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Abstract: With the rapid development of urbanization and a population surge, the drawback of water
pollution, especially eutrophication, poses a severe threat to ecosystem as well as human well-being.
Timely monitoring the variations of water quality is a precedent to preventing the occurrence of
eutrophication. Traditional monitoring methods (station monitoring or satellite remote sensing),
however, fail to real-time obtain water quality in an accurate and economical way. In this study, an
unmanned aerial vehicle (UAV) with a multispectral camera is used to acquire the refined remote
sensing data of water bodies. Meanwhile, in situ measurement and sampling in-lab testing are carried
out to obtain the observed values of four water quality parameters; subsequently, the comprehensive
trophic level index (TLI) is calculated. Then three machine learning algorithms (i.e., Extreme Gradient
Boosting (XGB), Random Forest (RF) and Artificial Neural Network (ANN)) are applied to construct
the inversion model for water quality estimation. The measured values of water quality showed that
the trophic status of the study area was mesotrophic or light eutrophic, which was consistent with the
government’s water-control ambition. Among the four water quality parameters, TN had the highest
correlation (r = 0.81, p = 0.001) with TLI, indicating that the variation in TLI was inextricably linked
to TN. The performances of the three models were satisfactory, among which XGB was considered
the optimal model with the best accuracy validation metrics (R2 = 0.83, RMSE = 0.52). The spatial
distribution map of water quality drawn by the XGB model was in good agreement with the actual
situation, manifesting the spatial applicability of the XGB model inversion. The research helps guide
effective monitoring and the development of timely warning for eutrophication.

Keywords: eutrophic water; UAV remote sensing; machine learning; water quality inversion; extreme
gradient boosting

1. Introduction

In the past century, due to the urban and industrial expansion, severe eutrophication
has become an important problem faced by urban water bodies worldwide [1–4]. In China,
a developing country, the problem is particularly acute in places with rapid process of
industrialization [5], such as the Great Bay Area [6,7]. In 2019, data from the nutritional
status monitoring of 107 major lakes/reservoirs in China showed that 62.36% were in
middle eutropher status and 22.40% were in light eutropher status [8]. To solve a series
of water environmental problems, the Action Plan for Prevention and Control of Water
Pollution was carried out by the government in 2015, which has achieved some results.
However, algal blooms caused by eutrophication still occur from time to time, destroying
the ecological balance of the region and affecting the quality of drinking water, influencing
the production and life of human beings [1,9–11]. Therefore, it is necessary to monitor
water quality so that timely measures can be taken to prevent eutrophication.

The traditional water quality monitoring method is to collect water samples manually
and then use chemical experiments to obtain accurate nutritional indicators. This approach

Water 2023, 15, 354. https://doi.org/10.3390/w15020354 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15020354
https://doi.org/10.3390/w15020354
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-0487-9844
https://orcid.org/0000-0003-0893-2665
https://doi.org/10.3390/w15020354
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15020354?type=check_update&version=3


Water 2023, 15, 354 2 of 17

has high accuracy but complicated operation and low efficiency [12]. In addition, errors
caused by the difference of laboratory instruments, analysis methods and human resources
and the non-real-time data acquisition are the problems it faced [13]. In order to solve the
above problems, ADu-Manu et al. proposed a new method for water quality monitoring
systems by using a wireless sensor network [14]. Depending on the size of the water
bodies and the purpose of monitoring, different network topologies and node densities
are adopted at first, and different types of sensors are placed at the water source to access
physical and chemical parameters. This method can meet the requirements of high data
precision, data accuracy and timely reporting well [15], but it is high cost, not flexible
enough and only used for a single target [16].

By contrast, remote sensing is a cheaper and more universal method, which depends
on the connection between the spectral reflectance of water bodies and water quality
parameters [15]. Most previous studies used satellite-based platforms for monitoring, such
as Landsat Thematic Mapper [17,18], Sentinel-2 [19,20], Operational Land Imager [21,22]
and the Moderate Resolution Imaging Spectrometer [5,23]. The specific method is to obtain
the multispectral reflectance data by processing the satellite images, and meanwhile take
samples on site to analyze water quality and then find a relationship between the measured
water quality parameters and multispectral data. However, because of the shortcomings of
coarse spatial resolution, satellite remote sensing is not optimal for most small and scattered
urban waters. At the same time, larger interference from the atmosphere and the more
complex optical characteristics of inland waters compared with oceanic waters narrow
the application of satellites [24,25]. Besides, due to a long revisit period, satellite remote
sensing cannot monitor timely to master real-time water quality information after sudden
changes of meteorological factors or algal blooms in a short period.

