Water–Rock Interactions across Volcanic Aquifers of the Lece Andesite Complex (Southern Serbia): Geochemistry and Environmental Impact
Abstract
:1. Introduction
2. Geological and Hydrogeological Setting of the LAC Complex and Surroundings
- (1)
- In aquifers that are controlled by deep tectonic structures, a certain amount of elements (such as Ca2+, Mg2+, Na+, K+ or minor/trace elements: F, B, Fe, Li, Rb, etc.) are transported from deeper reservoir sections after the process of decomposition of minerals from the water-bearing rocks or reservoirs (Figure 2a, labeled as “C”). The processes of decomposition of minerals in the aquifer are stimulated primarily by the presence of gases CO2, H2S, etc., that migrate from deeper crustal levels up towards more shallow zones (Figure 2a, labeled as “B”).
- (2)
- In shallow aquifers, a certain amount of elements may arrive after a downward percolation of atmospheric water together with gases O2, CO2, He, Ne, Ar, etc. (Figure 2b, marked as “A”) [42]. Gaseous components, carried by atmospheric water, can interact with minerals constituting the reservoir rocks (Figure 2b, labeled as “C”). Thus, further, these aggressive components (O2, CO2, newly formed H3O+, etc.) in most shallow aquifers often lead to the oxidation processes of sulfides, hydrolysis of aluminosilicate/silicates, carbonates, etc. In deeper aquifers, however, the aggressive components of atmospheric water are not present (depleted already in the shallower areas, long before the waters reach deep-settled reservoirs). The finite chemical composition of the groundwaters, distributed across all aquifers, is associated spatially with the reservoirs themselves (Figure 2a,b labeled as “C”).
Lithology, Mineralogy, and Geochemistry of Rocks and Associated Aquifers
Minerals | Composition | Major and Trace Elements | Goldshmit Classification of the Elements | |
---|---|---|---|---|
Minerals of Vulcano Complex | ||||
Main | Plagioclase | Na-CaAlSi3O8 | K, Ba, Sr, Fe | Lithophile: Li, F, B, Na, Mg, Al, Si, P, Cl, K, Ca, Ti, V, Cr, Mn, Br, Rb, Sr, Zr, Y, Nb, Cs, Ba, Hf, Th, U Chalcophile: S, Cu, Zn, Ga, Ge, As, Se, Ag, Cd, In, Sb, Hg, Tl, Pb, Bi Siderophile: Fe, Co, Ni, Mo, Pd, Ir, Au |
Hornblende | NaCa2(MgFeAl)5 SiAl8O22(OH)2 | F, Cl, REE | ||
Augite | Ca(MgFeAl)(SiAl)2O6 | Ti, Mn, Na | ||
Minor | Biothite | K(MgFe)3(AlSi3O10)(OH)2 | Na, Rb, Cs, F, Nb | |
Chlorite | (MgFeAl)6(AlSi)4O10(OH)8 | Ni, Cr, Li | ||
Accesorry | Apatite | Ca5(PO4)3(FClOH)2 | Fe, Sr, Al, U, Th, REE, W, Nb | |
Magnetite | Fe2O3 (FeFe2O4) | Mg, Mn, Al, Ti, V, Cr | ||
Zirkon | ZrSiO4 | Hf, Th, U, Y, REE | ||
Sulphides (propilitized zone) | Pyrite | FeS2 | Co, Ni, Au, Ag, Cu, Sb, Tl, As | |
Chalcopyrite | CuFeS2 | Ag, Au, As, Bi, Ge, Ga | ||
Minerals of ore mineralization and hydrothermal alterated rocks | Sphalerite | ZnFeS | Cd, In, Ga, Hg | |
Galena | PbS | Ag, Cu, Bi, Fe, Sb, As, Mo, Se | ||
Marcasite | FeS2 | Ni, Co, Bi, Cu, As, Sb, Tl | ||
Enargit | Cu3AsS4 | Sb, Fe, Zn, Pb, Ag | ||
Tetrahedrite | Cu12Sb4S13 | As, Fe, Ag, Hg | ||
Pyrite | FeS2 | Co, Ni, Au, Ag, Cu, Sb, Tl, As, Se | ||
Chalcoopyrite | CuFeS2 | Ag, Au, As, Bi, Ge, Ga | ||
Gold | Au | Fe, Cu, Ag, Pd, Ir, Bi | ||
Antimonite | Sb2S3 | As, Pb, Ag, Cu, Au | ||
Covelin | CuS | Fe, Se, Ag, Pb | ||
Hematite | Fe2O3 | Ti, Al | ||
Ankerite | Ca(MgFe)CO3 | Mn | ||
Siderite | FeCO3 | Mn, Ca, Mg, Zn | ||
Quartz | SiO2 | Al, Na, Mg, Ti | ||
Tourmaline | Na(Mg,Ca,Fe)Al6(BO3)3Si6O18(OH,F)4 | Mn, K, Ti, Li, F, B | ||
Minerals of cristaline shists | ||||
Main | Quartz | SiO2 | Al, Na, Mg, Ti | Lithophile: Li, F, B, Na, Mg, Al, Si, P, Cl, K, Ca, Ti, Cr, Mn, Rb, Sr, Zr, Nb, Cs, Ba, Hf, Ta, W, Th, U Chalcophile Pb Siderophile: Fe |
Plagioclase | Na-CaAlSi3O8 | K, Ba, Sr, Fe | ||
Biothite | K(MgFe)3(AlSi3O10)(OH)2 | Na, Rb, Cs, F | ||
Muscovite | KAl3Si3O10(OH,F)2 | Na, Mg, Fe, Li, Cr | ||
Minor | Hornblende | NaCa2(MgFeAl)5 SiAl8O22(OH)2 | F, Cl, REE | |
Microcline | KAlSi3O8 | Cs, Li, Rb, Pb, Na… | ||
Apatite | Ca5(PO4)3(FClOH)2 | Fe, Sr, Al, U, Th, REE | ||
Sphene | CaTiSiO5 | Fe, Nb, Ta, TR … | ||
Distended | Al2SiO5 | Fe, Cr, Na, K | ||
Staurolite | FeAl5Si2O12(OH) | Mg, Mn | ||
Rutile | TiO2 | Fe, Nb, Ta, W, Sn… | ||
Zircon | ZrSiO4 | Hf, Th, U, REE | ||
Silimanit | Al2SiO5 | Fe, Al, Si | ||
Tourmaline | Na(Mg,Ca,Fe)Al6(BO3)3Si6O18(OH,F)4 | Mn, K, Ti, Li, B, F | ||
Minerals of marble in the cristaline shists | ||||
Main | Kalcit | CaCO3 | Ni, Mn, Co, Fe, Sr | Lithophile: Li, F, B, Na, Mg, Al, Si, Cl, K, Ca, Ti, V, Cr, Mn, Rb, Sr, Nb, Cs, Ba, Ta Chalcophile: Zn, Pb Siderophile: Fe, Co, Ni |
Dolomit | CaMg(CO3)2 | Mn, Co, Zn, Sr | ||
Kvarc | SiO2 | Al, Na, Mg, Ti | ||
Minor | Mikroklin | KAlSi3O8 | Cs, Li, Rb, Pb, Na | |
Plagioklas | Na-CaAlSi3O8 | K, Ba, Sr, Fe | ||
Amphiiboles | (Na, K ili Ca)0–1 (Ca, Fe, Mg, Mn, Li ili Na)2 (Li, Cr, Fe, Mn ili Ti)5 (Si, Al ili Ti)8 O22(OH,F,Cl)2 | Mn, K, Na, Cr, Li, Fe, | ||
Sphene | CaTiSiO5 | Fe, Nb, Ta, REE… | ||
Coysit | CaAl3Si3O12(OH) | Fe, V | ||
Diopside | CaMgSi2O6 | Al, Fe, Cr, Mn, V | ||
Chlorite | (MgFeAl)6(AlSi)4O10(OH)8 | Ni, Cr, Li | ||
Tourmaline | Na(Mg,Ca,Fe)Al6(BO3)3Si6O18(OH,F)4 | Mn, K, Ti, Li, F, B |
3. Water–Rock Interaction—Chemical Weathering
4. Materials and Methods
- (1)
- The concentrations of the main components, namely cations (Na+, Ca2+, K+, Mg2+) and SiO2 were measured by atomic absorption spectrophotometry, flammable technique (AASF) (PERKIN ELMER 6500, Perkin-Elmer, Norwalk, CT, USA);
- (2)
- The concentration of anions was measured by using the volumetric method (HCO3− and Cl−) and UV/VIS spectrophotometry (PERKIN ELMER λ 15, Perkin-Elmer, USA-PO43−, and SO42−);
- (3)
- The concentrations of minor and trace elements (Al, As, Ba, Be, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, Li, Mn, Mo, Ni, Pb, Rb, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, V, W, Y, Zn, Zr, U, Ce, Dy, Er, Eu, Gd, Ho, In, La, Lu, Nb, Nd, Pr, Re, Sc, Sm, Tb, Tl, Tm, Yb, and Hg) were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) (Agilent 7700, Agilent Technologies, Inc, Santa Clara, CA, USA);
- (4)
- The concentration of boron was analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES) (Spectro Blue, Kleve, Germany);
- (5)
- The concentration of bromides and iodides was analyzed by ion chromatography (IC) (Dionex 1600), and the concentration of fluorides was analyzed by potentiometry with an ion-selective electrode (ISE) Consort);
- (6)
- pH and temperature (T) were measured in situ by using a multi-component instrument (Ejkelkamp, Giesbeek, The Netherlands).
