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Abstract: The impact of climate extremes, such as heat waves and extreme rainfall, can cause harvest
failures, flooding, and droughts that ultimately threaten global food security, harming the region’s
economy. Fluctuations in streamflow indicate the sensitivity of streamflow responding to extreme
precipitation events and other climatic variables (temperature extremes) that play a significant role
in its generation. Pakistan is also considered one of the climate change hotspot regions in the
world. The devastating impacts have often occurred in recent decades due to an excess or shortage
of streamflow, majorly generated from the Upper Indus Basin (UIB). To better understand climate
extremes’ impact on streamflow, this study examined climate extremes and streamflow (Q) changes for
three decades: 1990–1999, 2000–2009, and 2010–2019. Observed streamflow and meteorological data
from nine sub-catchments across all climatic zones of the UIB were analyzed using RGui (R language
coding program) and partial least squares regression (PLSR). Climatic variables were estimated,
including precipitation extremes, temperature extremes, and potential evapotranspiration. The
Mann–Kendal test was applied to the climatic indices, revealing that precipitation increased during
the last 30 years, while maximum and minimum temperatures during the summer months decreased
in the Karakoram region from 1990 to 2019. The spatiotemporal trend of consecutive dry days (CDD)
indicated a more increasing tendency from 1990 to 2019, compared to the consecutive wet days (CWD),
which showed a decreasing trend. PLSR was applied to assess the relation between climatic variables
(extreme P, T indices, and evapotranspiration). It was found that the dominant climatic variables
controlling annual streamflow include the r95p (very wet days) and R25mm (heavy precipitation
days), maximum precipitation event amount, CWD, PRCPTOT (annual total precipitation), and
RX5 (maximum five-day precipitation). The TXn (Min Tmax) and Tmax mean (average maximum
temperature) dominate streamflow variables. Moreover, the impact of evapotranspiration (ET) on
variations in streamflow is more pronounced in arid catchments. Precipitation is the predominant
factor influencing streamflow generation in the UIB, followed by temperature. From streamflow
quantification, it was found that climate-driven annual streamflow decreased during 1999–2019 in
comparison to 1990–1999, with an increase in a few catchments like Kalam, which increased by
about 3.94% from 2000 to 2010 and 10.30% from 2010 to 2019, and Shigar, which increased by 0.48%
from 2000 to 2009 and 37.37% from 2010 to 2019 concerning 1990–1999. These variations were due
to changes in these climatic parameters. The PLSR approach enables the identification of linkages
between climatic variables and streamflow variability and the prediction of climate-driven floods.
This study contributes to an enhanced identification and hydroclimatological trends and projections.
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1. Introduction

The variation in a streamflow reveals how responsive it is to rainfall extremes and
the many roles climate factors play in generating streamflow [1–4]. Floods caused by
precipitation extremes typically make up a large streamflow but have numerous adverse
effects on human life and the environment at the catchment level, especially in arid and
semiarid regions [5–7]. Several watershed management initiatives or hydrologic construc-
tions were performed globally to lessen these adverse effects, resulting in alterations to
streamflow [5,6]. While more noticeable variations in precipitation extremes have been
seen as a result of altering geographical and meteorological conditions, mixed patterns of
changes in precipitation have also been identified in the context of climate change [8–12]
More intense extreme precipitation events have the potential to lead to more severe flood-
ing and sediment erosion, which would exacerbate these adverse effects [13]. To create
more effective watershed management strategies and assess streamflow changes, stake-
holders must understand the links between climate factors and streamflow generation.
High-highland Asia is largely covered by the Upper Indus Basin (UIB). For Pakistan’s
well-being, its water resources are of the utmost importance. Pakistan relies primarily on
water from the Indus and its tributaries for household use, agricultural, and hydroelectric
needs [14,15]. Agricultural output from irrigated land in the Indus Basin supplies 85% of
the country’s cereal grain (wheat, rice) harvests and all of its sugar production, and it em-
ploys 45% of Pakistan’s workforce. Additionally, the region is significant for hydropower
production; the Tarbela Dam alone meets almost 20% of the country’s electricity needs.
Pakistan’s issues with food security and electricity load shedding would be far worse
without the contribution of the Indus River, which is regarded as the country’s lifeline.
The UIB’s current water resource management issues are principally brought on by the
wide interannual variation in river flows and the timing of the hydrograph’s rising limb.
Water stress in Pakistan is primarily caused by high population growth in the future. Still,
hydroclimatological variability will make it more difficult to manage resources because
acute conditions in dry, low-flow years may overwhelm adaptation measures designed to
deal with mean changes in water availability [14].

According to several studies, the atmosphere in India has warmed up [16–19].
Shrestha et al. [19] found increases in winter maximum temperatures of 0.61, 0.90, and
1.24 ◦C decade-1 for the Nepal, Himalayan, and trans-Himalayan climatic sites, respec-
tively. According to [20], Pakistan’s temperature is expected to rise by 0.9 ◦C by 2020 and
could double by 2050. It was claimed that China’s temperatures were trending up, whereas
high-latitude areas during the summer were trending down. The southwest regions of
Xinjiang and Tibet have shown a warming trend throughout the wintertime [2,20,21].
Fowler et al. [22] used regression techniques to analyze temperature data from seven cli-
mate stations in the Hindu Kush and Karakoram mountains from 1961 to 1999. They
discovered a tendency toward winter warming and summer cooling. Research on precipita-
tion trends has also been conducted in South Asia [23]. Gemmer et al. [24] showed a rising
precipitation trend between 1951 and 2002 in southern Xinjiang, which is close to Pakistan’s
northern border, and in Jammu and Kashmir, southwest of Tibet. Using linear regression,
Archer et al. [14] examined precipitation data from numerous locations in the upper Indus
River basin with varied record durations. Between 1961 and 1999, a discernible upward
trend in precipitation was particularly pronounced in the winter and summer [24,25].