Therefore, a method for urban water quality monitoring using unmanned aerial
vehicle (UAV) platforms were proposed, using a UAV carrying multi-spectral sensors to
obtain the spectral information of water bodies as the input data to build water-quality
models [26,27]. UAVs have the advantages of the above two approaches, which means they
are not only more cost-effective, but also more flexible and portable, grasping the change
in water quality with a short revisit period [28]. At the same time, the data obtained by
UAVs is more accurate because of the low-altitude flight, which is suitable for small and
fragmented urban water bodies. Due to these advantages, UAVs have been widely used to
retrieve various water quality parameters in previous studies.

After obtaining remote sensing data, bio-optical models are used to analyze the water
components. The models can be roughly divided into analytical methods and empirical meth-
ods [29–31]. The former is to use the theory of radiation transfer to deduce the optical charac-
teristics of each component in the water column, which extends the semi-analytical methods
and quasi-analytical methods, generally used to estimate concentrations of chlorophyll-a(Chl-
a), total suspended solids and other optically active substances [29]. For example, Lee et al. put
forward a quasi-analytical model for Chl-a in class II water in 2002 [32]. Subsequently, in 2013,
Li et al. reparameterized and proposed the IIMIV model, which was used to retrieve Chl-a
concentrations [33]. Instead of using onboard multispectral cameras as sensors, these methods
typically use optical sensors with more specific spectral information, such as spectrophotome-
ters or ocean optics in situ sensors [33,34]. In contrast, empirical methods are to establish the
relationship between water quality parameters and radiation data through statistical analysis
rather than physical or optical principles [29,35,36], which are suitable methods for this study
considering the complexity of the inland water composition.

With the progression of algorithms, the statistical analysis models used in empirical
methods are also improving, with higher accuracy and universality [35]. In 2001, Cheng
and Lei used multiple linear regression models to construct relationships between Landsat
TM images and Carlson’s trophic state index to assess the nutrient status of a reservoir [17].
Kageyama et al. used an UAV equipped with near-infrared sensors to monitor the seasonal
changes of blue-green algae and water quality in the reservoir and predicted water quality
parameters through fuzzy C-means in 2016, which was more complicated [37]. Until
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nowadays, machine learning algorithms were the mainstream in model construction [35,38].
Zhu and Mao combined remote sensing data with environmental factors as input data
and used a backpropagation neural network as the modeling approach to retrieve the
eutrophication index in 2021 [39]. However, the latest generation of algorithms, such as
XGB, have been proposed, and their applications and advantages in UAV remote sensing
are waiting to be studied compared to traditional algorithms. Therefore, three machine
learning methods proposed at different times are used to evaluate the eutrophication level
in our study area. Through in situ monitoring and laboratory physicochemical analysis
of water samples, four key parameters of eutrophication level are obtained, i.e., Chl-a,
total phosphorus (TP), total nitrogen (TN), and Secchi depth (SD) [12,40–42], and then the
trophic state assessment index (TLI) is calculated. Combined with multi-spectral UAV
and three machine learning algorithms, namely the emerging algorithm XGB and two
traditional algorithms RF and ANN, water-quality inversion models are established. The
modeling results are evaluated to measure the performance of several algorithms in the
application of water-quality inversion and monitor the eutrophication status of the study
area. Through the above process, a reliable water-quality inversion model is built, which
provides an economic and practical framework for the water-quality inversion of urban
rivers and lakes and thus provides a reference for water ecological environment control.

Overall, the objectives of this work are (1) to conduct field sampling and water quality
detection in the study area, then analyze the correlation between water quality parameters
and TLI, (2) to couple multiple machine learning algorithms and UAV remote sensing
images to establish an inversion model of water quality parameters and then evaluate and
contrast the accuracy and reliability of the RF, ANN and XGB models and (3) to analyze
the spatial distribution of water trophic status in the study area by using the model with
the best performance.

