The Dynamics of Hydrological Extremes under the Highest Emission Climate Change Scenario in the Headwater Catchments of the Upper Blue Nile Basin, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Hydro-Meteorological Data Collection and Processing
2.3. Bias Correction of Climate Models Data
2.4. Geophysical Data Collection and Processing
2.5. SWAT Model Description, Setup, and Simulation
2.6. SWAT Model Calibration and Validation
2.7. Selection and Analysis of High Flow and Low Flow of Watersheds
3. Results and Discussion
3.1. Errors of Climate Models
3.2. Change in Maximum Temperature
3.3. Change in Minimum Temperature
3.4. Change in Rainfall
3.5. Impacts of Climate Change on Low Flow of Watersheds
3.6. Impacts of Climate Change on High Flow of Watersheds
Watersheds | MLF (Q0–Q25) (m3/s) | MLF (Q26–Q50) (m3/s) | MLF (Q51–Q75) (m3/s) | MLF (Q76–Q100) (m3/s) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BlF | 2020s | 2050s | 2080s | BlF | 2020s | 2050s | 2080s | BlF | 2020s | 2050s | 2080s | BlF | 2020s | 2050s | 2080s | |
Gilgel Abay | 1.46 | 1.48 | 1.63 | 1.64 | 1.80 | 1.84 | 1.82 | 1.79 | 2.11 | 2.04 | 1.93 | 1.99 | 2.84 | 2.52 | 2.40 | 2.30 |
Gumara | 0.53 | 0.46 | 0.46 | 0.44 | 0.64 | 0.63 | 0.61 | 0.56 | 0.72 | 0.72 | 0.67 | 0.65 | 0.90 | 0.85 | 0.81 | 0.82 |
Ribb | 0.25 | 0.24 | 0.24 | 0.24 | 0.33 | 0.32 | 0.30 | 0.27 | 0.41 | 0.38 | 0.36 | 0.34 | 0.62 | 0.59 | 0.59 | 0.57 |
Megech | 0.41 | 0.61 | 0.50 | 0.61 | 0.84 | 0.95 | 0.91 | 0.81 | 1.22 | 1.08 | 1.08 | 0.95 | 1.53 | 1.31 | 1.24 | 1.22 |
Watrsheds | Average High Flow in the Baseline Period (m3/s) | Change in High Flow (%) | Average Change (%) | ||
---|---|---|---|---|---|
2020s | 2050s | 2080s | |||
Gilgel Abay | 283.49 | 10.56 | 13.57 | 17.69 | 13.94 |
Gumara | 238.1 | 7.15 | 11.18 | 14.36 | 10.90 |
Ribb | 94.53 | 3.56 | 8.50 | 18.67 | 10.24 |
Megech | 87.10 | 6.72 | 10.63 | 22.12 | 13.16 |
Watersheds | MHF (Q0–Q25) (m3/s) | MHF (Q26–Q50) (m3/s) | MHF (Q51–Q75) (m3/s) | MHF (Q76–Q100) (m3/s) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BlF | 2020s | 2050s | 2080s | BlF | 2020s | 2050s | 2080s | BlF | 2020s | 2050s | 2080s | BlF | 2020s | 2050s | 2080s | |
Gilgel Abay | 345.09 | 345.77 | 352.31 | 376.11 | 293.90 | 321.93 | 323.92 | 344.27 | 267.13 | 307.30 | 314.98 | 325.81 | 236.02 | 281.84 | 301.49 | 292.57 |
Gumara | 279.55 | 287.91 | 302.90 | 313.59 | 253.31 | 260.73 | 273.38 | 282.95 | 226.19 | 249.31 | 259.01 | 263.78 | 199.23 | 226.65 | 227.60 | 233.10 |
Ribb | 109.69 | 109.54 | 123.62 | 140.19 | 96.65 | 101.17 | 104.70 | 114.31 | 90.06 | 95.81 | 98.06 | 102.90 | 83.92 | 86.06 | 86.92 | 96.05 |
Megech | 102.05 | 105.59 | 110.36 | 120.08 | 91.60 | 94.98 | 97.78 | 108.25 | 82.88 | 89.08 | 92.94 | 101.34 | 73.33 | 83.95 | 86.46 | 97.92 |
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J., Ding, Y., Griggs, D., Noguer, M., van der Linden, P., Dai, X., Mas, K., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2002. [Google Scholar]
- Oreskes, N. The scientific consensus on climate change. Science 2004, 306, 1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adedeji, O. Global climate change. J. Geosci. Environ. Prot. 2014, 2, 114. [Google Scholar] [CrossRef]
