Multi-Criteria Prioritization of Watersheds for Post-Fire Restoration Using GIS Tools and Google Earth Engine: A Case Study from the Department of Santa Cruz, Bolivia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. MCA Methodology and Datasets
2.2.1. Selection and Analysis of the Santa Cruz Watersheds
2.2.2. Analytical and Participatory Framework
2.2.3. Prioritization Objectives
2.2.4. Variable Selection
- 1.
- Water Resources Conservation
- 2.
- Biophysical Characteristics
- 3.
- Managed and Protected Areas
- 4.
- Human Activity Threats
- 5.
- Vulnerability to Wildfire Hazards
2.2.5. Variable Scores
2.2.6. Aggregation to Microwatersheds and Macrowatersheds
3. Results
3.1. Watersheds Impacted by Wildfires
3.2. Priority Watersheds in Santa Cruz
3.3. Importance of Water Resources
3.4. Impacts of the Analysis Unit
3.5. Online Application
4. Discussion
4.1. Addressing a Need for Integrative Restoration Methodologies
4.2. The Participatory MCA Methodology
4.3. GEE as an Effective Result-Viewing Platform
4.4. Considerations for Future Restoration Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguilar Barajas, I.; Mahlknecht, J.; Kaledin, J.; Kjellén, M.; Mejía-Betancourt, A. (Eds.) Water and Cities in Latin America: Challenges for Sustainable Development; Earthscan studies in water resource management; Routledge, Taylor & Francis Group, Earthscan from Routledge: London, UK, 2015; ISBN 978-0-415-73097-6. [Google Scholar]
- Bezerra, M.O.; Vollmer, D.; Acero, N.; Marques, M.C.; Restrepo, D.; Mendoza, E.; Coutinho, B.; Encomenderos, I.; Zuluaga, L.; Rodríguez, O.; et al. Operationalizing Integrated Water Resource Management in Latin America: Insights from Application of the Freshwater Health Index. Environ. Manag. 2022, 69, 815–834. [Google Scholar] [CrossRef] [PubMed]
- San Martin, O. Water Resources in Latin America and the Caribbean: Issues and Options. In Proceedings of the Inter-American Development Bank’s Annual Meeting (Volume 7), Fortaleza, Brazil, 7 March 2002; Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=01e457d61c85e24865d258462fe0284a5376778b (accessed on 28 July 2023).
- Armenteras, D.; Dávalos, L.M.; Barreto, J.S.; Miranda, A.; Hernández-Moreno, A.; Zamorano-Elgueta, C.; González-Delgado, T.M.; Meza-Elizalde, M.C.; Retana, J. Fire-Induced Loss of the World’s Most Biodiverse Forests in Latin America. Sci. Adv. 2021, 7, eabd3357. [Google Scholar] [CrossRef] [PubMed]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global Effects of Land Use on Local Terrestrial Biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef]
- Kaushal, S.; Gold, A.; Mayer, P. Land Use, Climate, and Water Resources—Global Stages of Interaction. Water 2017, 9, 815. [Google Scholar] [CrossRef]
- Návar, J. Modeling Rainfall Interception Loss Components of Forests. J. Hydrol. 2020, 584, 124449. [Google Scholar] [CrossRef]
- Kayitesi, N.M.; Guzha, A.C.; Mariethoz, G. Impacts of Land Use Land Cover Change and Climate Change on River Hydro-Morphology- a Review of Research Studies in Tropical Regions. J. Hydrol. 2022, 615, 128702. [Google Scholar] [CrossRef]