2. Materials and Methods
2.1. Study Area

The study area is four lakes of the South China University of Technology (SCUT)
located in Tianhe District, Guangzhou City, Guangdong Province, China (23◦06′∼23◦14′

N, 113◦15′∼113◦26′ E), which are the landscape lakes of the campus, with a total area of
6.378 ha; they eventually flow into the Liede River (Figure 1). The lakes are characterized
by the representative subtropical monsoon climate, which is warm and rainy in the wet
season. The rainy period spans from April to June, with average annual precipitation of
more than 1800 mm. Before the implementation of a series of water pollution prevention
measures, these lakes were experiencing severe eutrophication because of the non-point-
source pollution during rainy season. All four lakes were covered with blue-green algae all
the time, destroying the ornamental value completely.

As the source of the Liede River (with a total length of 4.3 km, flowing through Tianhe
District and finally into the Pearl River front channel), the lakes not only have a strong
influence on the campus landscape of SCUT but also have a profound effect on the water
quality of the Liede River and therefore impact the city appearance of Tianhe District, the
central business district of Guangzhou. It is because of such a critical geographical location
and a high potential risk of eutrophication that the preventive monitoring of the lakes
is necessary.

2.2. Data Collection
2.2.1. Field Data

On 12 September 2021, we conducted the on-site sampling of four lakes in SCUT.
It is in autumn, a period of high-algae-bloom incidence [39]. It was a sunny day with
temperatures of about 26–36 ◦C and good sunshine conditions. Through observation, the
ecological environment of the study area was basically normal, with abundant vegetation
along the shore and some aquatic animals and plants visible in the lakes. All four lakes
were free of algae, and the water was relatively clear without odor.
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Lake, Middle Lake and West Lake (from top to bottom).

As is shown in Figure 1, 45 sampling points were evenly distributed over the study
area in order to typically gauge the trophic state of the lakes. Four parameters, i.e., Chl-a,
TP, TN and SD, need to be measured, among which Chl-a, TP and TN should be measured
in the laboratory, so the water samples were taken in site and brought back to the laboratory
in a short time. Subsequently, TP and TN were measured by a Lohand Biological LHC660
gas-phase molecular absorption spectrometer. An online self-cleaning chlorophyll sensor
was used to measure Chl-a.

SD was measured using a Secchi disk on site simultaneously. The Secchi disk was
immersed in water and allowed to sink slowly until the demarcation of black and white on
the disk surface cannot be seen, at which point the scale at the water surface was recorded
as the SD value of the sampling point.

The water quality parameters of each sampling point are shown in Table A1.

2.2.2. UAV Data

DJI Phantom 4 multispectral was used as the UAV platform to collect spectral infor-
mation of the water bodies; it is mounted with six 1/2.9-inch CMOS, including one color
sensor for visible-light imaging and five monochrome sensors for multispectral imaging, by
which images of five bands (green, blue, red, red edge, NIR) can be obtained, respectively.

The spectral data were collected simultaneously with the measured water quality
data on a sunny day from 8 to 10 a.m. and 2 to 4 p.m. to avoid reflective interference
caused by direct sunlight on the water surface. Before the formal experiment, the UAV first
photographed three diffuse plates with different reflectivity at an altitude of about 1 m for
subsequent radiometric calibration.

DJI GS Pro was used to set the flight path over each sampling point after the prepara-
tion work. Flight parameters were set as follows: 90 m sailing height, 70% forward overlap
rate and 60% side overlap rate. The max image size of the photos taken by the UAV was
1400 × 1300.

2.3. Method
2.3.1. Data Processing

DJI Terra and The Environment for Visualizing Images (ENVI) were used to process
the spectral data. As is shown in Figure 2, image preprocessing involving radiometric
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correction and image mosaic was completed by DJI Terra, a drone image processing
software independently developed by DJI. As the flight height was low, errors caused by
atmospheric radiation were excluded. Radiometric calibration was carried out by importing
on-site photos of calibration plates taken before formal flights and the reflectivity data of
the calibration plate in different bands as reference, by which the digital number value was
converted to the radiance value by pixel.
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After exporting the processed remote images, ENVI, a remote sensing image process-
ing platform, was used to read the reflectivity of the five bands at 45 sampling points.