- IPCC. 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- IPCC. 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; 996p. [Google Scholar]
- IPCC. 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; 582p. [Google Scholar]
- Trenberth, K.E. Conceptual framework for changes of extremes of the hydrological cycle with climate change. In Weather and Climate Extremes; Springer: Berlin/Heidelberg, Germany, 1999; pp. 327–339. [Google Scholar]
- Trenberth, K.E.; Fasullo, J.T. Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J. Geophys. Res. Atmos. 2012, 117, 17103. [Google Scholar] [CrossRef]
- Karl, T.R.; Knight, R.W. Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Am. Meteorol. Soc. 1998, 79, 231–242. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012, 491, 435–438. [Google Scholar] [CrossRef]
- Gebremicael, T.G.; Mohamed, Y.A.; Zaag, P.V.; Hagos, E.Y. Temporal and spatial changes of rainfall and streamflow in the Upper Tekezē-Atbara river basin, Ethiopia. Hydrol. Earth Syst. Sci. 2017, 21, 2127–2142. [Google Scholar] [CrossRef] [Green Version]
- Tesemma, Z.K.; Mohamed, Y.A.; Steenhuis, T.S. Trends in rainfall and runoff in the Blue Nile Basin: 1964–2003. Hydrol. Process. 2010, 24, 3747–3758. [Google Scholar] [CrossRef] [Green Version]
- Gizaw, M.S.; Biftu, G.F.; Gan, T.Y.; Moges, S.A.; Koivusalo, H. Potential impact of climate change on streamflow of major Ethiopian rivers. Clim. Chang. 2017, 143, 371–383. [Google Scholar] [CrossRef]
- Bekele, W.T.; Haile, A.T.; Rientjes, T. Impact of climate change on the streamflow of the Arjo-Didessa catchment under RCP scenarios. J. Water Clim. Chang. 2021, 12, 2325–2337. [Google Scholar] [CrossRef]
- Gurara, M.A.; Jilo, N.B.; Tolche, A.D. Modelling climate change impact on the streamflow in the Upper Wabe Bridge watershed in Wabe Shebele River Basin, Ethiopia. Int. J. River Basin Manag. 2021, 1–13. [Google Scholar] [CrossRef]
- Worqlul, A.W.; Dile, Y.T.; Ayana, E.K.; Jeong, J.; Adem, A.A.; Gerik, T. Impact of climate change on streamflow hydrology in headwater catchments of the Upper Blue Nile Basin, Ethiopia. Water 2018, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Roth, V.; Lemann, T.; Zeleke, G.; Subhatu, A.T.; Nigussie, T.K.; Hurni, H. Effects of climate change on water resources in the upper Blue Nile Basin of Ethiopia. Heliyon 2018, 4, e00771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mengistu, D.; Bewket, W.; Dosio, A.; Panitz, H.-J. Climate change impacts on water resources in the Upper Blue Nile (Abay) River Basin, Ethiopia. J. Hydrol. 2021, 592, 125614. [Google Scholar] [CrossRef]
- Adem, A.A.; Seifu, A.T.; Essayas, K.A.; Abeyou, W.W.; Tewodros, T.A.; Shimelis, B.D.; Assefa, M.M. Climate change impact on stream flow in the upper Gilgel Abay Catchment, Blue Nile Basin, Ethiopia. In Landscape Dynamics, Soils and Hydrological Processes in Varied Climates; Springer: Berlin/Heidelberg, Germany, 2016; pp. 645–673. Available online: https://link.springer.com/chapter/10.1007/978-3-319-18787-7_29 (accessed on 15 January 2015).