On the contrary, Raziei et al. [26] concluded that precipitation in Iran is decreasing.
Kezer et al. [27] looked at runoff patterns for the Ili and East Rivers in Central Asia;
no statistically significant change was found besides runoff. Chen et al. [28] used the
Mann–Kendall test and linear regression to evaluate temporal (1951–2003) patterns in
annual and seasonal precipitation, temperature, and runoff in the Hanjiang basin in China.
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The results showed that while temperature significantly increased throughout most of the
basin at the 5% level, precipitation did not significantly increase [20,29,30]. Additionally,
the Danjiangkou reservoir basin’s mean annual, spring, and winter runoffs declined. The
South Asian area is undoubtedly warming, and the trajectory of warming is generally
comparable with the global warming trend, according to the findings of various recent
research [17]. As a result, the South Asian area is expected to see significant climatic effects
on many parts of the natural environment, including water supplies. According to the
most current Intergovernmental Panel on Climate Change (IPCC) [31,32], there is a strong
possibility that South Asian subregions could warm significantly, with winter warming
expected to be larger than summer warming. The average temperature is predicted to rise
throughout South Asia under the results of a multimodal global climate model (GCM) run
under the Special Report on Emission Scenarios (SRES) B1 and A1F1. The highest increase
is predicted during the winter months. The expected temperature increase for the winter
months is higher than the [33] estimated range of global mean surface temperature change
(1.8 to 4 ◦C). Much research has been conducted on how the changing climate may affect
hydrological systems [33].

Assessment of the effects of climate change in basins with a snow-dominated environ-
ment has been the topic of several recent publications. Refs. [34,35] studied how the timing
of spring runoff in West-Central Canada has been affected by climate change. In northern
Canada’s Liard and Mackenzie River basins, and Ref. [36] looked at trends and variability
in hydrological variables for natural streamflow gauging stations. Both basins exhibited an
increase in winter flows and some increases in spring runoff. Aziz et al. [37] noted an earlier
onset of the spring freshet over the Mackenzie River basin. Novotny et al. [38] reported
that in Minnesota’s five main river basins, the potential for floods has grown due to rainfall
events rather than snowmelt. Climate change may add to the already heavy strain that
urbanization, industrialization, and economic expansion have placed on ecological and
social systems in emerging nations like Pakistan. With its large and growing population
and an economy closely tied to its natural resource base, Pakistan is highly vulnerable to
the effects of climate change. Recent research from the South Asian area indicates that
hazards to human water security or biodiversity are becoming frequent [39]. According to
the International Centre for Integrated Mountain Development (ICIMOD), there are more
than 12,000 glaciers in the Himalayan area, and the Indus River is refilled by meltwater
from about 3300 glaciers [40]. Changes in water’s temporal and spatial distribution are
anticipated to affect Pakistan’s water security. Due to changes in the hydrological cycle’s
dynamics, the unpredictable and unclear water supply pattern is expected to affect agricul-
tural production. Since the functioning of ecosystems, economic activity, human health,
and geophysical processes have all depended on the availability of that water [41,42]. An
evaluation of ER’s and climatic variability’s effects on streamflow variations within the UIB
has emerged as a critical area of study. In climate change and human disturbances, several
models have recently been created to examine the relationships between climatic variables
and streamflow generation (Milly). However, the typical characteristics of hydrological
models include complex model structures, many input datasets and parameters, and a sig-
nificant amount of time and uncertainty needed for model calibration and assessment [43].
As a result, empirical models based on methods like multiple linear regression [44,45] prin-
cipal component analysis, autoregressive moving average time-series modeling, artificial
neural networks, genetic programming, and support vector machines are frequently used
to quantify the effects of climatic variables on streamflow [46–49]. Using data with strong
correlations among variables disrupts the model’s expected data patterns, causing the
model’s assumptions to be invalid. This leads to inaccurate estimates for model parame-
ters and broader or narrower confidence intervals, undermining the model’s reliability in
making predictions [50,51]. As a result, it is crucial to use caution when connecting climatic
factors to hydrological processes [52].

Furthermore, it is challenging to identify the primary mechanisms regulating stream-
flow in regional catchments since addressing multi-collinearity and noise is a challenge
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for standard techniques to model construction. The recently created and extensively used
partial least squares regression (PLSR) method offers an alternate strategy to get beyond
the issues with multi-collinearity and noise, permitting more accurate abstraction of the
key variables influencing streamflow [37,40]. PLSR generalizes both principal component
analysis and multiple linear regression by combining their characteristics [53]. It recognizes
underlying model structures that entail linear combinations of the original variables and
clarifies the existence of variable dependency [50,53]. Another characteristic of PLSR is its
suitability when the number of potential variables is equal to or greater than the number of
observations [54,55].

This research aims to address a critical research gap concerning the impact of climate
extremes on streamflow in the Upper Indus Basin (UIB), a region susceptible to climate
change. The growing concerns about global food security and the severe consequences of
climate extremes, such as heatwaves, extreme rainfall, floods, and droughts, underscore
the urgency of understanding how these climatic events affect streamflow, which is vital
for water resource management and agriculture in the UIB. Despite being recognized as
a climate change hotspot, there is a shortage of comprehensive studies on the relation-
ships between climate extremes and streamflow in this region. This research employs a
multi-decade streamflow and meteorological data analysis, utilizing advanced statistical
techniques like PLSR to discern the intricate connections between climatic variables and
streamflow variations. By identifying the dominant climatic factors influencing streamflow
and quantifying the changes in climate-driven streamflow over time, this study seeks to
contribute significantly to the knowledge of hydroclimatological trends and predictions in
the UIB, ultimately assisting in better water resource management and adaptation strategies
for this vulnerable region. This study uses PLSR to examine the connections between an-
nual streamflow and climatic variables, particularly extremes in precipitation, in the Loess
Plateau (LP) from 1961 to 2015. Given that the two ecological restoration (ER) techniques
result in different streamflow regime changes, the effects of climatic variation and ER, in
particular, were assessed on streamflow in the LP over the two ER periods [56]. The specific
goals are to (1) estimate different precipitation extremes and other meteorological factors
and (2) determine the climatic factors that dominate streamflow generation and measuring
streamflow change.