2.3.2. Quantification of Trophic State

The TLI is used to evaluate the trophic state of the lakes. Considering TN and TP are
often limiting factors for algae in lakes and reservoirs, while SD and CODMn are good
reflection of algal biomass, Chinese scholars took the modified Carlson’s trophic state index
(TSIm) [43] as reference and established TLI based on five water quality indicators, which
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are widely used in China [44,45]. The construction method was as follows: Nutritional
levels were rated on a continuous scale from 0 to 100, with higher scores indicating higher
levels of nutrition and associated risks. The index assumes that the corresponding TLI
(Chl-a) is 0 and 100 when the Chl-a concentration is 0.1 and 1000 ug/L, respectively. Based
on the hypothesis and the relationship between Chl-a and other chemical indicators of
water quality (TN, TP, SD, CODMn), the evaluation equation of TLI and each water quality
parameter are deduced as follows:

TLI(Chl-a) = 10(2.5 + 1.086lnChla) (1)

TLI(TP) = 10(9.436 + 1.624lnTP) (2)

TLI(TN) = 10(5.453 + 1.694lnTN) (3)

TLI(SD) = 10(5.118− 1.94lnSD) (4)

TLI(CODMn) = 10(0.109 + 2.661lnCODMn) (5)

TLI(∑) =
m

∑
j=1

Wj·TLI(j) (6)

Wj =
r2

ij

∑m
j=1 r2

ij
(7)

where the unit of Chl-a is mg/m3; the units of TP, TN, and CODMn are mg/L; and the unit
of SD is meters. TLI(j), Wj, and rij represent the trophic state index, the weight coefficient
and the correlation coefficient with the Chl-a of the j-th species parameter, respectively.

Based on the calculation results of the survey data of 26 major lakes in China, the
correlation coefficients between Chl-a and each water quality parameter are obtained in
Table 1:

Table 1. rij and r2
ij values between some parameters and Chl-a in Chinese lakes.

Indicators Chl-a TP TN SD CODMn

rij 1 0.84 0.82 −0.83 0.83
r2

ij 1 0.7056 0.6724 0.6889 0.6889

Due to the lack of CODMn data in our study area, TLI(CODMn) is no longer included
in the calculation of TLI. In this study, the expression for the TLI is:

TLI = 0.3261TLI(Chl-a) + 0.2301TLI(TP) + 0.2192TLI(TN) + 0.2246TLI(SD) (8)

The specific classifications are as follows: oligotrophic (TLI < 30), mesotrophic
(30 ≤ TLI < 50), light eutrophic (50 ≤ TLI < 60), middle eutrophic (60 ≤ TLI < 70) and hyper
eutrophic (TLI ≥ 70).

2.3.3. Modeling Approaches

(1) Water Quality Estimated Models
In this study, RF, XGB and ANN were chosen to build the inversion model of Chl-a, TP,

TN, SD and TLI values, which are suitable for building black-box models between multiple
factors that lack a significant physicochemical relationship. The reflectance of each point on
99 selected bands and band combinations was taken as the sample input, and the samples
were divided into a training set (70%) and a testing set (30%), among which the former was
used for model construction and the latter would be input to verify the accuracy of the
models. Each parameter was modeled separately [46].

RF is an integrated algorithm combined by a number of Classification and Regression
Trees (CART) [47]. As there were 99 input bands and band combinations, there were
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99 characteristic values in the sample. After parameter adjustment, the number of CART in
the RF model was set to 1000. Each CART in the model will extract a part of samples from
the training set as a sub-training set, and a part of the 99 feature values will be randomly
selected to find the optimal segmentation points to divide the left and right sub-CARTs.
The final prediction result of this CART is the mean value of the leaf nodes reached by the
sample points, and the final prediction result of RF model is the mean of the predicted
value of all CARTs [48].

