61–120) were selected as
input factors; the MIC values between rainfall components and uplift pressure were small
and had limited effect on the trend of uplift pressure, so they were excluded. The final
filtered input factors include: Water pressure component (HU(8–15), HU(16–30), HU(31–60),
HD), Temperature component (T16–30, T31–60, T61–120), and Time effects (θ, lnθ).

Table 4. Impact factor preference.

Component Name Factors CMIC Whether to Be Selected

Time effects
θ 0.8995 Y

lnθ 0.8995 Y

Water pressure component

HU 0.1945 N
(HU)2 0.1945 N

HU(2–3) 0.2078 N
HU(4–7) 0.2175 N
H(U8–15) 0.2487 Y
HU(16–30) 0.2675 Y
HU(31–60) 0.2537 Y

HD 0.2451 Y

Temperature component

T0–1 0.4725 N
T2–7 0.5147 N
T8–15 0.5253 N
T16–30 0.6071 Y
T31–60 0.6064 Y
T61–120 0.7076 Y

Rainfall component

R0–1 0.1908 N
R2–3 0.1562 N
R4–7 0.1723 N
R8–15 0.1804 N
R16–30 0.1912 N
R31–60 0.1984 N

In this study, the model reliability was validated by using the monitoring data of uplift
pressure and the above environmental quantities from 4 July 2010 to 26 July 2016 as the
input dataset. The data samples from 4 July 2010 to 11 May 2016 were used as training set
samples to train the model, and the data samples from 12 May 2016 to 26 July 2016 were
used as test samples to test the model performance effects.

3.3. Model Prediction

The denoised dataset was fed into the model, the model was trained using the training
set, and then the model was tested using the test set. The iterative loss value curves for the
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model during training and prediction are shown in Figure 8, and the prediction results for
the test set are shown in Figure 9.
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Figure 9. Uplift pressure predicted results. ((a): Prediction results of CNN-GRU model in the UP17 
measurement point; (b): Prediction results of CNN-GRU model in the UP26 measurement point; 
Figure 9. Uplift pressure predicted results. ((a): Prediction results of CNN-GRU model in the UP17
measurement point; (b): Prediction results of CNN-GRU model in the UP26 measurement point;
(c): Prediction results of CNN-GRU model in the UP35 measurement point; (d): Prediction results of
CNN-GRU model in the UP51 measurement point.)

4. Discussion
4.1. Analysis of the Denoising Effect of Uplift Pressure-Monitoring Data

In the case of historical monitoring data directly used for prediction, a large error
is generated due to the presence of noise sequences in the data. Therefore, the VMD-SE
algorithm was employed to extract real information from the original data series to improve
the accuracy of the uplift pressure prediction. To show the denoising effect of the method,
a prediction model was established using the denoised data and the original monitoring
data, and the root mean square error (RMSE) and mean absolute error (MAE) were used as
evaluation indices, employing the UP17 measurement point as an example. The prediction
results are shown in Figure 10, and the accuracy assessment is presented in Table 5.
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Table 5. Statistics of prediction evaluation indexes for original and denoised data of UP17 measure-
ment points.

UP17 RMSE MAE

Original data 1.3614 1.2890
denoised data 0.1903 0.1554

According to Figure 10, when the original data were used for training and prediction,
the volatility of the prediction results was greater; as seen in Table 5, the denoised data had
considerably better RMSE and MAE than the original data, with reductions of 86.02% and
87.95%, respectively. The results showed that the VMD-SE algorithm can effectively filter
out the noise and improve the model’s prediction results.

4.2. Analysis of the Uplift Pressure Prediction Results

As demonstrated in Figure 8, the CNN-GRU model had reasonable applicability on
the training dataset, and the training loss curve exhibited a fast-decreasing trend. The
model started to converge before 15 iterations and started to stabilize after 30 iterations;
the final convergence was within the allowable error of all iterations. For the test process,
the overall loss curve also showed a quickly decreasing trend within 30 iterations with a
slightly higher convergence error at the end than in the training process. In conclusion, the
CNN-GRU model performed well with regard to training and testing, indicating rationality
in the network structure and parameter settings.