- Setegn, S.G. Modelling Hydrological and Hydrodynamic Processes in Lake Tana Basin, Ethiopia; KTH: Stockholm, Sweden, 2010. [Google Scholar]
- Conway, D.; Schipper, E.L.F. Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Glob. Environ. Chang. 2011, 21, 227–237. [Google Scholar] [CrossRef]
- FAO; UNESCO. FAO-UNESCO soil map of the world, 1:5,000,000. Africa. Fao Soil Bull. 1977, VI, 346. [Google Scholar]
- Setegn, S.G.; Srinivasan, R.; Dargahi, B. Hydrological modelling in the Lake Tana Basin, Ethiopia using SWAT model. Open Hydrol. J. 2008, 2, 49–62. Available online: https://benthamopen.com/contents/pdf/TOHYDJ/TOHYDJ-2-49.pdf (accessed on 27 November 2022). [CrossRef] [Green Version]
- Rathjens, H.; Bieger, K.; Srinivasan, R.; Arnold, J.G. CMhyd User Manual Documentation for Preparing Simulated Climate Change Data for Hydrologic Impact Studies; Online Resources; 2016; 16p, Available online: https://swat.tamu.edu/media/115265/bias_cor_man.pdf (accessed on 6 January 2023).
- Fang, G.H.; Yang, J.; Chen, Y.N.; Zammit, C. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol. Earth Syst. Sci. 2015, 19, 2547–2559. [Google Scholar] [CrossRef] [Green Version]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456, 12–29. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R. Soil and Water Assessment Tool User’s Manual; TWRI Report TR-192; Texas Water Resources Institute: College Station, TX, USA, 2002; p. 412. Available online: http://swat.tamu.edu/media/1294/swatuserman.pdf (accessed on 6 January 2023).
- Chakilu, G.G.; Sándor, S.; Zoltán, T.; Phinzi, K. Climate change and the response of streamflow of watersheds under the high emission scenario in Lake Tana sub-basin, upper Blue Nile basin, Ethiopia. J. Hydrol. Reg. Stud. 2022, 42, 101175. [Google Scholar] [CrossRef]
- Haile, A.T.; Akawka, A.L.; Berhanu, B.; Rientjes, T. Changes in water availability in the Upper Blue Nile basin under the representative concentration pathways scenario. Hydrol. Sci. J. 2017, 62, 2139–2149. [Google Scholar] [CrossRef] [Green Version]
- Abtew, W.; Melesse, A. Climate change and evapotranspiration. In Evaporation and Evapotranspiration; Springer: Berlin/Heidelberg, Germany, 2013; pp. 197–202. [Google Scholar]
- Chakilu, G.G.; Sándor, S.; Zoltán, T. Change in stream flow of gumara watershed, upper blue nile basin, ethiopia under representative concentration pathway climate change scenarios. Water 2020, 12, 3046. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Krysanova, V.; Benestad, R.E.; Hov, Ø.; Piniewski, M.; Otto, I.M. Uncertainty in climate change impacts on water resources. Environ. Sci. Policy 2018, 79, 1–8. [Google Scholar] [CrossRef]