2. Materials and Methods
2.1. Study Area

The area for this research is the UIB in Pakistan. It covers the province of Khyber
Pakhtunkhwa, the Gilgit-Baltistan area, and some portions of Punjab. This covers a sizable
section of Pakistan’s most northern regions. Geographically, the UIB is found between
latitudes of about 35◦ and 37◦ N and longitudes of around 72◦ and 77◦ E. Rugged mountain
ranges, broad valleys, and tall plateaus characterize the region. It is divided into sub-
catchments that provide water to the entire basin, as shown in Figure 1. Elevation ranges
from almost 1500 m (4900 feet) in the valleys to 8000 m (26,000 feet) at the highest peaks.

The Indus River passes through many landscapes, links various areas, and supplies
vital water resources to millions of people in Pakistan, which has enormous geographic
significance. The UIB has a variety of climatic conditions. As a result, the UIB’s sub-basins
respond to various climatic variables in diverse ways. The primary sources of streamflow
for sub-basins in high-altitude areas having lots of glaciers and snow cover are more
dependent on snowmelt and glacier melt. Sub-basins in lower-altitude regions could be
more affected by monsoonal rainfall. The monsoon season’s timing, severity, and duration
can impact streamflow patterns in these areas.
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Figure 1. Study Area Map of the Upper Indus Basin (UIB).

The Indus River, generated through the UIB, is given a lot of attention in Pakistan. An
essential piece of infrastructure, the Tarbela Hydropower Dam in Pakistan harnesses the
power of the Indus River to produce electricity. It is one of the world’s biggest earthen
dams and is essential to Pakistan’s energy industry. It uses the Indus River’s water flow to
power turbines, which power generators that generate electricity. Pakistan’s agricultural
economy is supported by a vast network of irrigation systems along the Indus River that
provide water to large agricultural areas. The Indus River ensures an efficient supply of
water for irrigation. Being one of Asia’s most significant water systems, the UIB provides
water to the most extensive irrigation system in the world, providing water for 90% of
Pakistan’s food production and 25% of the nation’s gross domestic product (GDP) [57].
Figure 2 represents the methodology flow chart of this study.

2.2. Climatological and Hydrological Data

The climatological data, including precipitation P, daily max temperature Tmax, daily
min temperature Tmin, wind speed, and relative humidity from 1990 to 2019, were collected
from the Pakistan Meteorological Department (PMD). The PMD adheres to all SOPs relating
to the instrumentation and collection of data and its distribution to final users. Also, the
PMD is a member of the World Meteorological Organization (WMO). The meteorological
station details lying in the UIB are given below in Table 1.
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Table 1. List of Meteorological Stations in the UIB.

Sr. No. Station Name Longitude (◦) Latitude (◦) Elevation (m)

1 Astore 74.90 35.33 2450
2 Bunji 74.63 35.67 1400
3 Chilas 74.10 35.42 1265
4 Chirtal 71.83 35.85 1494
5 Drosh 71.80 35.56 1360
6 Gilgit 74.33 35.92 1500
7 Gupis 73.44 36.22 2713
8 Hunza 74.65 36.31 2438
9 Peshawar 71.56 34.02 331
10 Cherat 71.88 33.82 892
11 Kalam 72.57 35.49 2001
12 Saidu Sharif 72.35 34.73 970
13 Dir 71.87 35.19 420
14 Shigar 75.69 35.49 2230
15 Skardu 75.55 35.32 2228

Data on daily streamflow was obtained from the Surface Water Hydrology Project
(SWHP), run by the Water and Power Development Authority (WAPDA) from 1990 to
2019. Streamflow is one of the main parameters that enables researchers to comprehend
the fluctuation and movement of water in a streamflow and the flow of water in streams,
rivers, and other channels. The hydrological stations’ lying in the UIB details are given
below in Table 2.



Water 2023, 15, 3606 7 of 30

Table 2. List of Hydrological Stations in the UIB.

Sr. No. Station Name Longitude (◦) Latitude (◦) Area (km2)

1 Astore at Doiyan 74.7 35.5 4040
2 Skardu at Kachura 75.4 35.5 112,665
3 Kalam at Chakdara 34.6 72.0 5776
4 Chitral 71.8 35.9 11,396
5 Indus at Besham Qilla 72.9 34.9 162,393
6 Gilgit at Alam Br. 74.3 35.9 26,159
7 Jhansi Post 71.4 33.8 1257
8 Shigar 75.7 35.4 6610
9 Bunji 74.6 35.7 142,709
10 Indus at Massan 71.7 33.0 286,000