To demonstrate the advantages of the CNN-GRU model constructed in this paper in
solving the large-sample time series uplift pressure prediction problem, the CNN-LSTM
model, the GRU model, the LSTM model, the PSO-BP model, and the ABC-SVM model
were compared against this model. The parameter settings of the deep learning model are
consistent with those of the CNN-GRU model. The prediction results of each model on the
uplift pressure data series of UP17, UP26, UP35, and UP51 measuring points are shown
in Figure 11.

To measure the performance of the model more accurately, RMSE and MAE were
selected as the evaluation indices of model prediction accuracy. In addition, to show the
running efficiency of each model, the overall running time of each model was counted
separately. The values of each evaluation index are shown in Table 6.
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Table 6. The value of each evaluation index.

Points UP17 UP26

Models RMSE/(m) MAE/(m) Time/s RMSE/(m) MAE/(m) Time/s

LSTM 0.3312 0.2309 325.12 0.0605 0.0429 353.95
GRU 0.3638 0.3321 199.23 0.0629 0.0426 277.76

CNN-GRU 0.1903 0.1554 276.38 0.0548 0.0398 291.83
PSO-BP 1.0973 0.8919 215.43 0.1674 0.1416 212.69

ABC-SVM 1.0165 0.8303 464.51 0.1438 0.1225 582.21

Points UP35 UP51

Models RMSE/(m) MAE/(m) Time/s RMSE/(m) MAE/(m) Time/s

LSTM 0.5650 0.5305 382.02 0.3549 0.3059 321.54
GRU 0.7577 0.6967 300.28 0.4484 0.3602 183.03

CNN-GRU 0.2916 0.2306 310.53 0.2127 0.1827 222.77
PSO-BP 1.1081 0.8951 154.85 1.2607 1.0787 186

ABC-SVM 1.2673 0.9972 569.27 1.6306 1.3256 523.13
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Figure 11. Comparison of uplift pressure prediction results. ((a): The prediction results of each model
on the uplift pressure data of the UP17 measuring point; (b): The prediction results of each model on
the uplift pressure data of the UP26 measuring point; (c): The prediction results of each model on the
uplift pressure data of the UP35 measuring point; (d): The prediction results of each model on the
uplift pressure data of the UP51 measuring point.)

As demonstrated in Figure 11:

(1) The BP and SVM causal models were considerably weaker than the deep learning
models in terms of prediction performance, both in terms of overall trends and local
inflection points.

(2) The overall trend of the prediction curves of LSTM and GRU was basically the same
as the monitoring value of the uplift pressure, but the trend of the prediction curve
in the local inflection point area deviated from the monitoring curve, and the local
inflection point could not be accurately predicted.

(3) The fitting effect of the CNN-GRU model on the overall trend and local fluctuations
was substantially better than that of the GRU model and the LSTM model, and it could
more accurately describe the overall and local inflection points of the uplift pressure,
and its prediction curve was closer to the monitoring curve of the uplift pressure.

(4) The CNN-GRU model fits similarly to the CNN-LSTM model on the overall trend
and local fluctuations at the UP26, UP35, and UP51 measurement points. However,
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the CNN-GRU model performs considerably better than the CNN-LSTM model at
the UP17 measurement point.

Based on Table 6, the PSO-BP and ABC-SVM models had much larger RMSE and MAE
evaluation indices than the other models, and it was clear that the LSTM, GRU, and CNN-
GRU models, which considered historical uplift pressure time series characteristics, had
a clear advantage over the PSO-BP and ABC-SVM models. Among them, the CNN-GRU
model had a greater performance effect than the LSTM model and GRU model, which
could be observed from the accuracy results. When the CNN-GRU was compared with the
LSTM model and GRU model, the RMSE of the CNN-GRU model was reduced by 42.54%,
9.38%, 48.39%, 40%; 47.69%, 12.74%, 61.52%, 53%, and MAE was reduced by 32.70%, 7.31%,
56.52%, 40.27%; 53.21%, 6.56%, 66.90%, and 49.27%.