- Moon, J.; Lee, W.K.; Song, C.; Lee, S.G.; Heo, S.B.; Shvidenko, A.; Kraxner, F.; Lamchin, M.; Lee, E.J.; Zhu, Y.; et al. An introduction to mid-latitude ecotone: Sustainability and environmental challenges. Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.) 2017, 53, 41–53. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; Barca, E.; Leone, M.; Porto, A.L. Impact of long-term climate change on flow regime in a Mediterranean basin. J. Hydrol. Reg. Stud. 2022, 41, 101061. [Google Scholar] [CrossRef]
- Parey, S.; Gailhard, J. Extreme Low Flow Estimation under Climate Change. Atmosphere 2022, 13, 164. [Google Scholar] [CrossRef]
- Chakilu, G.G.; Moges, M.A. Assessing the Land Use/Cover Dynamics and its Impact on the Low Flow of Gumara Watershed, Upper Blue Nile Basin, Ethiopia. Hydrol. Curr. Res. 2017, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gebrehiwot, S.G.; Taye, A.; Bishop, K. Forest cover and stream flow in a headwater of the Blue Nile: Complementing observational data analysis with community perception. Ambio 2010, 39, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, D.F.; Duan, Z.; Rientjes, T.; Disse, M. Analysis of combined and isolated effects of land-use and land-cover changes and climate change on the upper Blue Nile River basin’s streamflow. Hydrol. Earth Syst. Sci. 2018, 22, 6187–6207. [Google Scholar] [CrossRef] [Green Version]
- Shao, G.; Guan, Y.; Zhang, D.; Yu, B.; Zhu, J. The impacts of climate variability and land use change on streamflow in the Hailiutu river basin. Water 2018, 10, 814. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Y.P.; Zhang, X.J. Assessment of Climate Change Impacts on River High Flows through Comparative Use of GR4J, HBV and Xinanjiang Models. Water Resour. Manag. 2013, 27, 2871–2888. [Google Scholar] [CrossRef]
- Goulden, M.; Conway, D.; Persechino, A. Adaptation to climate change in international river basins in Africa: A review. Hydrol. Sci. J. 2009, 54, 805–828. [Google Scholar] [CrossRef]
Stations | Latitude | Longitude | Altitude (Meter) | Accessed Data | |
---|---|---|---|---|---|
Temperature | Rainfall | ||||
Gondar | 12.3 | 37.25 | 1973 | 1952–2009 | 1952–2009 |
Makisegnit | 12.39 | 37.55 | 1912 | 1987–2008 | 1996–2008 |
Addis Zemen | 12.12 | 37.77 | 1940 | 1996–2009 | 1997–2009 |
Debretabor | 11.86 | 37.99 | 2612 | 1951–2009 | 1951–2009 |
Werota | 11.92 | 37.69 | 1819 | 1992–2008 | 1969–2007 |
Wanzaye | 11.78 | 37.67 | 1821 | 2000–2009 | 1984–2008 |
Bahir Dar | 11.60 | 37.36 | 1800 | 1961–2009 | 1961–2009 |
Dangila | 12.25 | 36.84 | 2125 | 1954–2009 | 1954–2009 |
Injibara | 10.99 | 36.92 | 2568 | 1984–2008 | 1954–2008 |
Adet | 11.27 | 37.49 | 2179 | 1989–2009 | 1989–2009 |
Sekela | 10.98 | 37.21 | 2715 | 1989–2008 | 1988–2008 |
Wetet Abay | 11.37 | 37.04 | 1920 | 1987–2008 | 1987–2008 |
Climate Model | Description | Institution and Country | Climate Variables | Data Used |
---|---|---|---|---|
CanESM2 | The second-generation Canadian Earth System Model | Canadian Centre for Climate Modelling and Analysis (CCCma), Canada |
| 1971–2100 |
