Groundwater Level Dynamic Impacted by Land-Cover Change in the Desert Regions of Tarim Basin, Central Asia
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data
3.2. Statistical Analysis
4. Results
4.1. Variations of Land-Cover and Vegetation
4.2. Spatiotemporal Variations of Groundwater Level
4.3. Relationship between Groundwater Level and Vegetation
5. Discussion
5.1. Influence of Land-Cover Change on Groundwater Level
5.2. Correlation between Groundwater and Vegetation
5.3. Recommendations for Groundwater Resource Management
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orellana, F.; Verma, P.; Loheide, S.P.; Daly, E. Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems. Rev. Geophys. 2012, 50, 1–24. [Google Scholar] [CrossRef]
- Jia, H.; Qian, H.; Zheng, L.; Feng, W.W.; Wang, H.K.; Gao, Y.Y. Alterations to groundwater chemistry due to modern water transfer for irrigation over decades. Sci. Total Environ. 2020, 717, 137170. [Google Scholar] [CrossRef]
- Wang, W.H.; Chen, Y.N.; Wang, W.R.; Zhu, C.G.; Chen, Y.P.; Liu, X.G.; Zhang, T.J. Water quality and interaction between groundwater and surface water impacted by agricultural activities in an oasis-desert region. J. Hydrol. 2023, 617, 128937. [Google Scholar] [CrossRef]
- Manna, F.; Murray, S.; Abbey, D.; Martin, P.; Cherry, J.; Parker, B. Spatial and temporal variability of groundwater recharge in a sandstone aquifer in a semiarid region. Hydrol. Earth Syst. Sci. 2019, 23, 2187–2205. [Google Scholar] [CrossRef]
- Riley, D.; Mieno, T.; Schoengold, K.; Brozovi’c, N. The impact of land cover on groundwater recharge in the High Plains: An application to the Conservation Reserve Program. Sci. Total Environ. 2019, 696, 133871. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Jiang, Y.; Xu, X.; Huang, Q.; Huo, Z.; Huang, G. Long-term groundwater dynamics affected by intense agricultural activities in oasis areas of arid inland river basins. Northwest China. Agric. Water Manag. 2018, 203, 37–52. [Google Scholar] [CrossRef]
- Castellano, M.J.; Archontoulis, S.V.; Helmers, M.J.; Poffenbarger, H.J.; Six, J. Sustainable intensification of agricultural drainage. Nat. Sustain. 2019, 2, 914–921. [Google Scholar] [CrossRef]
- Graaf, I.E.; Gleeson, T.; Van Beek, L.R.; Sutanudjaja, E.H.; Bierkens, M.F. Environmental flow limits to global groundwater pumping. Nature 2019, 574, 90–94. [Google Scholar] [CrossRef]
- Ashraf, S.; Nazemi, A.; AghaKouchak, A. Anthropogenic drought dominates groundwater depletion in Iran. Sci. Rep. 2021, 11, 9135. [Google Scholar] [CrossRef]
- Chen, Y.; Hao, X.; Chen, Y.; Zhu, C. Study on water system connectivity and ecological protection countermeasures of Tarim River Basin in Xinjiang. Bull. Chin. Acad. Sci. 2019, 34, 1156–1164. (In Chinese) [Google Scholar]
- Yin, X.; Feng, Q.; Zheng, X.; Wu, X.; Zhu, M.; Sun, F.; Li, Y. Assessing the impacts of irrigated agriculture on hydrological regimes in an oasis-desert system. J. Hydrol. 2021, 594, 125976. [Google Scholar] [CrossRef]
- Liu, Y.L.; Jin, M.G.; Wang, J.J. Insights into groundwater salinization from hydrogeochemical and isotopic evidence in an arid inland basin. Hydrol. Process. 2018, 32, 3108–3127. [Google Scholar] [CrossRef]
- Lu, T.; Wu, J.; Lu, Y.C.; Zhou, W.B.; Lu, Y.D. Effects of groundwater depth on vegetation coverage in the Ulan Buh Desert in a recent 20-year period. Water 2023, 15, 3000. [Google Scholar] [CrossRef]