XGB is a gradient-boosting algorithm based on boosting trees. Compared with the
traditional Gradient Boosting Decision Tree (GBDT), XGBR has a better anti-overfitting
ability by adding the regularization into the loss function. Like RF, XGB also uses CART as
a base regressor, uses a greedy algorithm to traverse all segmentation points of all features
and finally takes the sum of all CARTs as the predicted value [49].

ANN is formed by a large number of interconnected processing units (neurons),
including the input layer, hidden layer and output layer [50]. Due to the small amount of
data in this study, only one hidden layer was used.

(2) Analysis of Model Accuracy and Correlation among Water Quality Indices
To find out the relationship and interaction between each water quality parameters

and TLI, the Pearson correlation coefficient between any two parameters was calculated,
measuring the linear correlation between two variables [51]. The higher the value is, the
higher the correlation between the two indices. Meanwhile, the significance test was carried
out to estimate the rationality of the coefficient. The significance level we used were 0.05,
0.01, 0.001, and in this order, the credibility of the hypothesis increases. The Pearson
correlation coefficient is calculated as follows:

r =
∑n

i=1
(
Xi − X

)(
Yi −Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi −Y

)2
(9)

where X and Y are two group of parameters, and n is the number of samples.
The root mean square error (RMSE) and the coefficient of determination (R2) were

selected to measure the accuracy of the models, which are defined as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − f (x i))
2 (10)

R2 = 1− ∑n
i=1 (yi − f (x i))

2

∑n
i=1(yi − y)2 (11)

where y is the measured value of each water quality parameter, and TLI, f (x i) is the
predictive value; n is the number of samples.

3. Result
3.1. Measured Data Analysis and TLI Level

Observing the results in Figure 3, the TLI of our study area varied gently between
different samples and was totally at a low level, ranging from 46.81 to 58.17, which showed
that the lakes were in a mesotrophic or a light eutrophic state. From Figure 3, it was obvious
that the trophic level of North Lake was significantly lower than the other three lakes with
the average TLI of under 50, while that of the other three lakes was above 54, which showed
the geographical heterogeneity of TLI, as the three lakes are close to each other, while North
Lake is about 1.3 km away from them. This was also in line with our field observation
results. During sampling, we found that compared with the other three lakes, the shore
of the North Lake has significantly more aquatic animals and plants, showing a better
ecological environment.
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To find the relationship between the water quality parameters and TLI in our study
area, the Pearson correlation coefficients between them were calculated, shown in Figure 4.
Within four water quality parameters, TN displayed the most significant correlation with
TLI with a correlation coefficient of 0.81 at the 0.001 significance level. Besides, compared
to several other water quality parameters that varied in a very narrow range, spans of
TN were also the largest. According to the Environmental Quality Standards for Surface
Water (GB3838-2002), the TN in our study area spanned 0.153 to 1.88, covering class I to
V, which may result in the strong correlation between TLI and TN. As the limiting factor
of eutrophication, TP also had a strong positive correlation with TLI, while transparency
had a weak negative correlation with the above three factors, which is because the water
under eutrophication will become muddy and reduce the ornamental value. Surprisingly,
Chl-a, the core parameter in TLI construction, had a low correlation coefficient with TLI
(only 0.18), which was contrary to our expectation. The reason was speculated to be the
small variation and overall low level of Chl-a in our study area.

3.2. Model Accuracy Verification and Comparison

RF, XGB and ANN were used to construct inversion models, respectively. All three
models were optimized to ensure that relatively accurate results were obtained. The
evaluation accuracy of each model is shown in Table 2.

Table 2. Accuracy validation metrics of different regression models.

Chl-a TP TN SD TLI

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

RF 0.81 1.20 0.49 0.02 0.88 0.29 0.91 0.03 0.88 1.67
XGB 0.93 0.58 0.67 0.02 0.95 0.23 0.81 0.03 0.81 1.64
ANN 0.70 1.51 0.59 0.02 0.85 0.20 0.74 0.09 0.78 2.47
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It is found that the three regression models showed a certain consistency in the es-
timation precision of each index, that is, among the five parameters, TN had the highest
accuracy and average determination coefficient ( R2 = 0.89, RMSE = 0.24

)
. The photosen-

sitive Chl-a and the observable SD followed with R2 of 0.81 and 0.82, respectively, showing
good performance. On the contrary, the fitting effect of TP is poor, for the R2 of the three
models is no more than 0.7.