EC-EARTH | A European community Earth System Model | ECMWF (European Centre of Medium-Range Weather Forecast) |
| 1971–2100 |
CNRM-CM5 | Centre National de Recherches Météorologiques—Groupe d’études de l’Atmosphère Météorologique | (Centre National de Recherches Météorologiques—Groupe d’études de l’Atmosphère Météorologique) and Cerfacs (Centre Européen de Recherche et de Formation Avancée), France |
| 1971–2100 |
HadGEM2-ES | Hadley Centre Global Environment Model version 2 | Met Office Hadley Centre, UK |
| 1971–2100 |
NORESM1-M | The Norwegian Earth System Model version 1 | Norwegian Climate Centre, Norway |
| 1971–2100 |
CSIRO-Mk3-6-0 | Commonwealth Scientific and Industrial Research Organization | Commonwealth Scientific and Industrial Research Organization, Australia |
| 1971–2100 |
Watersheds | Calibration | Validation | Default Efficiency | |||
---|---|---|---|---|---|---|
NS | RVE (%) | NS | RVE (%) | NS | RVE (%) | |
Gilgel Abay | 0.86 | 1.31 | 0.84 | 1.36 | 0.15 | 32.41 |
Gumara | 0.67 | 1.25 | 0.63 | 1.88 | 0.18 | 36.84 |
Ribb | 0.71 | 1.14 | 0.74 | 1.07 | 0.09 | 28.69 |
Megech | 0.51 | −8.84 | 0.54 | −6.62 | −0.32 | −48.52 |
Watershed | Parameter | Description | t-Stat | p-Value | Minimum Value | Maximum Value | Fitted Value | Rank |
Gumara | R_CN2.mgt | Initial SCS CN II value | −10.14 | 0 | 0 | 1 | 0.14 | 1 |
V_ALPHA_BF.gw | Base flow alpha-factor (days) | 5.48 | 0 | −25 | 25 | −12 | 2 | |
V_ESCO.hru | Soil evaporation compensation factor | −3.07 | 0.03 | 0 | 1 | 0.42 | 3 | |
V_GW_DELAY.gw | Groundwater delay (days) | −2.9 | 0.09 | 0 | 10 | 7.34 | 4 | |
V_GW_REVAP.gw | Groundwater “revap” coefficient (days) | −2.23 | 0.11 | 0.02 | 0.2 | 0.19 | 5 | |
Gilgel Abay | R_CN2.mgt | Initial SCS CN II value | −58 | 0 | −0.2 | 0.2 | −0.18 | 1 |
V_ALPHA_BF.gw | Base flow alpha-factor (days) | 10.8 | 0 | 0 | 1 | 0.12 | 2 | |
A_SOL_K.sol | Saturated hydraulic conductivity (mm/h) | 6.1 | 0 | −0.5 | 1 | 0.47 | 3 | |
V_GW_REVAP.gw | Groundwater “revap” coefficient (days) | −1.2 | 0.2 | 0.02 | 0.2 | 0.10 | 4 | |
V_GWQMN.gw | Threshold water depth in the shallow aquifer for flow (mm) | 1 | 0.3 | 0 | 10 | 1.31 | 5 | |
Ribb | V__ESCO.hru | Soil evaporation compensation factor | 3.76 | 0.01 | 0 | 1 | 0.5 | 1 |
R__SOL_AWC.sol | Available water capacity (mm water/mm soil) | 3.55 | 0.01 | 0 | 1 | 0.9 | 2 | |
V__EPCO.hru | Plant uptake compensation factor | 2.55 | 0.04 | 0 | 1 | 0.7 | 3 | |
R__CN2.mgt | Initial SCS CN II value | −1.95 | 0.09 | −0.2 | 0.2 | 2.37 | 4 | |
V__ALPHA_BF.gw | Base flow alpha-factor (days) | 1.77 | 0.12 | 0 | 1 | 0.5 | 5 | |
Megech | R__CN2.mgt | Initial SCS CN II value | −10.55 | 0.00 | −0.2 | 0.2 | −0.02 | 1 |
V_ALPHA_BF.gw | Base flow alpha-factor (days) | −8.27 | 0.00 | 0 | 1 | 0.76 | 2 | |
V_GW_DELAY.gw | Groundwater delay (days) | −2.70 | 0.01 | 0 | 10 | 5.37 | 3 | |