5. Results
6. Discussion
6.1. Water–Rock Interaction—Hydrogeochemistry of Water
6.1.1. Main Composition
6.1.2. Trace Elements
6.2. The Intensity of Water–Rock Interactions and Pearson’s Correlation
7. Water–Rock Interactions and Statistical Analysis
7.1. Cluster Analysis
7.2. PCA
- (1)
- According to Kaiser’s criterion (eigenvalues > 1), the four main components (PCs) could be identified: PC1 explains 42.4% of the total variance and includes Na, K, HCO3−, Cl−, SiO2, and TDS. As explained by using the mineralogical composition of the rocks, the reactions (Equations (1) and (2)) and Pearson’s correlation coefficient show that the majority of the elements originate from the aluminosilicates. As more intensive water–rock interaction is present, more silicates will be decomposed. As a consequence, more HCO3− ions, K+, and Na+ will be generated, and a higher concentration of the ions will be present in the water environment (higher TDS values). PC2 explains 20.2% of the variance and includes Mg, SO42−, and SiO2. Sulfates that are formed in the rocks containing sulfides after the oxidation process (Equation (4)) occur in the area of hydrothermally altered rocks (Djavv). As explained earlier, more H2SO4 enhanced the decomposition of silicates, and Mg originates from nearby silicates of the andesite complex (Table 1). An evident strong positive correlation between elements Mg, Fe, and Mn (Table 6) confirms the previous observation. PC3 explains 18.2% of the total variance and includes the following elements: Cl, F, and B. These elements can be mobilized after the decomposition of minerals such as biotite and thurmaline. PC4 explains 12.4% of the total variance and includes Ca. The results in Table 1 show that Ca as a lithophile element is a component of many silicate minerals and carbonates. A significant correlation can be observed between the elements represented in carbonates, such as Sr, and Mg, suggesting that the origin of Ca is from the carbonates as well.
- (2)
- PCA2: The results of the statistical analysis (Table 7) are given as the three main components: PC1 (44,9% of the total variance), PC2 (30,6% of the total variance), and PC3 (13,5% of the total variance). The grouping confirms the previous conclusions of the same origin of the elements: PC1 includes elements of the same origin that occur in the carbonated thermal waters: K, Na, B, Rb, and Cs. PC2 includes Mg, Al, Fe, and Mn, whereas PC3 includes Ca, Mg, and Cs. Combined, such a grouping suggests that Ca and Mg also originate from silicates and carbonates, represented by a marble sequence occurring in the schists (Table 1). Cs is a lithophile element that is capable of exchange with K in feldspars and micas, occurring in the thermal groundwaters, which are positioned near the contact with the felsic igneous rocks [15]. As explained earlier, the coefficient of the correlation with a higher significance (between Cs and main components and minor elements, Table 6) suggests the same origin, or an origin from the nearby silicates of andesites and schists. The grouping with Ca and Mg which originate from the major minerals of marble can be connected with the decomposition of minor minerals embedded in the marble fractions of the schists (for example microcline; Table 1).
- (3)
- PCA3 refers to the trace elements detected in the sampled groundwaters. The three extracted PCs are as follows: PC1, representing 51,4% of the total variance: Fe, Mn, Cr, Sc, V, U, and Cu; PC2, representing 31,6% of the total variance: Rb, Li, Sr, and Cs; PC3, representing 9,1% of the total variance: Ba. The grouping of PC1 could indicate the origin (e.g., elements in minerals, apatites, magnetite) and the conditions that are reflected in the concentrations. Additionally, the processes can be related to the main element or Fe and its behavior. It is a well-known fact that Fe, Cr, and V are associated with a number of minerals [80]. On the other hand, Mn and Fe have the same behavior according to the conditions (Eh, pH) that were explained earlier. The concentration of Cu increases only in the sample Djavv. In that manner, Cu represents a valid indicator of the decomposition of sulfide minerals. The grouping in PC2 has been already explained. Barium is not well correlated with elements such as Sr and Ca (Table 8). The correlation coefficient between K, Rb, Na, HCO3−, and TDS (0.3–0.6) suggests a connection with the components originating from silicates (e.g., plagioclases, Table 1). However, the separation of Ba from other elements can be interpreted as a possible consequence of the barriers and the conditions that have an impact on the decrease in its concentration.
8. Environmental Impact and Applicability of Groundwaters
8.1. Enrichment Factor
8.1.1. Enrichment Factor as an Indicator of the Source of the Water Systems
8.1.2. Enrichment Factor as a Risk Assessment
8.1.3. Contamination Level
- (1)
- The subsurface conditions existing in the propylized andesites (Djavv) promote the leaching of the following elements: U and F (Figure 9a,c) and Cu, Fe Zn, Co, and Ni (Table 2b). Groundwaters with a detected elevated concentration of the latter elements, in combination with the pH values of 2.4, represent a serious source of the contamination of the local environment.
- (2)
- The samples Malodj and Veldj, as water in contact with minerals of unaltered volcanic rocks, in hypsometrically prominent areas (>1000 m above sea level), and with shortened time of the water–rock contact, are of good drinking quality (Table 2a,b).