Considering Figure 5, it can be observed that, although there is no significant gap
between RF and the other two algorithms in terms of R2 and RMSE, the tropic line of RF
deviates from the line of 45 degrees in the scatter plots, which proves that the predicted
values are not in good agreement with measured values, leading to the loss of the credibility
of the RF models. Among the remaining two models, ANN performed better at estimating
Chl-a and TP because the regression line is near 45 degrees. The opposite is true for the
other three parameters, with XGB performing better. Combined with the consideration of
R2andRMSE in Table 2, XGB outperformed ANN with the best average accuracy validation
metrics ( R2 = 0.83, RMSE = 0.52

)
. Therefore, we can deduce that the XGB model is the

most suitable for water-quality inversion among the three models mentioned above.
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3.3. Spatial Distribution of Water Quality and Eutrophication Degree

Based on the above results, the XGB model was confirmed as the optimal inversion
model with the highest accuracy and was used to retrieve the water quality parameters
in the study area to draw the distribution map (Figure 6). The region with the size of
5*5 pixels on the remote sensing image was taken as the unit for cyclic extraction, and the
average reflectance value of all 25 pixels was taken as the input variable of the region.
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The spatial distribution of TLI is consistent with our expectation based on the measured
data, with little overall change. The TLI values in most areas remain in the light eutropher
state, while a small part is in the mesotropher state. From the perspective of distribution
span, the range of TN is the largest, which is also in good agreement with the measured
data. As the water quality parameter with the strongest correlation with TLI, its distribution
is almost consistent with TLI, that is, the indices of North Lake are significantly lower than
those of the other three lakes. The distribution of TP is relatively uniform, concentrated
around 0.13. Only in some areas of Middle Lake did it increase significantly, which may be
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related to the distribution of the drainage outlet. The values of Chl-a in North Lake and
Middle Lake are lower than those in West Lake and East Lake, and there is an obvious
upward trend from Middle Lake to West Lake.

It is worth noting that we deliberately included the part covered by shadows in the
selection of water areas. It can be seen that, except SD and Chl-a, the other three indicators
are significantly different between the shaded area and the non-shaded area, and the values
of the shaded area are all lower than normal. Taking the distribution of TP as an example,
the TP values in the shaded area on the right bank of East Lake and the lower side of
West Lake are obviously lower than the surrounding normal values, and the blue–green
boundary on the distribution map is the shaded boundary, which allows us to confirm that
shading does have a significant impact on the analysis of multispectral data.

Overall, based on the analysis of TLI values in our study area, we believe that the current
trophic status of the lakes is relatively normal and that there is no hyper eutrophication risk.

4. Discussion

From the result, the three algorithms (RF, XGB, ANN) we adopted in this study all
showed high R2, which shows that the black-box model based on artificial intelligence
algorithm is suitable for the data without obvious physical mechanism. Wei et al. used
several artificial intelligence algorithms to identify black-odor water bodies in cities and
gained results with higher reliability [52], which is consistent with our results. Among
the three models, XGB performs the best, which is thought to be related to its innovation
in error reduction and noise processing. As a new boosting algorithm, XGB makes a
lot of improvements on the basis of GBDT. One of the most important optimizations is
the addition of a regularized model to reduce overfitting, which greatly improves the
generalization ability of the model [49]. Therefore, compared with RF, which is prone to
overfitting when dealing with noisy data [53], the results of XGB models are more accurate
in this study. As one of the earliest developed machine learning algorithms, ANN is also
the first to be applied in the study of water-quality inversion using empirical methods [50].
The limited sample size in our study may not show its advantages. However, in recent
years, deep learning methods evolved from ANN, such as cyclic and convolutional neural
networks, still have a huge space for development and exploration in the application of
water-quality remote sensing [35].