2.3. Calculations by Expert Team on Climate Change Detection and Indices (ETCCDI) Climatic
Variables Using the RClimDex

The ETCCDI variables are a group of fundamental climate indices that are used to track
the occurrence of T and P extremes. Temperature indices concentrate on the cold and warm
extremes of the min and max T, including max/min values, fixed threshold exceedances,
and percentile-based thresholds. Precipitation indices concentrate on total precipitation
accumulations, rainfall occurrences with points, and maximum rainfall extremes. These
variables were calculated using the RClimDex, an extension of R 4.3.1 language software.
It is a program built by Microsoft Excel that is a simple-to-apply package for calculating
indices of climate extremes for identifying and monitoring climate change (CC). A total
of 27 indices are calculated by the RClimDex. In this study, 19 essential variables were
calculated. From gathering climate data to running the functions that create the index,
several processes are involved in producing climate indices with the RClimDex. The
RClimDex is a powerful climate analysis tool in R that employs a suite of equations to
calculate a wide range of climate indices. These indices are essential for characterizing
climate extremes and trends, aiding researchers and climate scientists in understanding
historical climate data and assessing the impact of climate change. Some of the equations
used within the RClimDex encompass simple daily temperature indices, such as TXx (the
maximum temperature on the hottest day), which identifies the highest daily maximum
temperature within a specified period. Precipitation indices, including the R1mm (the
number of wet days) and Rx1day (maximum 1-day precipitation), are also calculated
based on observed daily precipitation records. Additionally, percentile-based indices
like the PRCPTOT (precipitation total percentile) and climate extreme indices like the
growing season length (GSL) are derived through equations that quantify specific climate
characteristics, such as the percentage of total precipitation below a certain threshold and
the duration of growing seasons.

Furthermore, the RClimDex provides various tools and equations for assessing climate
extremes, including consecutive dry days (CDD), consecutive wet days (CWD), and frost-
related indices like GSL25 and GSL5. These equations collectively enable users to examine
various facets of climate behavior, helping to unravel historical climate patterns and detect
trends and anomalies driven by climate change. By employing these equations and indices,
the RClimDex empowers researchers to conduct comprehensive climate analysis and
generate critical insights into climatic variability and change.

2.4. Evapotranspiration Calculation

The Penman–Monteith equation was employed in this study to determine evapotran-
spiration. The equation is an empirical method for calculating the rate of evapotranspiration,
which is the total amount of water lost to the atmosphere due to land surface evaporation
and plant transpiration. The equation is expressed as the following:

ET =
(

0.408∆(Rn− G) + γ
(

900/(T + 273)u2(es− ea)/
(

∆ + γ
(

1 + 0.34u2
))

(1)
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where E is the rate of evapotranspiration (mm/day), Rn is the net radiation (MJ/m2/day),
G is soil heat flux density (MJ/m2/day), γ is the psychometric constant (kPa ◦C−1), T is the
air T in degrees Celsius (◦C), u2 is the speed of wind at 2 m above the ground in meters
per second, es is saturation VP in (kPa), ea is actual VP (kPa), and ∆ is the saturation vapor
pressure–temperature curve’s slope (kPa/◦C).

2.5. Spatial Analysis by Inverse Distance Weighting (IDW)

Spatial analysis, also known as spatial data analysis, is a clearly defined subset of the
analytical techniques that can be used in a project. If the data are spatial, or when they are
referred to as a 2-dimensional frame, one may describe spatial analysis as a collection of
techniques [58]. In this study, the IDW tool from the Geographic Information System (GIS)
is applied for the spatial analysis of climatic variables. Interpolation is performed using
the IDW method. The fundamental presumption behind it is that the attribute value of an
unsampled point is the weighted average of all known values in the immediate vicinity.
Using values from a dispersed set of known points, unknown facts are given importance in
this procedure [59–66]. The basic equation of IDW is the following:

P = ∑ (Pi/Din)/∑(1/Din) (2)

where P represents the estimated value for the unknown place, Pi is the known value at
each point i, Di is the distance from the undisclosed location to each available site i, and n
is a power parameter that controls the significance of known points on the interpolated
values based on their distance to the unknown end.

2.6. Trend Analysis

Trend analysis is a statistical method used to spot patterns or trends over a predeter-
mined timeframe. To determine whether a group of data values is increasing over time or
dropping with time, the Mann–Kendall (MK) test was utilized and found if the trend of
climatic variables over the UIB, in either direction, was increasing or decreasing.

Mann–Kendall Test

The MK test, often called the Mann–Kendall trend test, is a popular non-parametric
statistical tool for examining trends in time-series data. In 1945, Mann made the initial
suggestion, and in 1975, Kendall expanded on it. The MK test determines whether the
trend of the relevant variable over time is upward or downward. An upward trend, which
may or may not be linear, denotes a constant growth in the variable over time [60]. General
Equations (3)–(6) represent the method:

S = ∑n−1
k=1 ∑n

j=k+1 sgn(Xj − Xk) (3)

The p-value must be determined. When the estimated probability is below that
significance level, the null hypothesis of no trend is rejected. To achieve this, we must first
use the VAR(S) to determine the value of z.

VAR(S) =
n(n− 1)(2n + 5)−∑n

i=1 ti(ti− 1)(2i + 5)
18

(4)

Z =
S± 1√
VAR(S)

(5)

Pvalue =
1
2
− 1√

2
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where n are data points, M is the number of tethered groupings, ti stands for the number of
ties of the extent I, and IDW was utilized to project the Z values derived from the MK test
conducted over the UIB.
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2.7. Partial Least Squares Regression

In the present study, the XLSTAT 2021.5 was utilized to apply PLSR. PLSR is one of
the many methods for data analysis included in the comprehensive statistical program
XLSTAT. The ease of use and extensive analytical capabilities of the XLSTAT make it a good
choice for PLSR applications.

In this technique, a PLSR matrix of n observations and m variables, the dependent
vector of annual streamflow, Y (n.1), and a group of distinct climatic variables, X (n m),
were explored using PLSR. The PLSR determined the primary factors governing annual
streamflow by selecting the elements for X, which most accurately predicted Y.

Independent and dependent variables are divided in the first step of PLSR modelling,
represented by the Equations (7)–(9).

X = TPT + EX (7)

Y = UWT + EY (8)

where X is a set of climatic variables, Y is a set of the response variables (annual streamflow),
E is the residual of the matrix (n.m), T and U are the n.k scores matrix, k is a number of
components, and P and W are the m.k weights matrix. As a result, the norm of E was
reduced to the following:

U = BT (9)

The regression coefficient was then estimated using least squares minimization to
determine B (n.n). Climatic variables showing dominance over streamflow were selected
based on variable importance for the projection (VIP) factors.