- Yang, W.; Liu, Y.; Ou, C.; Gabor, S. Examining Water Quality Effects of Riparian Wetland Loss and Restoration Scenarios in a Southern Ontario Watershed. J. Environ. Manag. 2016, 174, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; Noordwijk, M.V.; Creed, I.F.; Pokorny, J.; et al. Trees, Forests and Water: Cool Insights for a Hot World. Glob. Environ. Change 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Souza-Alonso, P.; Saiz, G.; García, R.A.; Pauchard, A.; Ferreira, A.; Merino, A. Post-Fire Ecological Restoration in Latin American Forest Ecosystems: Insights and Lessons from the Last Two Decades. For. Ecol. Manag. 2022, 509, 120083. [Google Scholar] [CrossRef]
- Valente, R.A.; de Mello, K.; Metedieri, J.F.; Américo, C. A Multicriteria Evaluation Approach to Set Forest Restoration Priorities Based on Water Ecosystem Services. J. Environ. Manag. 2021, 285, 112049. [Google Scholar] [CrossRef]
- Orsi, F.; Geneletti, D. Identifying Priority Areas for Forest Landscape Restoration in Chiapas (Mexico): An Operational Approach Combining Ecological and Socioeconomic Criteria. Landsc. Urban Plan. 2010, 94, 20–30. [Google Scholar] [CrossRef]
- Uribe, D.; Geneletti, D.; Del Castillo, R.; Orsi, F. Integrating Stakeholder Preferences and GIS-Based Multicriteria Analysis to Identify Forest Landscape Restoration Priorities. Sustainability 2014, 6, 935–951. [Google Scholar] [CrossRef]
- Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Advances in Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-540-74756-7. [Google Scholar]
- Newton, A.C.; Tejedor, N. Principles and Practice of Forest Landscape Restoration: Case Studies from the Drylands of Latin America; International Union for Conservation of Nature and Natural Resources: Gland, Switzerland, 2011; ISBN 978-2-8317-1340-3. [Google Scholar]
- Lackey, R.T. Values, Policy, and Ecosystem Health. BioScience 2001, 51, 437. [Google Scholar] [CrossRef]
- Santini, N.S.; Miquelajauregui, Y. The Restoration of Degraded Lands by Local Communities and Indigenous Peoples. Front. Conserv. Sci. 2022, 3, 873659. [Google Scholar] [CrossRef]
- Katirtzidou, M.; Skoulikaris, C.; Makris, C.; Baltikas, V.; Latinopoulos, D.; Krestenitis, Y. Modeling Stakeholders’ Perceptions in Participatory Multi-Risk Assessment on a Deltaic Environment Under Climate Change Conditions. Environ. Model. Assess. 2023, 28, 367–388. [Google Scholar] [CrossRef]
- Geneletti, D. Formalising Expert Opinion through Multi-Attribute Value Functions: An Application in Landscape Ecology. J. Environ. Manag. 2005, 76, 255–262. [Google Scholar] [CrossRef]
- Orsi, F.; Geneletti, D.; Newton, A.C. Towards a Common Set of Criteria and Indicators to Identify Forest Restoration Priorities: An Expert Panel-Based Approach. Ecol. Indic. 2011, 11, 337–347. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological Applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Skoulikaris, C. Toponyms: A Neglected Asset within the Water Framework and Flood Directives Implementation Process; the Case Study of Greece. Acta Geophys. 2022, 71, 1801–1815. [Google Scholar] [CrossRef]
- Gumma, M.; Birhanu, B.; Mohammed, I.; Tabo, R.; Whitbread, A. Prioritization of Watersheds across Mali Using Remote Sensing Data and GIS Techniques for Agricultural Development Planning. Water 2016, 8, 260. [Google Scholar] [CrossRef]
- Javed, A.; Khanday, M.Y.; Ahmed, R. Prioritization of Sub-Watersheds Based on Morphometric and Land Use Analysis Using Remote Sensing and GIS Techniques. J. Indian Soc. Remote Sens. 2009, 37, 261–274. [Google Scholar] [CrossRef]
- Kumar, D.; Dhaloiya, A.; Nain, A.S.; Sharma, M.P.; Singh, A. Prioritization of Watershed Using Remote Sensing and Geographic Information System. Sustainability 2021, 13, 9456. [Google Scholar] [CrossRef]