V_GWQMN.gw | Threshold water depth in the shallow aquifer for flow (mm) | 2.26 | 0.03 | 0 | 2 | 0.55 | 4 | |
A_SOL_K.sol | Saturated hydraulic conductivity (mm/h) | 1.90 | 0.06 | −0.5 | 1 | −0.17 | 5 |
Months | Rainfall Model Error (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CanESM2 | EC-EARTH | CNRM-CM5 | HadGEM2-ES | NORESM1-M | CSIRO-Mk3-6-0 | |||||||
BBCr | ABCr | BBCr | ABCr | BBCr | ABCr | BBCr | ABCr | BBCr | ABCr | BBCr | ABCr | |
January | 3.71 | 0.14 | 3.09 | 0.06 | 4.77 | 0.83 | 4.02 | 0.57 | 3.92 | 0.54 | 2.11 | 0.05 |
February | 4.19 | 0.52 | 4.71 | 0.84 | 4.82 | 0.66 | 3.56 | 0.38 | 5.59 | 0.83 | 2.39 | 0.12 |
March | 4.69 | 0.81 | 4.89 | 1.23 | 6.34 | 1.28 | 2.13 | 0.08 | 4.03 | 0.622 | 6.51 | 1.33 |
April | 5.81 | 1.05 | −4.7 | −1.44 | 6.87 | 1.33 | 3.4 | 0.41 | −3.09 | −0.33 | −4.68 | −0.75 |
May | −5.61 | −1.89 | −3.89 | −0.84 | 4.93 | 1.55 | 4.32 | 1.24 | −4.87 | −1.52 | 3.28 | 0.72 |
June | −5.37 | −1.21 | 5.78 | 1.71 | 6.45 | 1.58 | −5.93 | −1.61 | 5.95 | 1.41 | 4.29 | 0.84 |
July | −6.09 | −1.94 | 6.01 | 1.96 | −5.89 | −1.85 | −6.49 | −1.85 | 5.81 | 1.81 | 5.43 | 1.64 |
August | 5.88 | 1.77 | 5.91 | 1.84 | 6.22 | 1.92 | 6.63 | 1.88 | 6.27 | 1.94 | 5.9 | 1.78 |
September | 5.52 | 1.69 | 5.03 | 1.36 | −4.11 | −1.04 | 2.76 | 0.42 | 5.35 | 1.61 | 4.39 | 1.17 |
October | 5.38 | 1.51 | −3.99 | −1.08 | 4.05 | 0.94 | 4.09 | 0.96 | −5.05 | −1.37 | 3.79 | 0.83 |
November | 4.6 | 0.79 | 4.23 | 0.41 | 4.46 | 0.75 | 2.62 | 0.25 | 6.55 | 1.35 | 4.77 | 0.84 |
December | 4.03 | 0.72 | 3.74 | 0.17 | 2.55 | 0.23 | 3.83 | 0.66 | 3.12 | 0.42 | 1.43 | −0.14 |
Average | 2.23 | 0.33 | 2.57 | 0.52 | 3.46 | 0.68 | 2.08 | 0.28 | 2.80 | 0.61 | 3.33 | 0.70 |
Model errors in maximum temperature (°C) | ||||||||||||
January | 0.67 | 0.24 | 0.39 | 0.14 | −0.61 | −0.22 | 0.03 | 0.01 | 0.17 | 0.08 | 0.11 | 0.04 |
February | 0.83 | 0.02 | 0.61 | 0.22 | 0.14 | 0.06 | 1.66 | 0.04 | 0.25 | 0.13 | 0.89 | 0.19 |
March | 0.41 | 0.36 | 0.07 | 0.06 | −0.32 | −0.28 | 0.05 | 0.04 | 0.06 | 0.05 | 0.28 | 0.25 |
April | 1.04 | 0.31 | 0.37 | 0.11 | 1.11 | 0.33 | 1.07 | 0.32 | 0.71 | 0.22 | 0.91 | 0.27 |
May | 0.83 | 0.14 | 0.83 | 0.14 | 1.26 | 0.50 | 0.97 | 0.32 | 1.06 | 0.23 | 0.99 | 0.28 |
June | 0.51 | 0.35 | −0.47 | −0.32 | 0.07 | 0.05 | 0.29 | 0.20 | −0.09 | −0.06 | 0.10 | 0.07 |
July | 0.21 | 0.04 | 0.95 | 0.18 | −1.04 | −0.35 | −0.84 | −0.16 | 0.05 | 0.01 | −0.58 | −0.15 |
August | −0.75 | −0.17 | −1.19 | −0.27 | 0.09 | 0.02 | −0.35 | −0.08 | −0.72 | −0.17 | −0.53 | −0.12 |
September | 0.86 | 0.20 | −0.30 | −0.07 | −0.60 | −0.14 | 0.13 | 0.03 | −0.09 | −0.02 | 0.04 | 0.01 |
October | −0.48 | −0.13 | 1.22 | 0.33 | 1.25 | 0.44 | 0.59 | 0.16 | 0.84 | 0.24 | 0.88 | 0.20 |
November | −0.16 | −0.09 | −0.34 | −0.19 | 0.44 | 0.25 | 0.14 | 0.08 | −0.11 | −0.06 | 0.16 | 0.09 |
December | 0.79 | 0.27 | 0.20 | 0.07 | 0.97 | 0.33 | 0.88 | 0.30 | 0.56 | 0.19 | 0.89 | 0.24 |