VIP scores summarize the influence of each X variable on the PLSR model. Each
extracted latent variable dimension’s amount of explained y variation is represented by the
weighted sum of squares of the partial least squares (PLS) weights, w*, which is used to
produce VIP scores. Based on these VIP scores, the dominance of the dependent variable
over the independent is selected. VIP scores provide a measure that can identify the
variables most responsible for the y variance explanation [61]. Equation (10) describing
VIP is given below:

VIPj = p× sum
[
(tj, k)2/(SSY)× (w.k)2

]
, f or j = 1, 2, . . . , p (10)

where P is the number of predictor variables in model (tj, k) is the kth score of the jth
predictor variable in the PLSR model, the square root of the dependent variable is expressed
as SSY, and (w_k) is the kth weight of the dependent variable in the PLSR model.

2.8. Quantification of Streamflow Variation

For attribution analysis of climatic streamflow (SF) variation prediction, the PLSR
model was utilized. The PLSR model was developed and assessed using information from
the reference period before being used to forecast climate-driven streamflow in subsequent
periods. The change attributable to climatic variability (Qclim) is the discrepancy between
the mean annual streamflow that climate factors predict and the actual SF. The change
attributable to climatic variability is the difference between the mean yearly SF predicted
using climate factors and observed SF given in Equation (11):

∆QClim = QBaseline −QA f ter (11)

where ∆Qclim demonstrates the variation in SF due to C.C between the reference era and
later periods, QBaseline indicates streamflow of ithe nitial 1tenyears, and QAfter indicates
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the predicted streamflow of the next two decades. The effects of climatic variability on
changes in streamflow were identified by Equation (12):(

QBaseline

∆Qclim()

)
(12)

2.9. Estimated Climatic Variables

The RClimDex was employed with the help of R software to compute climatic variables
in this research. This process incorporated daily input data regarding precipitation levels
and maximum and minimum temperatures. While the RClimDex provides 27 potential
variables, our study used 20, as shown in Table 3, with specific ones selected for their
relevance to the research aims.

Table 3. Climatic Variables Detail Used in this Study.

Sr. No. Variable Abbreviation Unit Description

1 Very wet days R95p mm Annual total PRCP when
RR > 95th percentile

2 Extremely wet days R99p mm Annual total PRCP when
RR > 99th percentile

3 Consecutive wet days CWD days Maximum number of consecutive
days with RR ≥ 1 mm

4 Consecutive dry days CDD days Maximum number of consecutive
days with RR < 1 mm

5 Annual total wet days P PRCPTOT mm Annual total PRCP in wet days
(RR ≥ 1 mm)

6 Number of very heavy P days R20 days Annual count of days when
PRCP ≥ 20 mm

7 Number of heavy precipitation days R10 days Annual count of days when
PRCP ≥ 10 mm

8 Simple daily intensity index SDII mm/days
Divided by the number of rainy days
(defined as PRCP ≥ 1.0 mm) in the
year, the annual total precipitation

9 Warm spell duration indicator WSDI days
Days per year with at least six
consecutive days when TX was higher
than 90%

10 Cold spell duration indicator CSDI days
Days each year with at least six
straight days with TN below the
10th percentile

11 Max 1-day P amount RX1 day mm Monthly maximum
1-day precipitation

12 Max 5-day P amount RX5 day mm Monthly maximum consecutive
5-day precipitation

13 Max Tmax TXx ◦C Monthly max value of daily
max temperature

14 Max Tmin TNx ◦C Monthly max value of daily
min temperature

15 Min Tmax TXn ◦C Monthly min value of daily
max temperature

16 Min Tmin TNn ◦C Monthly min value of daily
min temperature
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Table 3. Cont.

Sr. No. Variable Abbreviation Unit Description

17 Number of heavy precipitation days R25mm days Annual count of days when P was
more significant than 25 mm

18 Average of max T Tmax mean ◦C Average of monthly maximum value
of daily maximum temperature

19 Average of min T Tmin mean ◦C Average of monthly minimum value
of daily minimum temperature

20 Potential evapotranspiration PET mm
Yearly evapotranspiration
as calculated by the
Penman–Montieth equation

3. Results
3.1. Spatial Distribution of Climatic Variables

Following RClimDex computation of the climatic variables, the IDW technique weighed
each input point’s contribution to the interpolated values according to the inverse distance
between the input and output points. The UIB was covered by this strategy to spread
these variables.