- Wang, L.F.; Nie, Z.L.; Yuan, Q.L.; Liu, M.; Cao, L.; Zhu, P.C.; Lu, H.L.; Feng, B. Spatiotemporal oasis Land Use/Cover changes and impacts on groundwater resources in the central plain of the Shiyang River Basin. Water 2023, 15, 457. [Google Scholar] [CrossRef]
- Wang, W.R.; Chen, Y.N.; Wang, W.H.; Jiang, J.X.; Cai, M.; Xu, Y.J. Evolution characteristics of groundwater and its response to climate and land-cover changes in the oasis of dried-up river in Tarim Basin. J. Hydrol. 2021, 594, 125644. [Google Scholar] [CrossRef]
- Liu, J.G.; Meng, Y.; Zhang, X.J. Interpretation of IPCC AR6 report: Groundwater. Clim. Change Res. 2022, 18, 1–9. (In Chinese) [Google Scholar]
- Fang, G.H.; Yang, J.; Chen, Y.N.; Li, Z.; Ji, H.P.; De Maeyer, P. How hydrologic processes differ spatially in a large basin: Multisite and multi-objective modeling in the Tarim River Basin. J. Geophys. Res. 2018, 123, 7098–7113. [Google Scholar] [CrossRef]
- Bai, Y.F.; Wang, Y.; Chen, Y.N.; Zhang, L.Y. Probabilistic analysis of the controls on groundwater depth using Copula Functions. Hydrol. Res. 2020, 51, 406–422. [Google Scholar] [CrossRef]
- Zeng, Y.Y.; Lu, H.; Zhou, J.L.; Zhou, Y.Z.; Sun, Y.; Ma, C.L. Enrichment Mechanism and Health Risk Assessment of Fluoride in Groundwater in the Oasis Zone of the Tarim Basin in Xinjiang, China. Expo. Health 2023, 1–16. [Google Scholar] [CrossRef]
- Hou, Y.F.; Chen, Y.N.; Li, Z.; Li, Y.P.; Sun, F.; Zhang, S.; Wang, C.; Feng, M.Q. Land use dynamic changes in an arid inland river basin based on multi-scenario simulation. Remote Sens. 2022, 14, 2797. [Google Scholar] [CrossRef]
- Zhang, F.; Guo, Y.C.; Jiang, H.T.; Zhang, Y.J.; Zhou, M. Impacts of climate and land use/cover change on water resources in the delta oasis of Weigan river -Kuqa river. Hubei Agric. Sci. 2014, 53, 5716–5723. (In Chinese) [Google Scholar]
- Hu, K.X.; Awange, J.L.; Kuhn, M.; Saleem, A. Spatio-temporal groundwater variations associated with climatic and anthropogenic impacts in South-West Western Australia. Sci. Total Environ. 2019, 696, 133599. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, F.; Shi, Q.D. Variations in groundwater table depth at Daliyaboyi Oasis, Keriya River, China. Arid Land Geogr. 2021, 44, 80–88. (In Chinese) [Google Scholar]
- Strassberg, G.; Scanlon, B.R.; Chambers, D. Evaluation of groundwater storage monitoring with the GRACE satellite: Case study of the High Plains aquifer, central United States. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Thomas, B.F.; Famiglietti, J.S. Identifying climate-induced groundwater depletion in GRACE observations. Sci. Rep. 2019, 9, 4124. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Yang, K.; Zhou, J. Assessing the impacts of an ecological water diversion project on water consumption through high-resolution estimations of actual evapotranspiration in the downstream regions of the Heihe River Basin. China. Agric. For. Meteorol. 2018, 249, 210–227. [Google Scholar] [CrossRef]
- McCallum, A.M.; Andersen, M.S.; Giambastiani, B.M.S.; Kelly, B.F.J.; Acworth, R.I. River-aquifer interactions in a semi-arid environment stressed by groundwater abstraction. Hydrol. Process. 2013, 27, 1072–1085. [Google Scholar] [CrossRef]
- Xi, H.; Feng, Q.; Zhang, L.; Si, J.; Yu, T. Groundwater storage changes and estimation of stream lateral seepage to groundwater in desert riparian forest region. Hydrol. Res. 2018, 49, 861–877. [Google Scholar] [CrossRef]