- (3)
- The waters originating from the aquifer at the contact near the unaltered volcanic rocks (with the TDS value between 189 and 459 mgl−1, As up to 24.2 µgL−1, Zn up to 38.5 µgL−1, F− up to 520 µgL−1, Fe up to 537 µgL−1, Al up to 647 µgL−1, Cu up to 8.0 µgL−1, and U up to 15.5 µgL−1) can contain some elements above the MDK for drinking water. In the sample Mrkv, the concentration of As is registered to be above the MAC of 0.01 mgL−1. Arsenic is a well-known toxic element [53], and its presence imposes some limits to the eventual applicability of groundwater for drinking purposes. In the sample Tulvis, the maximal value of radioactive element U was registered, approaching the MAC value of 15.0 µgL−1. Thus, some samples can be used for drinking conditionally with regular control.
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2011; pp. 123–401. [Google Scholar]
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various natural and anthropogenic factors responsible for water quality degradation: A review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Cuccuru, S.; Deluca, F.; Mongelli, G.; Oggiano, G. Granite—And andesite-hosted thermal water: Geochemistry and environmental issues in northern Sardinia, Italy. Environ. Earth Sci. 2020, 79, 257. [Google Scholar] [CrossRef]
- Dimitrijević, N. Hydrogeochemistry; Faculty of Geology and Mining, University of Belgrade: Belgrade, Serbia, 1988; pp. 89–261. [Google Scholar]
- Milenić, D.R.; Milanković, Đ.D.; Vranješ, A.M.; Savić, N.R.; Doroslovac, N.M. Chemical composition of the thermal mineral waters of Jošanička Banja Spa as an origin indicator, balneological valorization, and geothermal potential. Hem. Ind. 2015, 69, 537–551. [Google Scholar] [CrossRef]
- Dimitrijević, M.D. Geology of Yugoslavia; Special Edition; Geological Institute Gemini: Belgrade, Serbia, 1997; pp. 1–187. [Google Scholar]
- Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K. The Alpine–Carpathian–Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss J. Geosci. 2008, 101, 139–183. [Google Scholar] [CrossRef]
- Tančić, P.I.; Spahić, D.N.; Jovanović, D.; Ćirić, A.; Poznanović-Spahić, M.; Vasić, N. Occurrences and characterization of alunite group minerals from the Lece-Radan Oligo-Miocene volcanic complex (Serbia). Geol. Q. 2021, 65, 1587. [Google Scholar]
- Velojić, M.; Prelević, D.; Jelenković, R. The origin of lead and sulfur in Tulare ore field, Lece magmatic complex, SE Serbia. Geol. An. Balk. Poluos. 2018, 79, 19–28. [Google Scholar] [CrossRef]
- Prolom Banja–Srbija. Available online: http://prolombanja.org/banja/prolom-banja-srbija (accessed on 25 August 2023).
- Protić, D. Mineral and Thermal Water of Serbia; Special Edition; Geoinstitut: Belgrade, Serbia, 1995; p. 17. [Google Scholar]
- Krmpotić, M.; Tadić, D.; Nešković, D.; Grujić, A. Hydrochemical characteristics of groundwater in vulcanogenic massifs of Serbia. In Proceedings of the 4th Symposium of Hydrogeology, Zlatibor, Serbia, 14–17 May 2012. [Google Scholar]
- Marinković, G. Hydrogeological Conditions of Forming Carbonated Mineral Water of Serbia. Ph.D. Thesis, Faculty of Geology and Mining, University of Belgrade, Belgrade, Serbia, 2014. Available online: https://nardus.mpn.gov.rs/bitstream/handle/123456789/6162/Disertacija4113.pdf?sequence=4&isAllowed=y (accessed on 13 February 2023).
- Todorović, N.; Nikolov, J.; Petrović Pantić, T.; Kovačević, J.; Stojković, I.; Krmar, M. Radon in water—Hydrogeology and health implication. In Radon: Geology, Environmental Impact and Toxicity Concerns; Stacks, A.M., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2015; pp. 164–187. [Google Scholar]
- Pantić, T.P.; Birke, M.; Petrović, B.; Nikolov, J.; Dragišić, V.; Živanović, V. Hydrogeochemistry of thermal groundwaters in the Serbian crystalline core region. J. Geochem. Explor. 2015, 159, 101–114. [Google Scholar] [CrossRef]
- Petrović Pantić, T.; Atanasković Samolov, K.; Štrbački, J.; Tomić, M. Geothermal potential, chemical characteristics, and utilization of groundwater in Serbia. Environ. Earth Sci. 2021, 80, 736. [Google Scholar] [CrossRef]
- Nikolov, J.; Todorović, N.; Pantić, T.P.; Forkapić, S.; Mrdja, D.; Bikit, I.; Vesković, M. Exposure to radon in the radon spa Niška Banja, Serbia. Radiat. Meas. 2012, 47, 443–450. [Google Scholar] [CrossRef]
- Vittecoq, B.; Reninger, P.A.; Lacquement, F.; Martelet, G.; Violette, S. Hydrogeological conceptual model of andesitic watersheds revealed by high-resolution heliborne geophysics. Hydrol. Earth Syst. Sci. 2019, 23, 2321–2338. [Google Scholar] [CrossRef]
- Hartmann, L.A.; Arena, K.R.; Duarte, S.K. Geological relationships of basalts, andesites, and sand injectites at the base of the Paraná volcanic province, Torres, Brazil. J. Volcanol. Geotherm. Res. 2012, 237–238, 97–111. [Google Scholar] [CrossRef]
- Pasvanoğlu, S.; Çelik, M. A conceptual model for groundwater flow and geochemical evolution of thermal fluids at the Kızılcahamam geothermal area, Galatian volcanic Province. Geothermics 2018, 71, 88–107. [Google Scholar] [CrossRef]
- Jeong, C.H.; Lee, B.D.; Yang, J.H.; Nagao, K.; Kim, K.H.; Ahn, S.W.; Lee, Y.C.; Lee, Y.J.; Jang, H.W. Geochemical and Isotopic Compositions and Geothermometry of Thermal Waters in the Magumsan Area, South Korea. Water 2019, 11, 1774. [Google Scholar] [CrossRef]
- Teslarmichael, T.A. Water Rock Interaction and Geochemistry of Groundwater in Axum Area (Northern Etiopia). Ph.D. Thesis, Institute of Applied Geosciences, Graz University of Technology, Graz, Austria, 2011. [Google Scholar]
- Dotsika, E.; Dalampakis, P.; Spyridonos, E.; Diamantopoulos, G.; Karalis, P.; Tassi, M.; Michelot, J.L. Chemical and isotopic characterization of the thermal fluids emerging along the North–Northeastern Greece. Sci. Rep. 2021, 11, 16291. [Google Scholar] [CrossRef]
- Marinković, G.; Papić, P.; Spahić, D.; Poznanović Spahić, M.; Magazinović, M.; Obradović, N. Structural control on aquifers related to regional groundwater flow of mineral waters across the Tertiary Lece andesite complex of southern Serbia. Geoenergy Sci. Eng. 2023. accepted. [Google Scholar]