Average | 0.40 | 0.13 | 0.20 | 0.03 | 0.23 | 0.08 | 0.39 | 0.11 | 0.22 | 0.07 | 0.35 | 0.11 |
Model errors in minimum temperature (°C) | ||||||||||||
January | 0.18 | 0.07 | 0.42 | 0.11 | −0.49 | 0.04 | 0.35 | 0.00 | 0.39 | −0.22 | 0.36 | −0.04 |
February | −0.4 | −0.15 | −0.90 | 0.03 | 0.92 | 0.12 | 0.06 | −0.07 | −0.12 | 0.07 | 1.02 | 0.01 |
March | −0.39 | −0.12 | 0.22 | −0.03 | −0.02 | −0.06 | −0.34 | −0.15 | 0.24 | 0.10 | 1.52 | −0.03 |
April | 0.09 | 0.01 | 0.36 | 0.06 | 0.55 | 0.05 | 0.39 | −0.01 | 1.20 | −0.14 | 1.60 | −0.03 |
May | 1.12 | 0.20 | 1.22 | 0.17 | 1.17 | 0.19 | 1.21 | 0.22 | 1.26 | 0.17 | 1.66 | 0.19 |
June | 0.21 | 0.09 | 0.18 | −0.11 | −0.38 | −0.19 | 0.44 | 0.02 | 0.11 | 0.00 | 0.47 | −0.03 |
July | 1.25 | 0.24 | 1.25 | 0.21 | 1.14 | 0.18 | −0.60 | 0.21 | 0.57 | −0.07 | −0.19 | 0.12 |
August | −0.42 | −0.17 | −0.60 | −0.22 | 0.43 | −0.02 | −0.42 | 0.19 | −0.42 | −0.15 | −0.02 | −0.06 |
September | 1.15 | 0.20 | 0.04 | 0.07 | −0.27 | −0.03 | 0.87 | 0.12 | 0.25 | −0.01 | 0.38 | 0.06 |
October | −0.23 | −0.13 | 0.79 | 0.10 | 1.67 | 0.35 | 1.04 | 0.21 | 1.39 | 0.22 | 1.22 | 0.18 |
November | 0.1 | −0.09 | −0.17 | −0.14 | 1.21 | 0.06 | 1.05 | 0.21 | 0.18 | 0.02 | 0.58 | 0.03 |
December | 1.61 | 0.27 | 0.97 | 0.17 | 0.89 | 0.11 | 0.75 | 0.14 | 1.23 | 0.21 | 1.47 | 0.17 |
Average | 0.36 | 0.04 | 0.32 | 0.04 | 0.57 | 0.07 | 0.40 | 0.09 | 0.52 | 0.02 | 0.84 | 0.05 |
Watersheds | Average Low Flow in the Baseline Period (m3/s) | Change in Low Flow (%) | Average Change (%) | ||
---|---|---|---|---|---|
2020s | 2050s | 2080s | |||
Gilgel Abay | 2.45 | −3.67 | −5.31 | −6.8 | −5.02 |
Gumara | 0.69 | −4.71 | −8.51 | −11.71 | −8.33 |
Ribb | 0.40 | −5.30 | −7.57 | −12.31 | −8.39 |
Megech | 1.02 | −1.45 | −6.69 | −10.49 | −6.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakilu, G.G.; Sándor, S.; Zoltán, T. The Dynamics of Hydrological Extremes under the Highest Emission Climate Change Scenario in the Headwater Catchments of the Upper Blue Nile Basin, Ethiopia. Water 2023, 15, 358. https://doi.org/10.3390/w15020358
Chakilu GG, Sándor S, Zoltán T. The Dynamics of Hydrological Extremes under the Highest Emission Climate Change Scenario in the Headwater Catchments of the Upper Blue Nile Basin, Ethiopia. Water. 2023; 15(2):358. https://doi.org/10.3390/w15020358
Chicago/Turabian StyleChakilu, Gashaw Gismu, Szegedi Sándor, and Túri Zoltán. 2023. "The Dynamics of Hydrological Extremes under the Highest Emission Climate Change Scenario in the Headwater Catchments of the Upper Blue Nile Basin, Ethiopia" Water 15, no. 2: 358. https://doi.org/10.3390/w15020358
APA StyleChakilu, G. G., Sándor, S., & Zoltán, T. (2023). The Dynamics of Hydrological Extremes under the Highest Emission Climate Change Scenario in the Headwater Catchments of the Upper Blue Nile Basin, Ethiopia. Water, 15(2), 358. https://doi.org/10.3390/w15020358