- Porhemmat, J.; Nakhaei, M.; Dadgar, M.A.; Biswas, A. Investigating the effects of irrigation methods on potential groundwater recharge: A case study of semiarid regions in Iran. J. Hydrol. 2018, 565, 455–466. [Google Scholar] [CrossRef]
- Fu, G.B.; Crosbie, R.S.; Barron, O.; Charles, S.P.; Dawes, W.; Shi, X.; Li, C. Attributing variations of temporal and spatial groundwater recharge: A statistical analysis of climatic and non-climatic factors. J. Hydrol. 2019, 568, 816–834. [Google Scholar] [CrossRef]
- Guo, X.Y.; Feng, Q.; Si, J.H.; Xi, H.Y.; Zhao, Y.; Deo, R.C. Partitioning groundwater recharge sources in multiple aquifers system within a desert oasis environment: Implications for water resources management in endorheic basins. J. Hydrol. 2019, 579, 124212. [Google Scholar] [CrossRef]
- Segura, C.; Noone, D.; Warren, D.; Jones, J.A.; Tenny, J.; Ganio, L.M. Climate, landforms, and geology affect baseflow sources in a mountain catchment. Water Resour. Res. 2019, 55, 5238–5254. [Google Scholar] [CrossRef]
- Zhang, X.F.; Zhang, L.H.; He, C.S.; Li, J.L.; Jiang, Y.W.; Ma, L.B. Quantifying the impacts of land use/land cover change on groundwater depletion in Northwestern China-a case study of the Dunhuang oasis. Agric. Water Manage 2014, 146, 270–279. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; Mills, J. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. 2005, 103, 7–27. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 3, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin & Co. Ltd.: London, UK, 1955. [Google Scholar]
- Long, H.L.; Liu, Y.S.; Wu, X.Q.; Dong, G.H. Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: Implications for building a new countryside in coastal China. Land Use Policy 2009, 26, 322–333. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Fan, Z.L.; Ma, Y.J.; Zhang, H.; Wang, R.H.; Zhao, Y.J.; Zhou, H.F. Research of eco-water table and rational depth of groundwater of Tarim River drainage basin. Arid Land Geogr. 2004, 27, 8–13. (In Chinese) [Google Scholar]
- Chen, Y.N.; Wubuli, W.M.E.J.; Abula, A.K.R.M.; Cheng, Y.; Chen, Y.P.; Hao, X.M.; Wang, Y. Monitoring and analysis of ecological benefits of water conveyance in the lower reaches of Tarim River in recent 20 years. Arid Land Geogr. 2021, 44, 605–611. (In Chinese) [Google Scholar]
- Ma, J.Z.; He, J.H.; Qi, S.; Zhao, W.; Edmunds, W.M.; Zhao, Y.P. Groundwater recharge and evolution in the Dunhuang Basin, northwestern China. Appl. Geochem. 2013, 28, 19–31. [Google Scholar] [CrossRef]
- Han, D.; Currell, M.J.; Cao, G.; Hall, B. Alterations to groundwater recharge due to anthropogenic landscape change. J. Hydrol. 2017, 554, 545–557. [Google Scholar] [CrossRef]
- Folton, N.; Martin, E.; ArnaudL’hermite, P.; Tolsa, M. A 50-year analysis of hydrological trends and processes in a Mediterranean catchment. Hydrol. Earth Syst. Sci. 2019, 23, 2699–2714. [Google Scholar] [CrossRef]
- Erler, A.R.; Frey, S.K.; Khader, O.; d’Orgeville, M.; Park, Y.J.; Hwang, H.T.; Sudicky, E.A. Evaluating Climate Change Impacts on Soil Moisture and Groundwater Resources Within a Lake-Affected Region. Water Resour. Res. 2019, 55, 8142–8163. [Google Scholar] [CrossRef]
- Shukla, A.K.; Ojha, C.S.P.; Mijic, A.; Buytaert, W.; Pathak, S.; Garg, R.D.; Shukla, S. Population growth, land use and land cover transformations, and water quality nexus in the Upper Ganga River basin. Hydrol. Earth Syst. Sci. 2018, 22, 4745–4770. [Google Scholar] [CrossRef]