- Janković, S. Metalic Minerals Ores; Faculty of Geology and Mining, University of Belgrade: Belgrade, Serbia, 1967. [Google Scholar]
- Jelenković, R.; Kostić, A.; Životić, D.; Ercegovac, M. Mineral resources of Serbia. Geol. Carpath. 2008, 59, 345–361. [Google Scholar]
- Cvetković, V.; Prelević, D.; Downes, H.; Jovanović, M.; Vaselli, O.; Pécskay, Z. Origin and geodynamic significance of Tertiary postcollisional basaltic magmatism in Serbia (central Balkan Peninsula). Lithos 2004, 73, 161–186. [Google Scholar] [CrossRef]
- Prelević, D.; Foley, S.F.; Cvetković, V. A review of petrogenesis of Mediterranean Tertiary lamproites: A perspective from the Serbian ultrapotassic province. In Cenozoic Volcanism in the Mediterranean Area; Special Edition; Beccaluva, L., Bianchini, G., Wilson, M., Eds.; Geological Society of America: Boulder, CO, USA, 2007; p. 418. [Google Scholar] [CrossRef]
- Šoštarić, S.B.; Cvetković, V.; Neubauer, F.; Palinkaš, L.A.; Bernroider, M.; Genser, J. Oligocene shoshonitic rocks of the Rogozna Mts. (Central Balkan Peninsula): Evidence of petrogenetic links to the formation of Pb–Zn–Ag ore deposits. Lithos 2012, 148, 176–195. [Google Scholar] [CrossRef]
- Vukašinovć, S. Prilog Geotektonskoj Reonizaciji Među-Graničnog Prostora Dinarida, Panonida i Srpsko-Makedonske Mase; Zapisnici SGD za 1972 Godinu; Srpsko Geološko Društvo: Belgrade, Serbia, 1973; pp. 1–18. (In Serbian) [Google Scholar]
- Sudar, M.; Kovács, S. Metamorphosed and ductilely deformed conodonts from Triassic limestones situated beneath ophiolite complexes: Kopaonik Mountain (Serbia) and Bukk Mountains (NE Hungary)—A preliminary comparison. Geol. Carpath. 2006, 57, 157–176. [Google Scholar]
- Marović, M.; Toljić, M.; Rundić, L.; Milivojević, J. Neoalpine Tectonics of Serbia; Serbian Geological Society: Belgrade, Serbia, 2007. [Google Scholar]
- Petrović, M.; Jankićević, J. Tithonian limestones of the Kuršumlijska Banja area. Geol. An. Balk. Polus. 1990, 54, 43–52. [Google Scholar]
- Dimitrijević, M.N.; Dimitrijević, M.D. The Lower Cretaceous paraflysch of the Vardar Zone: Composition and fabric. Geol. An. Balk. Poluos. 2009, 70, 9–21. [Google Scholar] [CrossRef]
- Spahić, D.; Gaudenyi, T. On the Sava Suture Zone: Post-Neotethyan oblique subduction and the origin of the Late Cretaceous mini-magma pools. Cretac. Res. 2022, 131, 105062. [Google Scholar] [CrossRef]
- Vukanović, M.; Dimitrijević, M.; Dimitrijević, M.; Krajičić, L.; Rajčević, D.; Navala, M.; Urošević, M.; Malešević, M.; Trifunović, S.; Serdar, R.; et al. Basic Geological Map of the SFRY 1:100,000, Sheet Podujevo K 34-43; Federal Geologic Survey: Belgrade, Serbia, 1975. (In Serbian) [Google Scholar]
- Malešević, M.; Vukanović, M.; Obradović, Z.; Dimitrijević, M.; Brković, T.; Stefanović, M.; Stanisavljević, R.; Jovanović, O.; Trifunović, S.; Kara, J.; et al. Explanatory Booklet for Basic Geological Map of the SFRY 1:100,000, Sheet Kuršumlija; Federal Geologic Survey: Belgrade, Serbia, 1980. (In Serbian) [Google Scholar]
- Malešević, M.; Vukanović, M.; Brković, T.; Obra Dinović, Z.; Karajičić, L.; Stanisavljević, R.; Dimitrijević, M.; Urošević, M. Basic Geological Map of the SFRY 1:100,000, Sheet Kuršumlija; Federal Geologic Survey: Belgrade, Serbia, 1980. (In Serbian) [Google Scholar]
- Marinković, G. Basic Hydrogeological Map of the SFRY 1:100,000, Sheet Niš; Geological Survey of Serbia: Belgrade, Serbia, 2016; p. 97. (In Serbian) [Google Scholar]
- Marinković, G. Basic Hydrogeological Map of the SFRY 1:100,000, Sheet Podujevo; Geological Survey of Serbia: Belgrade, Serbia, 2019; p. 53. [Google Scholar]
- Osnovne Geološke Karte SRBIJE 1:100,000. Available online: https://geoliss.mre.gov.rs/prez/OGK/RasterSrbija/ (accessed on 25 August 2023). (In Serbian)
- Milivojević, M. Assessment of Geothermal Resources of Serbia. Ph.D. Thesis, The Faculty of Geology and Mining, University of Belgrade, Belgrade, Serbia, 1989. (In Serbian). [Google Scholar]
- Pešut, D. Geology, tectonics and metallogeny of Lece massif. Mem. Serv. Geol. Geofis. 1976, 14, 59. [Google Scholar]
- Simić, M. Metalogeny of Lece Magmatic Complex; Morava: Belgrade, Serbia, 2019. (In Serbian) [Google Scholar]
- Vukanović, M.; Karajičić, L.; Dimitrijević, M.; Možina, A.; Gagić, M.; Jevremović, M. Explanatory Booklet for Basic Geological Map of the SFRY 1:100,000, Sheet Leskovac K 34-44; Federal Geologic Survey: Belgrade, Serbia, 1973. (In Serbian) [Google Scholar]
- Vukanović, M.; Dimitrijević, M.; Dimitrijević, M.; Krajičić, L.; Rajčević, D.; Pejčić, M. Explanatory Booklet for Basic Geological Map of the SFRY 1:100,000, Sheet Podujevo K 34-43; Federal Geologic Survey: Belgrade, Serbia, 1982. (In Serbian) [Google Scholar]
- Babič, D. Mineralogy; Cicero: Belgrade, Serbia, 2003; pp. 190–433. [Google Scholar]
- Rakić, M.; Dimitrijević, M.; Terzin, V.; Cvetković, D.; Petrović, V. Explanatory Booklet for Basic Geological Map of the SFRY 1:100,000, Sheet Niš K 34-32; Federal Geologic Survey: Belgrade, Serbia, 1973. (In Serbian) [Google Scholar]
- Rakić, M.; Dimitrijević, M.; Cvetković, D.; Terzin, V.; Bodić, D.; Petrović, V.; Hadži-Vuković, M. Basic Geological Map of the SFRY 1:100,000, Sheet Niš; Federal Geologic Survey: Belgrade, Serbia, 1973. (In Serbian) [Google Scholar]
- Spahić, D.; Kurešević, L.; Cvetković, Ž. The paleokarst origin of the carbonate “Ropočevo breccia” and a closing Neotethys: Regional geological constraints on the Vardar zone s.s. (Belgrade area, Central Serbia). Carbonates Evaporites 2023, 38, 51. [Google Scholar] [CrossRef]
- Huang, W.T. Petrology; Mc Graw Hill Book Co.: New York, NY, USA, 1967; pp. 264–267. [Google Scholar]
- Thole, B. Groundwater contamination with Fluor and potential fluoride removal technologies for East and South Africa. In Perspectives in Water Pollution; Ahmad, I., Dar, M.A., Eds.; IntechOpen: London, UK, 2013; Available online: https://books.google.rs/books?hl=sr&lr=&id=Yu-gDwAAQBAJ&oi=fnd&pg=PA65&dq=thole+2013&ots=v3iX_dkTNB&sig=7uzH7covqs_1PBte9kURtD-OTW4&redir_esc=y#v=onepage&q=thole%202013&f=false (accessed on 3 January 2023).