- Lima-Quispe, N.; Coleoni, C.; Rincón, W.; Gutierrez, Z.; Zubieta, F.; Nuñez, S.; Iriarte, J.; Saldías, C.; Purkey, D.; Escobar, M.; et al. Delving into the Divisive Waters of River Basin Planning in Bolivia: A Case Study in the Cochabamba Valley. Water 2021, 13, 190. [Google Scholar] [CrossRef]
- Maillard, O. Post-Fire Natural Regeneration Trends in Bolivia: 2001–2021. Fire 2023, 6, 18. [Google Scholar] [CrossRef]
- Devisscher, T.; Vignola, R.; Coll Besa, M.; Cronenbold, R.; Pacheco, N.; Schillinger, R.; Canedi, V.; Sandoval, C.; Gonzalez, D.; Leclerc, G. Understanding the Socio-Institutional Context to Support Adaptation for Future Water Security in Forest Landscapes. Ecol. Soc. 2016, 21, art48. [Google Scholar] [CrossRef]
- Maillard, O.; Herzog, S.K.; Soria-Auza, R.W.; Vides-Almonacid, R. Impact of Fires on Key Biodiversity Areas (KBAs) and Priority Bird Species for Conservation in Bolivia. Fire 2022, 5, 4. [Google Scholar] [CrossRef]
- Gobierno Autónomo Departamental de Santa Cruz. Plan Estratégico Para La Implementación Del Plan de Recuperación de Las Áreas Afectadas Por Los Incendios En El Departamento de Santa Cruz; Gobierno Departamental de Santa Cruz-Secretaría de Desarrollo Sostenible y Medio Ambiente-FCBC-PNUD: Santa Cruz, Bolivia, 2020; p. 172. [Google Scholar]
- Uyuni, G.; Maillard, O.; Azurduy, H.; Flores-Valencia, M.; Michme, G.; Vides-Almonacid, R. Identificación de áreas prioritarias para la restauración asistida en bosques afectados por incendios forestales en el departamento de Santa Cruz, Bolivia. Ecol. En Boliv. 2023, 58, 64–77. [Google Scholar]
- INE. Censo de Poblacion y Vivienda. Available online: https://www.ine.gob.bo/ (accessed on 10 May 2023).
- Asquith, N.; Vargas, M.T. Fair Deals for Watershed Services in Bolivia; International Institute for Environment and Development: London, UK, 2007; ISBN 978-1-84369-647-6. [Google Scholar]
- Gobierno Autónomo Departamental de Santa Cruz. Delimitación y Codificación de las Unidades Hidrográficas del Departamento de Santa Cruz; Servicio de Cuencas-SEARPI: Santa Cruz, Bolivia, 2011. [Google Scholar]
- Ibisch, P.L.; Mérida Coimbra, G. (Eds.) Biodiversidad: La Riqueza de Bolivia: Estado de Conocimiento y Conservación, 1st ed.; FAN: Santa Cruz de la Sierra, Bolivia, 2003; ISBN 978-99905-66-25-3. [Google Scholar]
- Vides-Almonacid, R.; Reichle, S.; Padilla, F. Planificación Ecorregional Del Bosque Seco Chiquitano; FCBC-TNC: Santa Cruz, Bolivia, 2007. [Google Scholar]
- Maillard, O.; Vides-Almonacid, R.; Flores-Valencia, M.; Coronado, R.; Vogt, P.; Vicente-Serrano, S.M.; Azurduy, H.; Anívarro, R.; Cuellar, R.L. Relationship of Forest Cover Fragmentation and Drought with the Occurrence of Forest Fires in the Department of Santa Cruz, Bolivia. Forests 2020, 11, 910. [Google Scholar] [CrossRef]
- Anívarro, R.; Azurduy, H.; Maillard, O.; Markos, A. Diagnóstico por Teledetección de áreas Quemadas en la Chiquitania; Observatorio Bosque Seco Chiquitano, Fundación para la Conservación del Bosque Chiquitano: Santa Cruz, Bolivia, 2019; p. 70. [Google Scholar]
- Greene, R.; Devillers, R.; Luther, J.E.; Eddy, B.G. GIS-Based Multiple-Criteria Decision Analysis: GIS-Based MCDA. Geogr. Compass 2011, 5, 412–432. [Google Scholar] [CrossRef]
- Ryan, S.; Nimick, E. Multi-Criteria Decision Analysis and GIS. Available online: https://storymaps.arcgis.com/stories/b60b7399f6944bca86d1be6616c178cf (accessed on 7 June 2023).