Although the evaluation metrics of the CNN-LSTM model are similar to those of the
CNN-GRU model at the UP26, UP35, and UP51 measurement points, the evaluation metrics
of the CNN-LSTM model are much larger than those of the CNN-GRU model and even
larger than those of the GRU and LSTM models at the UP17 measurement point. The loss
function curves of the CNN-LSTM model at the UP17 measurement point are presented in
Figure 12. The training loss curve of the model is able to smooth out quickly. However, the
test loss curve shows fluctuations, and the final value is much larger than the training loss
value. This indicates that the model overfitted the prediction of UP17 measurement points.
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Based on the results of this experiment, the following can be concluded:

(1) Although causal models, such as BP and SVM, have reasonable prediction results for
small sample data, they are unable to learn from data with time series characteristics,
resulting in unsatisfactory prediction results for large sample data. In addition, the
running time of the model in Table 6 shows that the running time of the SVM model
increases exponentially when dealing with large sample data. This is because SVM
usually uses the kernel matrix of the dataset to describe the similarity between samples,
and when dealing with large sample data, the number of matrix elements increases
squarely, resulting in unsatisfactory computational power and operational efficiency.

(2) The LSTM model, GRU model, and CNN-GRU model, which consider the time series
characteristics of historical uplift pressure-monitoring data, have obvious advantages
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over the PSO-BP model and ABC-SVM model. The performance of the LSTM model
and GRU model is similar, but because the GRU model integrates the forget gate and
input gate of the LSTM model into an update gate, which reduces the parameters
required for training the GRU model [29], the training iteration of the GRU model
is faster than that of the LSTM model with lower computational cost and higher
operational efficiency.

(3) The LSTM model and GRU model do not perform accurately enough on some of the
measurement points with more fluctuations due to the inability to mine the potentially
hidden information on the local fluctuation features of some of the measurement
points. In contrast, CNN is able to extract the continuous and discontinuous features
of sequence data and mine the variation characteristics of local fluctuation of uplift
pressure, so the CNN-GRU model has better results compared with the LSTM model
and GRU model.

(4) The CNN-LSTM model predicts similarly to the CNN-GRU model, but because the
model requires too many parameters to be trained and the amount of data is small,
overfitting occurs at some prediction points, which makes the prediction results less
than ideal.

In summary, all models can predict the trend of uplift pressure better, but the prediction
performance of the deep learning model considering the correlation of time series data is
superior compared with the general causal prediction model. The CNN-GRU and CNN-
LSTM models constructed by the convolutional-cyclic idea can better describe the patterns
of variations of the uplift pressure data series, but the CNN-LSTM model will be overfitted
when the data volume is small due to the large number of parameters to be trained. The
CNN-GRU model, on the other hand, not only has a higher iteration efficiency but also has
a more accurate prediction effect on the overall trend, as well as local fluctuations at each
measurement point.

The following limitations exist in this study:

(1) The model proposed in this study has only been validated for uplift pressure predic-
tion, and its suitability in different scenarios cannot be determined.

(2) There are many hyperparameters involved in the model, and hyperparameters are
adjustment knobs that control the structure, function, efficiency, and other functions
of the model. These parameters basically have different settings in various scenarios,
and currently, there are no uniform selection criteria, so they can only be determined
by repeated trials in actual situations. Finding the optimal configuration of hyperpa-
rameters in these deep learning models in the high-dimensional data space involved
in the field of dam safety monitoring is a major challenge and a difficulty to overcome
in the future.

(3) The model established in this study mainly focuses on individual measurement points
for prediction while considering the time dimension of monitoring data, but each
monitoring point of the dam will also be affected by the spatial dimension, i.e., the
changing pattern of each monitoring point will be different under different spatial
distribution locations. Therefore, determining the correlation links of each monitor-
ing point of the dam in the spatial dimension, studying the variation law of each
point under various spatial distributions, and establishing a dam safety prediction
model with coupled spatio-temporal correlation characteristics are directions for
future development.

5. Conclusions

(1) In this study, the CNN-GRU model is proposed, in which the CNN network is used to
extract potential connections and hidden information among the influencing factors of
uplift pressure, and the GRU network is used to learn time series correlation features
in the monitoring data for uplift pressure.

(2) The CNN-GRU model was used to predict the uplift pressure data: MAE was 0.1554,
0.0398, 0.2306, and 0.1827. RMSE errors were 0.1903, 0.0548, 0.2916, and 0.2127.
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(3) In comparison with the CNN-LSTM, LSTM, GRU, PSO-BP, and ABC-SVM models, the
CNN-GRU model constructed in this study has a better prediction effect on the overall
trend and local fluctuation of the uplift pressure. Based on the accuracy assessment
index, the model is more accurate than the other models, and the prediction curves
are close to the surveillance data. The model can improve the utilization of dam safety
monitoring results and has engineering practicality for safe dam operation.
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