By analyzing the water surface morphology of East Lake through visible-light photos,
it is found that there is sun glint distributed on the lake, which is due to the specular
reflection phenomenon caused by waves and the specific solar height angle. Studies have
shown that the reflectivity of all bands in sun glint region increases in different amplitudes
according to the shape and size of the wave [54]. In this study, due to the small impact scope
and not covering the sample point, the sun glint does not affect the process of modeling.
However, when analyzing the TLI distribution of the study area subsequently, the area
covered by light plot showed a difference from other areas, reflected in the pixel units with
obvious color difference from the surrounding areas. In order to reduce the effect of mirror
reflection, we have to avoid a period of high solar elevation angle when choosing 8–10 a.m.
and 2–4 p.m. to collect spectral data. In future studies, attention should be paid to the solar
altitude angle and water surface condition when sampling.

In the TLI inversion of the study area, we used the remote sensing images of the day
for collecting data to extract the reflectivity and did not deliberately avoid the shadow part.
The results shows that the three parameters, TLI, TN and TP, were significantly reduced
in the shaded area and generated an obvious dividing line. The shadow will express the
spectral characteristics of the water body, so that the amount of radiation is reduced [55,56],
thereby obtaining an index below normal. However, there is no significant abnormality in
the predicted values of Chl-a and SD in the shaded area. We speculated that the former is the
only visible physical index, while the latter is photosensitive with the obvious absorption
effect in the red band. The relationship between them and the spectral information is more
significant than the other parameters, which may have been the reason why they have a
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better anti-shadow interference property. Clearly, further work is required to confirm it. At
present, the research about the influence of shadows on water remote sensing is mainly
aimed at weakening the influence of cloud shadow on ocean water inversion [56]. The
compensation method of urban water-quality inversion affected by ground object shadow
based on high-resolution remote sensing is relatively blank.

In addition, we find that the prediction results of the XGB model are relatively con-
servative. Some extreme values that are significantly different from the overall trend have
not been accurately estimated compared to the true values. For example, the maximum
measured value of SD (0.78) is 39.3% higher than the sub-maximum value (0.56). However,
the maximum value of the inversion results is 0.58, which is closer to the sub-maximum
value, so we speculate that it does not support the extreme case wherein the prediction
deviates from the overall trend significantly. Therefore, after removing the maximum and
minimum values, the inversion accuracy of the model will be improved. However, it is
worth noting that, among the five parameter inversions, the results of TLI are least affected
by this condition. In future model training, it is suggested to measure the degree to which
the extreme value influences the trend line and the estimation of fitted value and then to
process the raw data to reduce this effect.

In this study, we used TLI to quantify the trophic state, which takes Chl-a as the
benchmark weight and determines the weights of other water quality parameters through
the correlation between Chl-a and them, respectively. When constructing TLI expression,
we used correlation data from the survey of 26 lakes in China to calculate each weight.
However, through the correlation analysis of each water quality parameter in our field
sampling results, we found that it was different from the statistical data we used, which
would affect the contribution of each parameter to the degree of nutrition, leading to some
errors. In order to avoid such errors, the weights of water quality parameters in TLI should
be recalculated in different study areas.

According to the Action Plan for Prevention and Control of Water Pollution in 2015,
Guangzhou city enacted efforts in water-environment treatment by carrying out a series of
measures to maintain the nutrient-rich water body at a good level. From the environmental
Quality Status Report of Guangzhou in 2021, the water quality in the study area is all class
II. When sampling, we found that the TLI values at all points did not exceed 60, that is, all
the sampling points did not reach the middle eutropher state, which has a certain negative
impact on the establishment of the model. Due to the lack of spectral data of middle or
above eutrophic water, we cannot guarantee the accuracy of the model in the prediction of
water bodies with TLI < 30 or > 60. Zhu and Mao found a similar situation for the lack of
non-eutrophic samples in modeling [39].

According to the study, we believe that, as an emerging artificial intelligence algorithm,
XGB is optimal for building an inversion model of water quality with a small sample, which
shows an excellent fitting effect and is recommended to use. In future research, we suggest
that more attention should be paid to the influence and interference of mirror reflection
and shadow on multispectral data. In addition, water bodies with a wider range of water
quality should be selected as research objects to obtain models with good prediction effects
for various trophic states.