- Mansourian, S. Overview of Forest Restoration Strategies and Terms. In Forest Restoration in Landscapes: Beyond Planting Trees; Mansourian, S., Vallauri, D., Dudley, N., Eds.; Springer: New York, NY, USA, 2005; pp. 8–13. ISBN 978-0-387-29112-3. [Google Scholar]
- Valente, R.A.; Petean, F.C.D.S.; Vettorazzi, C.A. Multicriteria Decision Analysis for Prioritizing Areas for Forest Restoration. Cerne 2017, 23, 53–60. [Google Scholar] [CrossRef]
- Ianni, E.; Geneletti, D. Applying the Ecosystem Approach to Select Priority Areas for Forest Landscape Restoration in the Yungas, Northwestern Argentina. Environ. Manag. 2010, 46, 748–760. [Google Scholar] [CrossRef] [PubMed]
- Salomão, C.D.S.C.; De Souza Paula, L.G.; Elmiro, M.A.T. Use of Multicriteria Analysis to Define Priority Areas for Reforestation in the Piranga River Basin, MG, Brazil. Sustain. Debate 2020, 11, 95–120. [Google Scholar] [CrossRef]
- Hartung, M.; Carreño-Rocabado, G.; Peña-Claros, M.; Van Der Sande, M.T. Tropical Dry Forest Resilience to Fire Depends on Fire Frequency and Climate. Front. For. Glob. Change 2021, 4, 755104. [Google Scholar] [CrossRef]
- Dudley, N.; Stolton, S. Protected Landscapes and Wild Biodiversity; IUCN: Gland, Switzerland, 2012; ISBN 978-2-8317-1470-7. [Google Scholar]
- Silva, T.C.M.; Vieira, I.C.G. Identification of Priority Areas for Ecological Restoration in Eastern Pará, Brazil. Floresta Ambiente 2020, 27, e20180144. [Google Scholar] [CrossRef]
- Schwaida, S.F.; Cicerelli, R.E.; De Almeida, T.; Sano, E.E.; Pires, C.H.; Ramos, A.P.M. Defining Priorities Areas for Biodiversity Conservation and Trading Forest Certificates in the Cerrado Biome in Brazil. Biodivers. Conserv. 2023, 32, 1807–1820. [Google Scholar] [CrossRef]
- Voogd, J.H. Multicriteria Evaluation for Urban and Regional Planning. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 1982. [Google Scholar]
- Phua, M.-H.; Minowa, M. A GIS-Based Multi-Criteria Decision Making Approach to Forest Conservation Planning at a Landscape Scale: A Case Study in the Kinabalu Area, Sabah, Malaysia. Landsc. Urban Plan. 2005, 71, 207–222. [Google Scholar] [CrossRef]
- Earth Engine Apps. Google Earth Engine. Available online: https://developers.google.com/earth-engine/guides (accessed on 7 June 2023).