- Chiloane, C.; Timothy, D.; Cletah, S. Impacts of groundwater and climate variability on terrestrial groundwater dependent ecosystems: A review of geospatial assessment approaches and challenges and possible future research directions. Geocarto Int. 2021, 29, 1–25. [Google Scholar] [CrossRef]
- Chen, Y.N.; Chen, Y.P.; Zhou, H.H.; Hao, X.M.; Zhu, C.G.; Fu, A.H.; Yang, Y.H.; Li, W.H. Research advances in plant physiology and ecology of desert riparian forests under drought stress. Forests 2022, 13, 619. [Google Scholar] [CrossRef]
Location | Well ID | Longitude | Latitude | Altitude | DGL | LULC | NDVI |
---|---|---|---|---|---|---|---|
(°E) | (°N) | (m) | (m) | ||||
Yarkand River | K1 | 79.463 | 40.107 | 1048 | 9.12 | Grassland | 0.15 |
K2 | 79.501 | 40.151 | 1050 | 9.79 | Grassland | 0.09 | |
K3 | 79.548 | 40.191 | 1045 | 8.23 | Bare land | 0.08 | |
K4 | 79.588 | 40.244 | 1041 | 7.59 | Bare land | 0.08 | |
K5 | 79.647 | 40.267 | 1041 | 7.71 | Bare land | 0.10 | |
K6 | 79.701 | 40.301 | 1041 | 6.95 | Bare land | 0.09 | |
K7 | 79.777 | 40.312 | 1057 | 6.24 | Bare land | 0.09 | |
K8 | 79.853 | 40.310 | 1051 | 7.30 | Bare land | 0.12 | |
K9 | 79.929 | 40.331 | 1063 | 5.46 | Bare land | 0.13 | |
K10 | 79.884 | 40.369 | 1060 | 5.44 | Cultivated land | 0.75 | |
Weigan-Kuqa River | W1 | 83.011 | 41.361 | 966 | 5.10 | Cultivated land | 0.63 |
W2 | 83.013 | 41.304 | 953 | 4.52 | Grassland | 0.14 | |
W3 | 83.016 | 41.268 | 955 | 4.97 | Grassland | 0.15 | |
W4 | 83.016 | 41.231 | 952 | 4.62 | Cultivated land | 0.72 | |
W5 | 83.038 | 41.187 | 953 | 7.71 | Grassland | 0.46 | |
W6 | 83.050 | 41.141 | 948 | 8.17 | Grassland | 0.47 | |
W7 | 83.045 | 41.107 | 951 | 9.86 | Grassland | 0.37 | |
W8 | 83.089 | 41.080 | 942 | 2.89 | Bare land | 0.29 | |
W9 | 83.078 | 41.031 | 945 | 4.18 | Bare land | 0.22 | |
W10 | 83.023 | 41.038 | 945 | 2.68 | Cultivated land | 0.53 | |
Dina River | D1 | 84.278 | 41.576 | 925 | 5.31 | Bare land | 0.19 |
D2 | 84.263 | 41.462 | 919 | 12.14 | Grassland | 0.19 | |
D3 | 84.244 | 41.422 | 917 | 8.89 | Bare land | 0.12 | |
D4 | 84.222 | 41.396 | 918 | 6.04 | Bare land | 0.08 | |
D5 | 84.240 | 41.345 | 913 | 9.11 | Grassland | 0.09 | |
D6 | 84.226 | 41.315 | 910 | 5.12 | Grassland | 0.12 | |
D7 | 84.205 | 41.251 | 911 | 4.78 | Grassland | 0.12 | |
D8 | 84.274 | 41.537 | 911 | 4.53 | Bare land | 0.13 | |
D9 | 84.262 | 41.503 | 914 | 6.01 | Bare land | 0.10 | |
D10 | 84.148 | 41.284 | 919 | 6.74 | Grassland | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Chen, Y.; Wang, W.; Chen, Y.; Hou, Y. Groundwater Level Dynamic Impacted by Land-Cover Change in the Desert Regions of Tarim Basin, Central Asia. Water 2023, 15, 3601. https://doi.org/10.3390/w15203601
Wang W, Chen Y, Wang W, Chen Y, Hou Y. Groundwater Level Dynamic Impacted by Land-Cover Change in the Desert Regions of Tarim Basin, Central Asia. Water. 2023; 15(20):3601. https://doi.org/10.3390/w15203601
Chicago/Turabian StyleWang, Wanrui, Yaning Chen, Weihua Wang, Yapeng Chen, and Yifeng Hou. 2023. "Groundwater Level Dynamic Impacted by Land-Cover Change in the Desert Regions of Tarim Basin, Central Asia" Water 15, no. 20: 3601. https://doi.org/10.3390/w15203601
APA StyleWang, W., Chen, Y., Wang, W., Chen, Y., & Hou, Y. (2023). Groundwater Level Dynamic Impacted by Land-Cover Change in the Desert Regions of Tarim Basin, Central Asia. Water, 15(20), 3601. https://doi.org/10.3390/w15203601