High values of climatic factors, represented by the color blue, demonstrate a strong
influence of these factors in their respective region. On the other hand, the color red
signifies a minimal impact of these variables on the designated area. The climate cycles in
the UIB are better understood due to this outcome, as shown in Figure 3. This color-based
representation offers a visual tool to discern the varying degrees of influence across different
regions and climatic variables. For the cooling degree days (CDD(d)) variable, high values
were observed in Gilgit and Chilas, suggesting a significant demand for cooling in these
regions due to warm temperatures. Medium values in Astore, Shigar, and Skardu indicate
a moderate cooling effect, while low values in Cherat and Chitral, with the lowest values
found in the Chakdara climatic stations, reveal a lesser need for cooling, thus implying a
lower impact of warm temperatures in these areas.
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Moving on to the cooling degree seasonality index (CDSI(d)), high values in Gilgit,
Chitral, Astore, and Cherat signify pronounced seasonal variations in cooling demands,
with a considerable impact. Medium values in Skardu and Chakdara suggest a more
moderate seasonality, while Chakdara itself exhibits the highest cooling seasonality impact
among the study areas. Considering the cooling water deficiency (CWD(d)) variable, high
values identified in Chakdara indicate a significant water deficiency for cooling, leading to a
pronounced impact on this region. In contrast, medium values in Cherat and Chitral suggest
a less severe water deficit, with low values in Astore, Skardu, Shigar, and Hunza, and
the lowest value recorded in Gilgit, implying a milder impact regarding water deficiency
for cooling purposes. Turning to the potential evapotranspiration (PET(d)) variable, high
values in Cherat indicate a substantial potential for water loss due to evapotranspiration,
resulting in a high impact on this area. Conversely, medium values in Chitral, Chakdara,
and Chilas, along with low values in Hunza, Gilgit, Astore, and Skardu, and the lowest
value in Shigar, suggest a comparatively lower impact of evapotranspiration on water
resources in these regions. Precipitation-related variables, such as the total precipitation
(PRCPTOT(d)), heavy precipitation days (R10(d)), and very heavy precipitation days
(R20(d)), provide insights into the impact of precipitation patterns. High values in Chakdara
for PRCPTOT(d) indicate substantial precipitation, resulting in a significant impact on this
region. Medium values in Chitral and Cherat suggest a moderate impact, while low values
in Astore, Hunza, Shigar, Skardu, and Chilas reflect a lesser influence of precipitation. The
analysis extends to variables like R25(d), simple daily intensity index (SDII), and R (95)p
(mm), among others, each revealing the varying degrees of influence of climatic factors
across different regions. These interpretations, based on color-coded representations and
variable values, provide valuable insights into how climatic variables affect specific areas.
High values consistently point to a stronger influence, while low values indicate a lesser
impact of these climatic variables. This comprehensive assessment serves as a valuable
resource for understanding regional climate dynamics and informs decision-making and
adaptation strategies in response to changing climatic conditions.

3.2. Spatial Distribution of Trend Analysis for Climatic Variables

The MK test determined anticipated climatic variable trends over the UIB. After
understanding the “z” values, this was accomplished. The findings made it possible to
identify whether these effects increased or decreased over time. Precipitation has increased
during the last 30 years over the UIB, as most variables show growing trends. The TNx is
the only increasing variable from all temperature indices. These effects are causing snow
and glaciers to melt. The combined effect of these variables produces runoff. Projected
trends of calculated variables are shown in the figures below. Projected trends of calculated
variables are shown in Figure 4. This interpretation provides valuable insights into how
these climatic variables shape the hydrological landscape of the UIB. Taking a closer
look at the cooling degree days (CDD(d)) variable, it is evident that high values were
observed in Gilgit and Shigar. This indicates an increasing demand for cooling due to warm
temperatures, resulting in a more pronounced impact on hydrological processes in these
areas. Conversely, medium values in Astore, Cherat, and Chakdara suggest a moderate
cooling effect, with diminishing influence on flows, while low values in Chilas and Skardu,
and the lowest values in Hunza and Chitral climatic stations, imply a decreasing demand
for cooling and a correspondingly reduced effect on hydrology in these regions. Similarly,
the cooling degree seasonality index (CDSI(d)) reveals varying levels of influence. High
values in Gilgit and Astore indicate pronounced seasonal variations in cooling demands,
with a growing impact on hydrological patterns. In contrast, the low values in Chitral and
Skardu, along with the lowest values in Chakdara, Shigar, and Cherat, signify a diminishing
seasonality impact and a reduced effect on hydrological processes.
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Turning to the cooling water deficiency (CWD(d)) variable, high values in Chakdara
point to a substantial water deficiency for cooling, resulting in a significant impact on water
resources and hydrology in this region. Conversely, medium values in Cherat, Shigar,
Gilgit, Astore, and Skardu, along with low values in Chitral and Chilas, suggest varying
degrees of water deficiency for cooling, with the lowest value recorded in Hunza. This
indicates a decreasing impact of water deficiency on hydrological processes in these areas.
The potential evapotranspiration (PET(d)) variable illustrates a changing influence on flows.
High values in Shigar, Chitral, and Astore signify a significant potential for water loss due
to evapotranspiration, contributing to a growing impact on hydrology. In contrast, medium
values for Gilgit and Skardu, followed by low values at Hunza, Cherat, and Chilas, and
the lowest value in Chakdara, indicate a decreasing effect of evapotranspiration on water
resources and hydrological processes in these regions. When examining precipitation-
related variables, including the total precipitation (PRCPTOT(d)), heavy precipitation days
(R10(d)), and very heavy precipitation days (R20(d) and R25(d)), it becomes clear that
certain areas are experiencing increasing influence. For instance, high values in Shigar
for PRCPTOT(d) indicate substantial precipitation, contributing to a growing impact on
hydrological patterns. Medium values in Cherat, Hunza, Gilgit, and Skardu, and low
values in Astore and Chitral, suggest varying degrees of decreasing influence in terms of
precipitation. In conclusion, the interpretation of variable values in this context highlights
the changing dynamics of hydrological processes within the UIB. High values indicate an
increasing effect of climatic variables on flows, whereas low values imply a diminishing
impact. These insights are essential for understanding the evolving hydrology of the region
and for making informed decisions regarding water resource management and adaptation
strategies in the face of changing climatic conditions.

3.3. Pearson Correlation between the Variables

The calculation of the Pearson correlation coefficient between different climatic vari-
ables was performed before using them for PLSR analysis. The percentage of these variable
pairs showed a statistically significant correlation at a significance level of 0.05. All the
variables were found vital as they showed reasonable significance percentages with one
another and showed a p < 0.05, which indicated that these variables helped determine
which climatic variables were most related to each other and helped with interpreting the
results of the PLSR assessments. The Pearson correlation results are shown in Table 4.
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Table 4. Pearson Correlation Coefficient Test among Climatic Variables.