- FAO; UNEP. The State of the World’s Forests 2020. Forests, Biodiversity and People; FAO and UNEP: Rome, Italy, 2020; ISBN 978-92-5-132419-6. [Google Scholar]
- Smith, K.; Kelsey, R.; Biswas, T.; McColl, C.; Wilson, K.; Cameron, D. Regional Prioritization of Forest Restoration across California’s Sierra Nevada; The Nature Conservancy: Sacramento, CA, USA, 2017; p. 16. [Google Scholar]
- Roni, P.; Beechie, T.; Schmutz, S.; Muhar, S. Prioritization of Watersheds and Restoration Projects. In Stream and Watershed Restoration: A Guide to Restoring Riverine Processes and Habitats; Roni, P., Beechie, T., Eds.; Wiley: Hoboken, NJ, USA, 2012; pp. 189–214. ISBN 978-1-4051-9955-1. [Google Scholar]
- Gamboa, G.; Otero, I.; Bueno, C.; Arilla, E.; Ballart, H.; Camprubí, L.; Canaleta, G.; Tolosa, G.; Castellnou, M. Participatory Multi-Criteria Evaluation of Landscape Values to Inform Wildfire Management. J. Environ. Manag. 2023, 327, 116762. [Google Scholar] [CrossRef] [PubMed]
- Derak, M.; Silva, E.; Climent-Gil, E.; Bonet, A.; López, G.; Cortina-Segarra, J. Multicriteria Analysis of Critical Areas for Restoration in a Semiarid Landscape: A Comparison between Stakeholder Groups. J. Environ. Manag. 2023, 336, 117545. [Google Scholar] [CrossRef]
- Valente, R.A.; Vettorazzi, C.A. Multicriteria Evaluation in the Definition of Priority Areas for Forest Restoration Aiming at the Sustainable Water Management. In Sustainable Water Management in the Tropics and Subtropics-and Case Studies in Brazil; Fundação Universidade Federal do Pampa, UNIKASSEL, PGCult-UFMA: Jaguarao, Brazil, 2011; ISBN 978-85-63337-20-7. [Google Scholar]
- Noth, T.; Rinner, C. Prioritization in Wildfire Restoration Using GIS-Based Ordered Weighted Averaging (OWA): A Case Study in Southern California. AIMS Environ. Sci. 2021, 8, 481–497. [Google Scholar] [CrossRef]
- Ahn, S.-R.; Kim, S.-J. Assessment of Watershed Health, Vulnerability and Resilience for Determining Protection and Restoration Priorities. Environ. Model. Softw. 2019, 122, 103926. [Google Scholar] [CrossRef]
- Comín, F.A.; Sorando, R.; Darwiche-Criado, N.; García, M.; Masip, A. A Protocol to Prioritize Wetland Restoration and Creation for Water Quality Improvement in Agricultural Watersheds. Ecol. Eng. 2014, 66, 10–18. [Google Scholar] [CrossRef]
- Maillard, O.; Salinas, J.C.; Angulo, S.; Vides-Almonacid, R. Riesgos ambientales en las unidades hidrográficas de las serranías chiquitanas, departamento de Santa Cruz, Bolivia. Ecol. Boliv. 2019, 54, 83–95. [Google Scholar]
- Malczewski, J. On the Use of Weighted Linear Combination Method in GIS: Common and Best Practice Approaches. Trans. GIS 2000, 4, 5–22. [Google Scholar] [CrossRef]
- Vogler, K.C.; Ager, A.A.; Day, M.A.; Jennings, M.; Bailey, J.D. Prioritization of Forest Restoration Projects: Tradeoffs between Wildfire Protection, Ecological Restoration and Economic Objectives. Forests 2015, 6, 4403–4420. [Google Scholar] [CrossRef]
- Jiang, H.; Eastman, J.R. Application of Fuzzy Measures in Multi-Criteria Evaluation in GIS. Int. J. Geogr. Inf. Sci. 2000, 14, 173–184. [Google Scholar] [CrossRef]
- Malczewski, J.; Chapman, T.; Flegel, C.; Walters, D.; Shrubsole, D.; Healy, M.A. GIS–Multicriteria Evaluation with Ordered Weighted Averaging (OWA): Case Study of Developing Watershed Management Strategies. Environ. Plan. Econ. Space 2003, 35, 1769–1784. [Google Scholar] [CrossRef]