- Poznanović, M.; Popović, L.; Petrović Pantić, T.; Spahić, D.; Marinković, G. The occurrence and evolution of arsenic in aquifers of the Avala volcanic complex (outskirts of Belgrade, Serbia). Geol. An. Balk. Poluos. 2020, 81, 33–48. [Google Scholar] [CrossRef]
- Jayawardana, D.T.; Udagedarab, D.T.; Silva, A.A.M.P.; Pitawala, H.M.T.G.A.; Jayathilaka, W.K.P.; Adikaram, A.M.N.M. Mixing geochemistry of cold water around non-volcanic thermal springs in high-grade metamorphic terrain, Sri Lanka. Geochemistry 2016, 76, 555–565. [Google Scholar] [CrossRef]
- Shotyk, W.; Krachler, M.; Aeschbach-Hertig, W.; Hillier, S.; Zhengd, J. Trace elements in recent groundwater of an artesian flow system and comparison with snow: Enrichments, depletions, and chemical evolution of the water. J. Environ. Monit. Assess. 2010, 12, 208–217. [Google Scholar] [CrossRef]
- Paternoster, M.; Oggiano, G.; Sinisi, R.; Caracausi, A.; Mongelli, G. Geochemistry of two contrasting deep fluids in the Sardinia microplate (western Mediterranean): Relationships with tectonics and heat sources. J. Volcanol. Geotherm. Res. 2017, 336, 108–117. [Google Scholar] [CrossRef]
- Michard, G. Behaviour of major elements and some trace elements (Li, Rb, Cs, Sr, Fe, Mn, W, F) in deep hot waters from granitic areas. Chem. Geol. 1990, 89, 117–134. [Google Scholar] [CrossRef]
- Karim, Z.; Qureshi, B.A.; Mumtaz, M.; Qureshi, S. Heavy metal content in urban soils as an indicator of anthropogenic and natural influences on landscape of Karachi—A multivariate spatio-temporal analysis. Ecol. Indic. 2014, 42, 20–31. [Google Scholar] [CrossRef]
- Petrović, T.; Zlokolica-Mandić, M.; Veljković, N.; Papić, P.; Poznanović, M.; Stojković, J.; Magazinović, S. Macro and microelements in bottled and tap waters of Serbia. Chem. Ind. 2012, 66, 107–122. [Google Scholar] [CrossRef]
- Reimann, C.; Birke, M. Geochemistry of European Bottled Water; Borntraeger Science Publishers: Stuttgart, Germany, 2010; pp. 63–201. [Google Scholar]
- Yudiantoro, D.F.; Ratnaningsih, D.R.; Pratiknyo, P.; Mahreni, M.; Sayudi, D.S.; Paramitahaty, I.; Hamdalah, H.; Abdurrachman, A.; Takashima, I.; Ismunandar, W.; et al. Hydrothermal Fluids-Rock Interactions in the Geothermal Area of the Ngebel Volcano Complex Ponorogo, East Java, Indonesia. In RSF Conference Series: Engineering and Technology; RSF Press: Bandung, Indonesia, 2021; Volume 1, Available online: https://proceeding.researchsynergypress.com/index.php/cset/index (accessed on 21 July 2023).
- Antunes, M.; Teixeira, R.; Albuquerque, T.; Valente, T.; Carvalho, P.; Santos, A. Water-Rock interaction and potential contamination Risk in a U-Enriched Area. Geosciences 2021, 11, 217. [Google Scholar] [CrossRef]
- Sawka, N.W. REE and trace element variations in accessory minerals and hornblende from the strongly zoned McMurry Meadows Pluton, California. Earth Environ. Sci. Trans. R. Soc. Edinb. 1988, 79, 157–168. [Google Scholar] [CrossRef]
- Hernández-Morales, P.; Wurl, J. Hydrogeochemical characterization of the thermal springs in northeastern of Los Cabos Block, Baja California Sur, México. Environ. Sci. Pollut. Res. 2017, 24, 13184–13202. [Google Scholar] [CrossRef]
- Todorović, M. Hydrogeochemistry of Rare Earth Elements in the Groundwater of Serbia. Ph.D. Thesis, Faculty of Geology and Mining, University of Belgrade, Belgrade, Serbia, 2020. [Google Scholar]
- Shakeri, A.; Ghoreyshinia, S.; Mehrabi, B.; Delavari, M. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran. J. Volcanol. Geotherm. Res. 2015, 304, 49–61. [Google Scholar] [CrossRef]
- Seiler, R.L.; Stollenwerk, K.G.; Garbarino, J.R. Factors controlling tungsten concentrations in groundwater, Carson Desert, Nevada. Appl. Geochem. 2005, 20, 423–441. [Google Scholar] [CrossRef]
- Water Quality Fact Sheet: Iodine. Available online: https://nora.nerc.ac.uk/id/eprint/516302/1/Iodine.pdf (accessed on 23 January 2023).
- Dobrzinsky, D.; Slaby, E.; Metlak, A. Germanium geochemistry in groundwater from mountain areas of Southern Poland—A case study of its affinity to other elements. In Proceedings of the 4th International Conference on Medical Geology—GeoMed, Bari, Italy, 20–25 September 2011. [Google Scholar]
- Marinković, G.; Poznanović Spahić, M.; Spahić, D.; Jovanić, I.; Magazinović, M.; Obradović, N. Radioactive elements in groundwater within uranium-bearing rocks of Bukulja Mt. (Serbia): Origin and migration paths. In Proceedings of the 11th International Conference Biomedicine and Geosciences—Influence of Environment of Human Health, Kopaonik, Serbia, 11–14 July 2023. [Google Scholar]
- WHO (World Health Organization). Guideline for Drinking Water Quality, 3rd ed.; WHO: Geneva, Switzerland, 2008; 515p. [Google Scholar]
- Okan, Ö.Ö.; Kalender, L.; Çetindağ, B. Trace-element hydrogeochemistry of thermal waters of Karakoçan (Elazığ) and Mazgirt (Tunceli), Eastern Anatolia, Turkey. J. Geochem. Explor. 2018, 194, 29–43. [Google Scholar] [CrossRef]