Sr. No. Station Name Correlation Percentage Significance Level

1 Astore at Doiyan 78% p < 0.05
2 Skardu at Kachura 76% p < 0.05
3 Kalam at Chakdara 77% p < 0.05
4 Chitral 78% p < 0.05
5 Indus at Besham Qilla 66% p < 0.05
6 Gilgit at Alam Br. 81% p < 0.05
7 Peshawar at Jhansi Post 54% p < 0.05
8 Shigar 51% p < 0.05
9 Bunji 80% p < 0.05
10 Indus at Massan 52% p < 0.05

3.4. Partial Least Squares Regression

The VIP scores and the PLSR method found the most important climatic factors.
Furthermore, variations in streamflow were quantified using the PLSR model’s equations.

Dominant Climatic Variables

Partial least squares regression is a statistical technique used to pinpoint critical
variables in a complex multivariate system. It achieves this by singling out the variables
that primarily influence the variability in the response variable, in this instance, the yearly
streamflow. This is where VIP scores become significant [66–71].

VIP scores aid in identifying the most impactful variables that elucidate the outcome,
with scores exceeding 1 typically regarded as noteworthy. The aforementioned climatic
variables—R99p, PRCPTOT, Rx5day, and R25mm—appear as vital precipitation elements
impacting the annual streamflow per the VIP analysis. These variables possibly represent
diverse characteristics of rainfall occurrences, such as cumulative precipitation, intensity,
and severe rainfall events.

Furthermore, temperature variables like the TXn (lowest temperature) and Tmax mean
(average maximum temperature) were marked as significant. For example, these variables
may influence streamflow by altering evaporation rates and snowmelt. Consequently,
these climatic elements together assist in explaining the fluctuations in streamflow, thereby
highlighting the complexity of hydrological reactions to climatic variables. According to
the VIP, precipitation extremes are found to be dominant as compared to temperature
extremes, causing variation in streamflow. Figures 5–14 represent the dominant climatic
variables at different meteorological stations.
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Figure 5. Dominant Climatic Variables at Shigar.
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Figure 8. Dominant Climatic Variables at Bunji.
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The PLSR constructed a model that linked climatic variables like temperature, precipi-
tation, and evapotranspiration indices with streamflow data from 1990 to 2019 concerning
streamflow variance owing to CC. To determine the set of variables that may have most
accurately predicted streamflow, the model examined collinear (correlated) variables. The
generated model can assist in anticipating future changes under various climatic scenarios
by offering insights into how climatic variables have influenced streamflow during the
selected period. The PLSR models showed that streamflow has declined in all stations over
the past three decades. However, an exception to this trend was seen in the Shigar and
Kalam basins, where there was an increase in streamflow during the same period. These
variations in percentage are mentioned in Table 5.

Table 5. Quantification of Changes in Streamflow.

Sr. No. Hydrological Station Q ∆Q

P-I P-II P-III P-II P-III

1 Astore at Doiyan 155.68 138.1 146.22 ↓ 11.29% 6.07%
2 Skardu at Kachura 1225.44 1106.91 1008.813 ↓ 9.03% 17.60%
3 Kalam at Chakdara 203.51 211.54 224.5 ↑ 3.94% 10.30%
4 Chitral 292.46 259.60 280.714 ↓ 11.20% 4.01%
5 Indus at Besham Qilla 2470.85 2338.35 2422.8 ↓ 5.36% 1.94%
6 Gilgit at Alam Br. 664.96 623.83 635.5158 ↓ 6.10% 4.40%
7 Jhansi Post 5.96 4.74 5.234575 ↓ 20.40% 12.30%
8 Shigar 207.18 206.75 283.59 ↑ 0.48% 37.37%
9 Bunji - 1842.04 1450.4 ↓ - 27.03%
10 Indus at Massan 4144.44 3854 4071.86 ↓ 7.00% 1.75%

4. Discussion

This research discusses the outcomes of a comprehensive streamflow and meteorologi-
cal data analysis from nine sub-catchments across the diverse climatic zones of the Upper
Indus Basin (UIB). Employing the RGui programming environment and PLSR, this study
aims to discern the relationships between climatic variables and streamflow patterns. The
considered climatic variables encompass precipitation extremes, temperature extremes,
and potential evapotranspiration. Applying the Mann–Kendall test to these climatic indices
offers valuable insights into the trends and changes in the region’s climate over three
decades (1990–2019).

The discussion of the results unveils intriguing findings that contribute to a nuanced
understanding of the complex interplay between climate and streamflow dynamics in the
UIB. The temporal trends in precipitation and temperature emerge as pivotal aspects of
the investigation. The observed increase in rainfall over the last 30 years bears significant
implications for the hydrological cycle of the basin. This rise in precipitation could influence
streamflow volumes and patterns, impacting water availability and distribution across the
region. Similarly, the decrease in maximum and minimum temperatures during the summer
months in the Karakoram region is a noteworthy trend. Such temperature fluctuations can
substantially affect glacial melt rates, which in turn influence the water supply dynamics in
the basin. This study’s emphasis on these trends highlights the importance of considering
climatic variations when developing water resource management strategies, especially in a
region heavily reliant on glacial meltwater.

Furthermore, this investigation delved into the spatiotemporal trends of consecutive
dry days (CDD) and consecutive wet days (CWD). The observed increase in CDD from
1990 to 2019 underscores potential shifts in the basin’s moisture regime. This alteration can
directly affect water availability, ecosystem health, and agricultural practices that rely on
consistent water supply. On the other hand, the decreasing trend in CWD points toward
shifts in the frequency and duration of wet spells, which also carries implications for various
water-related activities. These findings emphasize the importance of understanding the
temporal dynamics of damp and dry periods within the context of the UIB’s hydrology.
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The application of partial least squares regression (PLSR) to assess the relation between
climatic variables and streamflow provided crucial insights into the drivers of streamflow
variation. This study identifies specific climatic variables that dominate annual streamflow
patterns. Notably, very wet days (R95p) and heavy precipitation days (R25mm) significantly
impact streamflow. This suggests that extreme precipitation events play a substantial
role in shaping the hydrological response of the basin. Additionally, the dominance
of precipitation-related variables, including annual total precipitation (PRCPTOT) and
maximum five-day precipitation (RX5), highlights the central role of rainfall in influencing
streamflow dynamics. Identifying temperature variables, such as the Min Tmax (TXn)
and average maximum temperature (Tmax mean), as influencers of streamflow further
underscores the complex interdependence between climate and hydrology.