- Yager, R.R. On Ordered Weighted Averaging Aggregation Operators in Multicriteria Decisionmaking. IEEE Trans. Syst. Man Cybern. 1988, 18, 183–190. [Google Scholar] [CrossRef]
- Lopes, T.R.; Moura, L.B.; Nascimento, J.G.; Fraga Junior, L.S.; Zolin, C.A.; Duarte, S.N.; Folegatti, M.V.; Santos, O.N.A. Priority Areas for Forest Restoration Aiming at the Maintenance of Water Resources in a Basin in the Cerrado/Amazon Ecotone, Brazil. J. S. Am. Earth Sci. 2020, 101, 102630. [Google Scholar] [CrossRef]
- Vettorazzi, C.A.; Valente, R.A. Priority Areas for Forest Restoration Aiming at the Conservation of Water Resources. Ecol. Eng. 2016, 94, 255–267. [Google Scholar] [CrossRef]
- Metzger, J.P.; Esler, K.; Krug, C.; Arias, M.; Tambosi, L.; Crouzeilles, R.; Acosta, A.L.; Brancalion, P.H.; D’Albertas, F.; Duarte, G.T.; et al. Best Practice for the Use of Scenarios for Restoration Planning. Curr. Opin. Environ. Sustain. 2017, 29, 14–25. [Google Scholar] [CrossRef]
- Powers, J.S. Opportunities for Integrating Social Science into Research on Dry Forest Restoration: A Mini-Review. Sustainability 2022, 14, 7351. [Google Scholar] [CrossRef]
- Gamper, C.D.; Turcanu, C. Can Public Participation Help Managing Risks from Natural Hazards? Saf. Sci. 2009, 47, 522–528. [Google Scholar] [CrossRef]
- Morales, N.S.; Fernández, I.C.; Durán, L.P.; Pérez-Martínez, W.A. RePlant Alfa: Integrating Google Earth Engine and R Coding to Support the Identification of Priority Areas for Ecological Restoration. Land 2023, 12, 303. [Google Scholar] [CrossRef]
- Chazdon, R.L. Beyond Deforestation: Restoring Forests and Ecosystem Services on Degraded Lands. Science 2008, 320, 1458–1460. [Google Scholar] [CrossRef] [PubMed]
- Molin, P.G.; Chazdon, R.; Frosini De Barros Ferraz, S.; Brancalion, P.H.S. A Landscape Approach for Cost-effective Large-scale Forest Restoration. J. Appl. Ecol. 2018, 55, 2767–2778. [Google Scholar] [CrossRef]
- Muhar, S.; Sendzimir, J.; Jungwirth, M.; Hohensinner, S. Restoration in Integrated River Basin Management. In Riverine Ecosystem Management; Schmutz, S., Sendzimir, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 273–299. ISBN 978-3-319-73249-7. [Google Scholar]
- Gamper, C.D.; Thöni, M.; Weck-Hannemann, H. A Conceptual Approach to the Use of Cost Benefit and Multi Criteria Analysis in Natural Hazard Management. Nat. Hazards Earth Syst. Sci. 2006, 6, 293–302. [Google Scholar] [CrossRef]
- Verdone, M.; Seidl, A. Time, Space, Place, and the Bonn Challenge Global Forest Restoration Target. Restor. Ecol. 2017, 25, 903–911. [Google Scholar] [CrossRef]
- Birch, J.C.; Newton, A.C.; Aquino, C.A.; Cantarello, E.; Echeverría, C.; Kitzberger, T.; Schiappacasse, I.; Garavito, N.T. Cost-Effectiveness of Dryland Forest Restoration Evaluated by Spatial Analysis of Ecosystem Services. Proc. Natl. Acad. Sci. USA 2010, 107, 21925–21930. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.C.; Hodder, K.; Cantarello, E.; Perrella, L.; Birch, J.C.; Robins, J.; Douglas, S.; Moody, C.; Cordingley, J. Cost-Benefit Analysis of Ecological Networks Assessed through Spatial Analysis of Ecosystem Services: Cost-Benefit Analysis of Ecological Networks. J. Appl. Ecol. 2012, 49, 571–580. [Google Scholar] [CrossRef]