- Stojković, J. Hydrogeochemical Valorization of Essential Microelements in Mineral Waters of Serbia. Ph.D. Thesis, Faculty of Geology and Mining, University of Belgrade, Belgrade, Serbia, 2013. [Google Scholar]
- Hughes, J.M.; Stoiber, R.E. Vanadium sublimates from the fumaroles of Izalco volcano, El Salvador. J. Volcanol. Geotherm. Res. 1985, 24, 283–291. [Google Scholar] [CrossRef]
- Bagheri, R.; Karami, G.H.; Jafari, H.; Eggenkamp, H.; Shamsi, A. Isotope hydrology and geothermometry of the thermal springs, Damavand volcanic region, Iran. J. Volcanol. Geotherm. Res. 2020, 389, 106745. [Google Scholar] [CrossRef]
- Kis, B.M.; Baciud, C.; Zsigmonde, A.R.; Kékedy-Nagyf, L.; Kármáng, K.; Palcsub, L.; Máthéh, I.; Harangi, S. Constraints on the hydrogeochemistry and origin of the CO2-rich mineral waters from the Eastern Carpathians—Transylvanian Basin boundary (Romania). J. Hydrol. 2020, 591, 125311. [Google Scholar] [CrossRef]
- Simić, M.; Milivojević, M.; Martinović, M.; Papić, P. Hydrothermal system of Kuršumlija banja spa (Serbia). Geol. An. Balk. Poluos. 1996, 60, 525–544. [Google Scholar]
- Marinković, G.; Papić, P.; Dragišić, V.; Stojković, J.; Živanović, V.; Andrijašević, J. Lithostratigraphic CO2 substrata and the depth of carbonated mineral water systems in the lithosphere of Serbia. Tech. Technol. Educ. Manag. 2013, 8, 550–557. [Google Scholar]
- Goguel, R. The rare alkalies in hydrothermal alteration at Wairakei and Broadlands, geothermal fields, N.Z. Geochim. Cosmochim. Acta 1983, 47, 429–437. [Google Scholar] [CrossRef]
- Hawkes, H.E.; Web, J.S. Geochemistry in Mineral Exploration, Edition in Serbian; Harper and Row Publishers: New York, NY, USA, 1962; pp. 313–328. [Google Scholar]
- Sakan, S.; Frančišković-Bilinski, S.; Ðordević, D.; Popović, A.; Škrivanj, S.; Bilinski, H. Geochemical Fractionation and Risk Assessment of Potentially Toxic Elements in Sediments from Kupa River, Croatia. Water 2020, 12, 2024. [Google Scholar] [CrossRef]
- Dan, S.F.; Umoh, U.U.; Osabor, V.N. Seasonal variation of enrichment and contamination of heavy metals in the surface water of Qua Iboe River Estuary and adjoining creeks, South-South Nigeria. J. Oceanogr. Mar. Sci. 2014, 5, 45–54. Available online: http://www.academicjournals.org/JOMS (accessed on 5 April 2023). [CrossRef]
- Marinković, G.; Papić, P.; Spahić, D.; Andrijašević, J.; Spahić, M.P. Case study of mountainous geothermal reservoirs (Kopaonik Mt., southwestern Serbia): Fault-controlled fluid compartmentalization within a late Paleogene-Neogene core-complex. Geothermics 2023, 114, 102799. [Google Scholar] [CrossRef]
- Mandinić, Z.; Čurcić, M.; Antonijević, B.; Carević, M.; Mandić, J.; Djukic-Ćosic, D.; Lekić, C.P. Fluoride in drinking water and dental fluorosis. Sci. Total Environ. 2010, 408, 3507–3512. [Google Scholar] [CrossRef] [PubMed]
- Voutsa, D.; Dotsika, E.; Kouras, A.; Poutoukis, D.; Kouimtzis, T. Study on distribution and origin of boron in groundwater in the area of Chalkidiki, Northern Greece by employing chemical and isotopic tracers. J. Hazard. Mater. 2009, 172, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Micković Stefanović, V.; Filipović, V.; Ugrenović, V.; Glamočlija, Đ.; Popović, V. Accumulation of toxic metals in the vegetative parts of wheat. Sel. Semen. 2012, 18, 31–39. [Google Scholar]
- Dragišić, V. General Hydrogeology; Faculty of Geology and Mining, University of Belgrade: Belgrade, Serbia, 1997. (In Serbian) [Google Scholar]
- Marinković, G.; Papić, P.; Andrijašević, J.; Poznanović Spahić, M. Quality and utilization potential of Serbia’s mineral water resources. In Proceedings of the 44th Annual Congress of the International Association of Hydrogeologists Groundwater Heritage and Sustainability, Dubrovnik, Croatia, 25–29 September 2017. [Google Scholar]
(a) | ||||||||||||||||||
Sample | Ca | Mg | Na | K | HCO3− | Cl− | SO42− | F− | SiO2 | B | TDS | PO43− | ||||||
Suva | 43.0 | 24.0 | 984 | 45.0 | 2782 | 118 | 12.0 | 8.30 | 42.0 | 27.7 | 2675 | <0.010 | ||||||
Vicab | 15.0 | 6.00 | 1048 | 38.0 | 2757 | 122 | <0.50 | 37.5 | 31.4 | 1.500 | 2662 | <0.010 | ||||||
Vicai | 38.6 | 17.0 | 272 | 19.4 | 887 | 37.2 | 9.50 | 6.10 | 19.5 | 36.9 | 865 | <0.010 | ||||||
Kurs | 21.3 | 30.0 | 725 | 41.0 | 2196 | 23.0 | <0.50 | 5.25 | 69.3 | 18.2 | 2032 | <0.010 | ||||||
Sijb | 25.4 | 16.0 | 1139 | 67.0 | 3001 | 103 | 10.0 | 3.32 | 77.2 | 11.0 | 2915 | 0.011 | ||||||
Siji | 23.4 | 16.0 | 1110 | 66.0 | 3013 | 99.0 | 9.00 | 3.14 | 73.0 | 11.2 | 2952 | 0.016 | ||||||
Tul1 | 130 | 54.0 | 892 | 26.0 | 2678 | 181 | 81.0 | 4.10 | 60.5 | 25.0 | 2786 | 0.042 | ||||||
Tul2 | 107 | 47.0 | 1215 | 65.0 | 3392 | 244 | 80.0 | 3.75 | 87.5 | 31.1 | 3561 | 0.024 | ||||||
Prol | 4.60 | <0.10 | 44.0 | 0.20 | 125 | 3.00 | <0.50 | 0.77 | 30.2 | 0.140 | 147 | 0.021 | ||||||
Ploc | 22.0 | 43.0 | 516 | 7.00 | 1336 | 223 | 13.0 | 31.0 | 9.00 | 39.4 | 1530 | - | ||||||