This research also underscores the varying effects of potential evapotranspiration (PET)
on streamflow across different catchments. This finding emphasizes that the interaction
between climate and hydrology can be context-specific, with drier catchments exhibiting
a more pronounced relationship between ET and streamflow variation. This insight is
crucial for understanding the water balance within different catchments and guiding water
management strategies accordingly. Finally, quantifying climate-driven annual streamflow
over distinct time intervals offers significant insights into the basin’s hydrological behavior.
The observed decrease in climate-driven annual streamflow during 1999–2019, compared
to 1990–1999, signifies potential shifts in the basin’s hydrological regime. However, this
study also identified specific catchments, such as Kalam and Shigar, where streamflow
has increased over particular periods. These variations highlight the complex interplay
between climatic parameters and local hydrological characteristics, indicating the need for
localized water resource management strategies [2,71–79]. While this study’s primary focus
was streamflow, it is worth noting that these hydroclimatological trends and projections can
have significant implications for groundwater resources in the region. In regions like the
UIB, where water resources are critical for agriculture and general water supply, variations
in streamflow due to climate change can directly impact groundwater levels. For example,
prolonged periods of reduced streamflow, as indicated in this study during 1999–2019,
may lead to increased reliance on groundwater extraction for irrigation and domestic
use, potentially depleting aquifers and causing groundwater stress. Understanding the
relationships between climate extremes, streamflow, and groundwater dynamics is essential
for comprehensive water resource management [80,81]. It would be valuable for future
research to delve deeper into how climate-driven changes in streamflow might influence
groundwater recharge rates, aquifer levels, and the overall sustainability of groundwater
resources in the UIB. By exploring these linkages between surface water and groundwater
systems in the context of climate change, we can develop more holistic strategies to address
water resource challenges and adapt to the evolving hydroclimatological conditions in
this region.

The results show a comprehensive understanding of the relationships between climatic
variables and streamflow dynamics in the Upper Indus Basin. The observed trends in
precipitation, temperature extremes, and wet–dry periods underscore the intricate links
between climatic variations and hydrological responses. Certain climatic variables’ domi-
nance in streamflow control highlights the need for targeted water management strategies.
These findings contribute to a more informed approach to addressing the challenges posed
by changing climatic patterns and their impact on water resources in the region.

5. Conclusions

Our research results indicated the following:

1. The MK test based on “z” values indicated a rise in precipitation during the last
30 years over the UIB, as most variables showed increasing trends. The TNx is
the only increasing variable in temperature indices. Projected trends of calculated
variables are shown in the figures above.
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2. Based on the variable importance in projection (VIP), there are four key climatic
variables: R99p, meaning extremely wet days; PRCPTOT, denoting yearly total pre-
cipitation; Rx5day; and R25mm. These parameters were discovered to considerably
influence the yearly streamflow, highlighting the significance of precipitation-related
variables in determining streamflow patterns.

3. The TXn and Tmax mean, conversely, are the main temperature factors affecting
streamflow. In regions with snow accumulation, these elements are the leading causes
of glaciers and snowmelt. More specifically, in these snow-covered areas, greater
values of TXn and Tmax mean temperatures might hasten the melting process and
influence streamflow.

4. Most sub-basins are located in low-temperature regions where evapotranspiration
(ET) has little effect on changes in streamflow. This is because these colder areas
evaporate water at a slower rate. However, due to the increased rate of evaporation
in regions with moderate temperatures, ET impacts streamflow variability.

5. This study concluded that temperature (T) plays a much lesser effect than precipitation
(P) in determining streamflow generation in the UIB. The use of the PLSR model led
to discovery. The model was used to measure streamflow changes and found that,
in most basins, the yearly streamflow caused by climate declined from 2000 to 2019.
Comparing the streamflow to the baseline period of 1990–1999 revealed this drop.
Consequently, the results point to a substantial change in streamflow patterns over
the decades, caused mainly by variations in precipitation.

6. In the period from 2000 to 2009, there was a notable increase in streamflow: Kalam
experienced a rise of 3.94%, while Shigar saw a more minor increase of 0.48%. How-
ever, the decade from 2010 to 2019 showed a more pronounced increase. Kalam’s
streamflow went up by 10.30%, and notably, Shigar’s streamflow surged by 37.37%.

7. This knowledge can help with choosing the right climatic variables for catchment
hydrological models.

Additional research is required to consider other possibly significant elements (such
as soil characteristics, land use, and landscape patterns) impacting streamflow in the PLSR
technique. Partial least squares structural equation modeling (PLS-SEM), a type of multi-
variate statistical analysis (more advanced and using the latest PLS 2022.4 software), is to
be used for much better research. A study on future climate data is required to estimate
the runoff, whether there will be any flooding conditions, and investigate whether temper-
ature or precipitation will be dominant in the future. Future research must consider the
non-stationary nature of hydroclimatological systems due to climate change. Addressing
the memory of previous years and accounting for long-term trends in streamflow is crucial
for a more comprehensive understanding of evolving hydrological dynamics. Future stud-
ies should explore advanced modeling techniques incorporating climate change-induced
variations and provide a framework to analyze the impact of changing conditions over
extended periods. Additionally, developing adaptive management strategies and policies
that respond to the dynamic nature of hydroclimatological systems is essential for effective
water resource management in the face of climate change.
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