Layer Used in the MCA | Input Dataset | Processing Tool in ArcMap | Input Source | Source Link or Reference |
---|---|---|---|---|
Macrowatersheds | Gobierno Autónomo Departamental de Santa Cruz’s (GADSC) macrowatersheds | Spatial selection and intersection with the Fire occurrence layer | GADSC | [35] |
Microwatersheds | HydroSHEDS product, level 12 | Spatial selection and intersection with the Fire occurrence layer | World Wide Fund (WWF) | https://www.worldwildlife.org/pages/hydrosheds (accessed on 12 April 2022) |
Proximity to surface water | 2021 Landsat-based vegetation cover and deforestation product. | Extracting the water class, Euclidean distance | Landsat; Fundación para la Conservación del Bosque Chiquitano (FCBC) | [38] |
Well density | Well site coordinates (points) | Kernel Density tool | GADSC, local water cooperatives, municipalities | |
Precipitation | Average precipitation for 1970–2000, WorldClim version 2.1 | Re-scaling to the department level | WorldClim | https://www.worldclim.org (accessed on 10 April 2022) |
Land cover | Land cover map | Reclassification into five land cover classes | FCBC | |
Elevation | Aster Global Digital Elevation Map (GDEM) version 2 sensor scenes | Mosaic to New Raster tool | National Aeronautics and Space Administration (NASA)/Japan Space Systems | https://ssl.jspacesystems.or.jp/ersdac/GDEM/E/4.html (accessed on 11 March 2023) |
Slope | Aster GDEM version 2 sensor scenes | Slope tool | NASA/Japan Space Systems | https://ssl.jspacesystems.or.jp/ersdac/GDEM/E/4.html (accessed on 11 March 2023) |
Protected areas | Maps of national, regional and municipal protected areas | Raster conversion and reclassification | GADSC | |
Land ownership | Landowner mapping | Raster conversion and reclassification | National Institute of Agrarian Reform (INRA) | |
Proximity to roads and infrastructure | Digitized roads | Euclidean distance tool | FCBC | |
Population density | 2012 population census | Kernel Density tool | National Statistics Institute (INE) | http://geo.gob.bo/portal (accessed on 23 March 2023) |
Fire occurrence | 4 fire scar maps: 2019, 2020, 2021, 2022 | Cell statistics tool | FCBC | |
Fire intensity | Fire Radiative Power, MODIS Collection 6.1 product | Interpolation using the Inverse Distance Weighted (IDW) technique [30] | NASA’s Fire Information for Resource Management System (FIRMS) | https://firms.modaps.eosdis.nasa.gov (accessed on 12 April 2022) |
Category | Variables/Importance | 1-Very low | 2-Low | 3-Medium | 4-High | 5-Very high |
---|---|---|---|---|---|---|
Water resources | Distance to rivers/water bodies (m) | >10,000 | 5000–10000 | 2000–5000 | 1000–2000 | <1000 |
Density of water wells (km2) | <0.01 | 0.01–0.02 | 0.02–0.05 | 0.05–0.07 | >0.07 | |
Precipitation (mm) | <500 | 500–1000 | 1000–1500 | 1500–2000 | >2000 | |
Ecosystems and biophysical criteria | Elevation (m a.s.l.) | <100 | 100–250 | 250–500 | 500–1000 | >1000 |
Slope (°) | <30 | 30–40 | 40–50 | 50–60 | >60 | |
Land cover type | Non-vegetated area | Other non-forest natural formation | Wetland | Forest | Flooded forest | |