Djavv | 3.40 | 70.0 | 4.00 | 0.50 | 0.50 | 53.0 | 226 | 2.42 | 99.5 | 0.290 | 357 | 0.029 | ||||||
Tulvis | 89.8 | 27.1 | 12.2 | 0.90 | 433 | 6.70 | 1.80 | 0.28 | 14.8 | 0.035 | 371 | 0.012 | ||||||
Tulg1 | 84.2 | 26.0 | 13.6 | 6.60 | 412 | 12.4 | 2.10 | <0.10 | 19.9 | 0.062 | 372 | 0.483 | ||||||
Tulg2 | 68.1 | 20.5 | 10.0 | 0.30 | 320 | 11.7 | 2.00 | 0.36 | 13.5 | 0.036 | 287 | 0.025 | ||||||
Petr | 37.7 | 10.0 | 7.40 | 2.60 | 165 | 10.6 | 2.50 | 0.52 | 17.3 | 0.023 | 175 | 0.038 | ||||||
Mrkv | 50.1 | 5.80 | 7.30 | 0.40 | 195 | 6.40 | 1.30 | 0.28 | 18.2 | 0.015 | 189 | 0.056 | ||||||
Vojn | 40.9 | 9.60 | 6.00 | 1.00 | 177 | 8.90 | 1.00 | 0.22 | 17.5 | 0.015 | 174 | 0.044 | ||||||
Spon | 79.0 | 29.4 | 7.60 | 3.20 | 378 | 16.0 | 3.60 | 0.30 | 5.60 | 0.133 | 334 | <0.010 | ||||||
Zeb | 67.3 | 24.4 | 10.7 | 1.70 | 348 | 7.10 | 0.90 | <0.10 | 23.1 | 0.022 | 310 | 0.059 | ||||||
Sast | 40.7 | 8.50 | 6.90 | 4.40 | 183 | 9.00 | <0.50 | 0.36 | 46.8 | 0.032 | 210 | 0.422 | ||||||
Malodj | 11.2 | 3.00 | 5.00 | 0.70 | 51.9 | 6.30 | 1.50 | 0.24 | 24.0 | 0.008 | 79.0 | 0.046 | ||||||
Veldj | 12.0 | 2.70 | 4.10 | 0.20 | 61.0 | 4.20 | 1.00 | 0.27 | 24.8 | 0.006 | 82.0 | <0.010 | ||||||
Sasb | 76.2 | 49.3 | 22.5 | 3.00 | 511 | 12.4 | 8.60 | 0.25 | 29.1 | 0.270 | 459 | <0.010 | ||||||
(b) | ||||||||||||||||||
Sample | Al | Fe | Mn | Rb | Li | Ba | Sr | Cs | Ge | Be | Cr | Sc | V | U | Cu | As | Zn | Te |
Suva | <20.0 | 26.9 | 84.4 | 164 | 1352 | 113 | 1018 | 104 | 100 | 1.60 | 7.50 | 3.90 | <0.50 | 0.13 | 12.5 | <2.1 | <6.2 | <1.0 |
Vicab | <20.0 | 78.9 | 111 | 127 | 805 | 308 | 751 | 39.2 | 138 | 3.00 | 8.60 | 3.30 | <0.50 | <0.13 | 15.0 | <2.1 | <6.2 | <1.0 |
Vicai | <20.0 | 18.5 | 0.80 | 39.8 | 250 | 87.4 | 461 | 10.2 | 36.1 | 0.51 | 10.7 | 2.10 | <0.50 | 1.30 | 3.40 | <2.1 | <6.2 | <1.0 |
Kurs | <20.0 | 46.1 | 11.7 | 188 | 3116 | 254 | 1155 | 198 | 48.8 | 0.41 | 8.90 | 6.30 | <0.50 | <0.13 | 9.80 | <2.1 | <6.2 | <1.0 |
Sijb | <20.0 | 1139 | 15.2 | 250 | 1262 | 413 | 2932 | 107 | 17.9 | 2.20 | 9.90 | 5.70 | <0.50 | <0.13 | 24.2 | 11.7 | <6.2 | 1.1 |
Siji | <20.0 | 104 | 21.9 | 253 | 1317 | 206 | 2882 | 103 | 17.0 | 1.50 | 10.9 | 5.80 | 0.57 | <0.13 | 19.5 | 4.5 | <6.2 | 1.2 |
Tul1 | 44.9 | 579 | 341 | 191 | 1501 | 19.1 | 3794 | 486 | 30.6 | 2.00 | 8.20 | 4.10 | 0.95 | 2.70 | 30.3 | <2.1 | <6.2 | <1.0 |
Tul2 | <20.0 | 1554 | 35.8 | 286 | 2156 | 45.8 | 5450 | 530 | 44.3 | 2.50 | 13.9 | 5.90 | <0.50 | 0.45 | 26.9 | 5.4 | <6.2 | 1.9 |
Prol | <20.0 | 19.5 | 0.80 | 0.52 | 3.70 | <3.40 | 48.5 | 0.79 | 2.50 | <0.18 | 3.30 | 2.70 | 9.60 | 2.30 | <3.50 | 5.7 | <6.2 | <1.0 |
Ploc | 130 | 251 | 16.7 | 19,5 | 95.6 | 128 | 612 | 1.10 | 242 | <0.18 | 4.80 | 1.00 | <0.50 | <0.13 | 5.00 | <2.1 | <6.2 | <1.0 |
Djavv | 36,911 | 19,675 | 3080 | 2.60 | 98.7 | <3.40 | 166 | <0.50 | 6.80 | 9.10 | 30.7 | 94.9 | 10.4 | 54.6 | 1322 | 4.1 | 2358 | <1.0 |
Tulvis | <20.0 | 22.4 | 0.80 | 1.60 | 4.10 | 72.3 | 857 | 0.74 | <0.50 | <0.18 | 1.90 | 1.50 | 1.50 | 15.5 | <3.50 | <2.1 | 38.5 | 1.1 |
Tulg1 | <20.0 | 64.7 | 64.1 | 0.60 | 2.30 | 159 | 789 | <0.50 | <0.50 | <0.18 | 2.30 | 1.70 | 3.70 | 8.20 | <3.50 | <2.1 | <6.2 | 1.0 |
Tulg2 | 25.8 | 184 | 65.0 | 0.54 | <0.50 | 146 | 482 | <0.50 | <0.50 | <0.18 | 2.10 | 1.30 | <0.50 | 2.90 | <3.50 | <2.1 | 13.4 | <1.0 |
Petr | 30.2 | 537 | 33.6 | 1.00 | 7.20 | 85.4 | 127 | <0.50 | <0.50 | <0.18 | 2.20 | 1.60 | 0.59 | 0.17 | 3.50 | <2.1 | <6.2 | <1.0 |
Mrkv | 46.3 | 68.0 | 2.20 | 1.10 | 1.70 | 10.0 | 285 | 1.50 | <0.50 | <0.18 | 2.00 | 1.70 | 2.60 | 7.20 | <3.50 | 12.6 | <6.2 | <1.0 |
Vojn | <20.0 | 20.1 | 0.80 | 1.40 | 4.80 | 212 | 394 | 0.78 | <0.50 | <0.18 | 1.80 | 1.50 | <0.50 | 1.80 | <3.50 | 3.2 | <6.2 | <1.0 |
Spon | <20.0 | 23.8 | 0.80 | 0.73 | 11.6 | 58.8 | 220 | 0.25 | <0.50 | <0.18 | 2.30 | 0,78 | <0.50 | 1.70 | 8.00 | <2.1 | 9.4 | <1.0 |
Zeb | 118 | 140 | 10.5 | 6.20 | 3.70 | 83.6 | 642 | 0.59 | <0.50 | <0.18 | 1.80 | 1.70 | 1.90 | 7.60 | 4.10 | <2.1 | <6.2 | <1.0 |
Sast | 647 | 707 | 4.10 | 21.4 | 3.70 | 64.2 | 244 | 1.53 | <0.50 | <0.18 | 2.80 | 2.90 | 4.40 | 3.80 | <3.50 | 5.4 | 9.3 | <1.0 |
Malodj | 26.6 | 64.0 | 1.70 | 2.30 | <0.50 | 11.0 | 115 | <0.50 | <0.50 | <0.18 | <1.70 | 1.08 | 1.10 | <0.13 | <3.50 | <2.1 | <6.2 | <1.0 |
Veldj | 35.7 | 28.6 | 0.80 | 0.59 | <0.50 | <3.40 | 104 | <0.50 | <0.50 | <0.18 | <1.70 | 1.70 | 3.00 | 0.21 | <3.50 | <2.1 | <6.2 | 1.2 |
Sasb | <20.0 | 47.3 | 12.5 | 12. 8 | 20.9 | 72.7 | 1429 | 8.30 | <0.50 | <0.18 | 2.30 | 2.60 | <0.50 | 7.12 | <3.50 | 24.2 | 8.1 | <1.0 |
Ca | Mg | Na | K | HCO3− | Cl− | SO42− | F− | SiO2 | B | Rb | Li | Ba | Sr | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group 1 | ||||||||||||||
average | 42.9 | 25.3 | 794 | 37.4 | 2217 | 115 | 21.4 | 10.3 | 49.9 | 20.2 | 151 | 1185 | 158 | 1910 |
stdev | 41.6 | 17.9 | 397 | 24.3 | 1073 | 81.7 | 31.5 | 12.8 | 27.0 | 14.0 | 102 | 967 | 134 | 1764 |
Group 2 | ||||||||||||||