5. Conclusions

In this study, we sampled and tested 45 points in the study area, used three algorithms
to retrieve the trophic state and then selected the optimal model to draw the spatial
distribution map of water quality, resulting in the following conclusions:

(1) North, West, East and Middle Lakes of SCUT were selected for data collection in
clear weather. The spectral data of UAV and water quality data were collected simultane-
ously. By analyzing the water quality parameters at each point, we found that the water
quality in the study area was relatively stable. The overall levels of Chl-a, TP and SD were
low. TN, on the other hand, has a certain spatial specificity, with a maximum value of 1.88,
belonging to Class V. Since TN is one of the limiting factors of eutrophication, the water
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quality monitoring of water discharged into this area should be strengthened to avoid
eutrophication risk.

(2) Due to the active implementation of water control policies in Guangzhou, the water
quality in our study area is good, with a mesotrophic or light eutrophic state. Among
the four lakes, North Lake has the lowest TLI, which is basically in the mesotrophic state.
Through field observation, its ecological environment, biodiversity and ornamental value
are also the best.

(3) Judging from the accuracy evaluation results of the RF, ANN and XGB models,
the validation indices of the three models are all satisfactory. As a new algorithm, XGB
performs best for water-quality inversion in this area (R2 = 0.83, RMSE = 0.52). The model
was used to invert the water quality and draw the spatial distribution map. The results of
the map are in good agreement with the measured ones, so that we confirm that XGB is
well suited for water-quality inversion.

In future work, it is encouraged to (1) use a wider range of data to train the model
and thus develop high-precision inversion models suitable for water bodies of all trophic
levels, (2) take the influence of specular reflection and ground object shadow into account
to develop an appropriate compensation formula to reduce the environmental error and (3)
explore the possibility of the latest algorithms such as deep learning in the field of urban
water-quality inversion.
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Appendix A

Table A1. Measured water quality parameters of each sampling point.

Sampling Point Chl-a TP TN SD
(mg/m3) (mg/L) (mg/L) (m)

1 4.62 0.139 0.421 0.4
2 4.6 0.103 0.262 0.42
3 4.39 0.105 0.152 0.43
4 3.01 0.099 0.315 0.38
5 3.56 0.098 0.246 0.44
6 2.54 0.125 0.315 0.4
7 2.24 0.11 0.345 0.39
8 3.4 0.115 0.296 0.4
9 2.77 0.146 0.318 0.3
10 2.46 0.122 0.41 0.4
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Table A1. Cont.

Sampling Point Chl-a TP TN SD
(mg/m3) (mg/L) (mg/L) (m)

11 2.43 0.141 0.583 0.4
12 5.4 0.116 0.899 0.45
13 5.99 0.11 0.912 0.42
14 5.27 0.142 0.823 0.4
15 5.67 0.115 1.05 0.42
16 3.28 0.125 1.45 0.37
17 2.16 0.153 1.88 0.38
18 4.72 0.139 1.21 0.4
19 5.2 0.13 0.865 0.78
20 3.71 0.123 0.955 0.38
21 5.48 0.124 0.835 0.52
22 6.26 0.116 1.09 0.34
23 2.74 0.115 1.02 0.36
24 4.79 0.122 1 0.4
25 3.3 0.181 0.654 0.37
26 4.82 0.117 0.896 0.48
27 3.42 0.117 1.05 0.37
28 4.3 0.112 1.35 0.38
29 2.39 0.116 0.956 0.43
30 1.74 0.114 1.18 0.45
31 2.69 0.136 0.955 0.4
32 4.43 0.111 0.756 0.42
33 5.61 0.116 0.815 0.43
34 1.82 0.14 1.56 0.4
35 1.72 0.134 1.48 0.26
36 3.88 0.139 1.42 0.3
37 2.64 0.133 1.65 0.26
38 3.05 0.145 1.04 0.27
39 3.74 0.123 0.8 0.28
40 2.06 0.127 1.25 0.27
41 3.12 0.168 1.62 0.27
42 3.05 0.13 0.802 0.29
43 1.26 0.132 1.62 0.27
44 2.04 0.12 1.58 0.34
45 1.73 0.127 1.19 0.27
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