Land governance | Protected areas (national, regional or municipal) | No protected area | N/A | N/A | N/A | Protected |
Land ownership | Urban | Small to large private property | Community-owned | Indigenous territories | State-owned | |
Human activities | Distance to productive areas, roads, population centers (m) | >2000 | 1500–2000 | 1000–1500 | 500–1000 | <500 |
Population density (inhabitants/km2) | <10 | 10–20 | 20–40 | 40–1000 | >1000 | |
Fire threat | Recurrence of fires between 2019–2022 (4 years) | 0 | 1 | 2 | 3 | 4 |
Intensity of fire (MW) | 0 | 1–250 | 250–500 | 500–1000 | >1000 |
Scheme 1 | W1 | W2 | W3 | W4 | W5 |
---|---|---|---|---|---|
A—water | 1 | 0 | 0 | 0 | 0 |
B—ecosystems | 0 | 1 | 0 | 0 | 0 |
C—management | 0 | 0 | 1 | 0 | 0 |
D—human activities | 0 | 0 | 0 | 1 | 0 |
E—natural hazards | 0 | 0 | 0 | 0 | 1 |
F—all combined | 1 | 1 | 1 | 1 | 1 |
G—water + ecosystems | 1 | 1 | 0 | 0 | 0 |
H—water + ecosystems + management | 1 | 1 | 1 | 0 | 0 |
I—human impacts + fire | 0 | 0 | 0 | 1 | 1 |
J—water + human impacts | 1 | 0 | 0 | 1 | 0 |
K—water + fire | 1 | 0 | 0 | 0 | 1 |
L—ecosystems + fire | 0 | 1 | 0 | 0 | 1 |
Scheme 2 | High-Priority Area (km2) | Priority Watersheds (Count) |
---|---|---|
A—water | 16,061 | 80 |
B—ecosystems | 34,322 | 156 |
C—management | 102,756 | 457 |
D—human activities | 82,145 | 310 |
E—natural hazards | 16,140 | 99 |
F—all combined | 19,905 | 88 |
Scenarios | High-Priority Area (km2) | Priority Watersheds (Count) | Priority Macrowatersheds (Names) |
---|---|---|---|
A—water | 54,911 | 3 | Pirai, Rio Grande, Itenez Sur |
B—ecosystems | 82,389 | 5 | Itenez Norte, Yapacani, Ichilo, Cuevo, Parapeti |
C—management | 137,698 | 6 | Itenez Norte, San Miguel, Paragua, Curichi Grande, Tucabaca, Cuevo |
D—human activities | 121,136 | 5 | Pirai, Yapacani, Rio Grande, San Julian, Ichilo |
E—natural hazards | 120,193 | 5 | Paragua, Itenez Sur, Curichi Grande, San Miguel, Tucabaca |
F—all combined | 84,366 | 5 | Rio Grande, San Miguel, Pirai, Yapacani, Ichilo |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez, J.; Maillard, O.; Uyuni, G.; Guzmán-Rojo, M.; Escobar, M. Multi-Criteria Prioritization of Watersheds for Post-Fire Restoration Using GIS Tools and Google Earth Engine: A Case Study from the Department of Santa Cruz, Bolivia. Water 2023, 15, 3545. https://doi.org/10.3390/w15203545
Fernandez J, Maillard O, Uyuni G, Guzmán-Rojo M, Escobar M. Multi-Criteria Prioritization of Watersheds for Post-Fire Restoration Using GIS Tools and Google Earth Engine: A Case Study from the Department of Santa Cruz, Bolivia. Water. 2023; 15(20):3545. https://doi.org/10.3390/w15203545
Chicago/Turabian StyleFernandez, Jeanne, Oswaldo Maillard, Gerson Uyuni, Mónica Guzmán-Rojo, and Marisa Escobar. 2023. "Multi-Criteria Prioritization of Watersheds for Post-Fire Restoration Using GIS Tools and Google Earth Engine: A Case Study from the Department of Santa Cruz, Bolivia" Water 15, no. 20: 3545. https://doi.org/10.3390/w15203545
APA StyleFernandez, J., Maillard, O., Uyuni, G., Guzmán-Rojo, M., & Escobar, M. (2023). Multi-Criteria Prioritization of Watersheds for Post-Fire Restoration Using GIS Tools and Google Earth Engine: A Case Study from the Department of Santa Cruz, Bolivia. Water, 15(20), 3545. https://doi.org/10.3390/w15203545