average | 50.5 | 22.0 | 9.10 | 2.00 | 248 | 12.7 | 19.4 | 0.46 | 27.2 | 0.07 | 4.10 | 12.3 | 75.3 | 450 |
stdev | 29.0 | 19.6 | 5.10 | 1.90 | 162 | 12.5 | 62.1 | 0.60 | 23.8 | 0.09 | 6.20 | 26.6 | 64.9 | 389 |
total | ||||||||||||||
average | 47.2 | 23.4 | 353 | 17.3 | 1104 | 57.3 | 20.3 | 4.73 | 37.1 | 8.82 | 68.3 | 523 | 111 | 1085 |
stdev | 33.5 | 18.1 | 460 | 23.2 | 1190 | 72.7 | 49.0 | 9.43 | 26.6 | 13.3 | 97.4 | 840 | 105 | 1350 |
min | 3.00 | <0.10 | 4.00 | 0.20 | 0,50 | 3.00 | <0.50 | <0.10 | 5.60 | 0.006 | 0.52 | 0.25 | 1.70 | 48.5 |
max | 130 | 70.0 | 1215 | 67.0 | 3392 | 244 | 226 | 37.5 | 99.5 | 39.4 | 286 | 3116 | 413 | 5450 |
median | 41.0 | 21.0 | 22.5 | 3.20 | 412 | 12.4 | 2.00 | 0.52 | 24.8 | 0.14 | 6.20 | 11.6 | 83.6 | 612 |
CV | 0.71 | 0.77 | 1.30 | 1.34 | 1.08 | 1.27 | 2.42 | 2.00 | 0.72 | 1.50 | 1.43 | 1.61 | 0.94 | 1.24 |
Aquifer | Samples | Lithological Units | Type | pH | TDS (mgL−1) | T (°C) |
---|---|---|---|---|---|---|
Controlled by deep-settled large regional-scale faults; deep water flow | Suv, Vicb, Vici, Kurs, Sijb, Siji, Tul1, Tul2 | Andesites, marble, crystalline schists | HCO3-Na | 6.30–7.23 | 865–3561 | 20.5–78.0 |
Ploc | HCO3-Cl-Na | 7.50 | 1530 | 12 | ||
Controlled by smaller-scale faults; deep water flow | Prol | Andesites | HCO3-Na | 8.90 | 147 | 34 |
Controlled by near-surface zones; shallow water flow | Djavv | Propylitized, hydrothermally altered andesites | SO4-Cl-Mg | 2.40 | 357 | 13 |
Controlled by near-surface zones; shallow water flow | Tulvis, Tulg1, Sast Tulg2, Petr Zeb, Spon, Malodj, Veldj, Sasb Vojn | andesites–gneiss, gneiss; andesites; volcano sediments | HCO3-Ca-Mg | 6.48–7.06 | 79–459 | 10.5–13.2 |
Mrkv | andesites–schists | HCO3-Ca |
Ca2+/Mg2+ | Na+/Ca2+ | HCO3−/Cl− | B/Cl− | Na+/Na+ + Cl− | ||
---|---|---|---|---|---|---|
Suva | 1.79 | 22.9 | 23.5 | 0.235 | 0.89 | |
Vicab | 2.50 | 69.9 | 22.6 | 0.012 | 0.90 | |
Vicai | 2.27 | 7.05 | 23.8 | 0.992 | 0.88 | |
Group 1 | Kurs | 0.70 | 34.5 | 95.5 | 0.791 | 0.97 |
Sijb | 1.56 | 45.6 | 29.1 | 0.107 | 0.92 | |
Siji | 1.44 | 48.3 | 30.4 | 0.113 | 0.92 | |
Tul1 | 2.41 | 6.86 | 14.8 | 0.138 | 0.83 | |
Tul2 | 2.28 | 11.4 | 13.9 | 0.127 | 0.83 | |
Prol | - | 8.80 | 41.7 | 0.047 | 0.94 | |
Ploc | 0.51 | 23.5 | 5.99 | 0.177 | 0.70 | |
Djavv | 0.04 | 1.33 | 0.01 | 0.005 | 0.07 | |
Tulvis | 3.19 | 0.14 | 61.9 | 0.005 | 0.63 | |
Tulg1 | 3.23 | 0.17 | 34.3 | 0.005 | 0.54 | |
Tulg2 | 3.24 | 0.15 | 26.7 | 0.003 | 0.45 | |
Petr | 3.80 | 0.19 | 15.0 | 0.002 | 0.40 | |
Mrkv | 8.50 | 0.14 | 30.5 | 0.002 | 0.53 | |
Group 2 | Vojn | 4.27 | 0.15 | 19.7 | 0.002 | 0.40 |
Spon | 2.72 | 0.10 | 23.6 | 0.008 | 0.32 | |
Zeb | 2.79 | 0.16 | 49.7 | 0.003 | 0.61 | |
Sast | 4.82 | 0.17 | 20.3 | 0.004 | 0.43 | |
Malodj | 3.67 | 0.45 | 8.25 | 0.001 | 0.44 | |
Veldj | 4.44 | 0.33 | 14.5 | 0.001 | 0.49 | |
Sasb | 1.55 | 0.30 | 41.2 | 0.022 | 0.64 |
Element | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
Ca | 0.969 | |||
Mg | 0.830 | |||
Na | 0.942 | |||
K | 0.985 | |||
HCO3− | 0.941 | |||
Cl− | 0.599 | 0.647 | ||
SO42− | 0.974 | |||
F− | 0.883 | |||
SiO2 | 0.675 | 0.664 | ||
B | 0.632 | |||
TDS | 0.928 |
Element | PC1 | PC2 | PC3 |
---|---|---|---|
Ca | 0.933 | ||
Mg | 0.655 | 0.648 | |
K | 0.957 | ||
Na | 0.965 | ||
B | 0.644 | ||
Al | 0.988 | ||
Fe | 0.989 | ||
Mn | 0.991 | ||
Li | 0.906 | ||
Rb | 0.976 | ||
Cs | 0.737 | 0.561 |
Element | PC1 | PC2 | PC3 |
---|---|---|---|
Fe | 0.990 | ||
Mn | 0.987 | ||
Rb | 0.902 | ||
Li | 0.850 | ||
Ba | 0.953 | ||
Sr | 0.936 | ||
Cs | 0.960 | ||
Cr | 0.865 | ||
Sc | 0.996 | ||
V | 0.651 | ||
U | 0.927 | ||
Cu | 0.992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poznanović Spahić, M.; Marinković, G.; Spahić, D.; Sakan, S.; Jovanić, I.; Magazinović, M.; Obradović, N. Water–Rock Interactions across Volcanic Aquifers of the Lece Andesite Complex (Southern Serbia): Geochemistry and Environmental Impact. Water 2023, 15, 3653. https://doi.org/10.3390/w15203653
Poznanović Spahić M, Marinković G, Spahić D, Sakan S, Jovanić I, Magazinović M, Obradović N. Water–Rock Interactions across Volcanic Aquifers of the Lece Andesite Complex (Southern Serbia): Geochemistry and Environmental Impact. Water. 2023; 15(20):3653. https://doi.org/10.3390/w15203653
Chicago/Turabian StylePoznanović Spahić, Maja, Goran Marinković, Darko Spahić, Sanja Sakan, Ivana Jovanić, Marina Magazinović, and Nataša Obradović. 2023. "Water–Rock Interactions across Volcanic Aquifers of the Lece Andesite Complex (Southern Serbia): Geochemistry and Environmental Impact" Water 15, no. 20: 3653. https://doi.org/10.3390/w15203653
APA StylePoznanović Spahić, M., Marinković, G., Spahić, D., Sakan, S., Jovanić, I., Magazinović, M., & Obradović, N. (2023). Water–Rock Interactions across Volcanic Aquifers of the Lece Andesite Complex (Southern Serbia): Geochemistry and Environmental Impact. Water, 15(20), 3653. https://doi.org/10.3390/w15203653