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Abstract: Understanding the relationship between the agricultural water footprint (AWF) and agri-
cultural economic growth (AEG) is of great significance for promoting sustainable agriculture and
regional economic development. In this study, we used agricultural statistics data from Hangzhou
from 2010 to 2021 to calculate the AWF, predicted the decoupling relationship between the AWF and
AEG, and explored the influencing factors of the decoupling relationship between the AWF and AEG.
The results showed the following: (1) The AWF in Hangzhou exhibited a decreasing trend, with a
reduction from 58.88× 108 m3 in 2010 to 37.80× 108 m3 in 2021; this was mainly related to the decline
in the water footprints of grain, pork, and egg production. (2) The strong decoupling accounted
for 63.64% of the decoupling between the AWF and AEG in Hangzhou during the study period. It
was found that an agricultural structure adjustment was the main factor for achieving decoupling
between the AWF and AEG. Under the guidance of policy, the decoupling between them could be
changed by regulating the output of agricultural products with different water footprint contents per
unit. (3) From 2022 to 2026, the AWF in Hangzhou is expected to decrease to 28.21 × 108 m3, while
the agricultural economy is projected to increase to CNY 40.008 billion. There will continue to be a
strong decoupling status between the AWF and AEG in Hangzhou.

Keywords: agriculture; water footprint; economic growth; decoupling; prediction; Hangzhou

1. Introduction

Water is an indispensable resource for social and economic development [1]. It is
an important agricultural production component, and it is also one of the restrictive and
strategic resources supporting sustainable agricultural development [2]. China is not only
a major agricultural country, it also ranks among the countries with the most limited
water resources globally [3]. Agriculture is the sector with the highest demand for water
resources, accounting for more than half of the total water supply in China [4]. With
the continuous growth of the economy, the demand for agricultural water resources is
increasing, thus leading to ecological and environmental issues such as the decline of lake,
river, and groundwater levels [5]. Additionally, the process of agricultural water use is
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accompanied by the emission of greenhouse gases; thus, it also contributes to accelerating
global warming [6]. Climate change, since it is driven by greenhouse gas emissions
and human activities, exacerbates water resource shortages through altered precipitation
patterns and increased evaporation rates [7,8], thereby putting additional stress on regional
agricultural economies [9,10]. How to make informed decisions that reduce agricultural
water use while maintaining agricultural economic growth and achieving sustainable
agriculture goals is an urgent problem that needs to be addressed.

Sustainable agriculture is an agricultural system that involves the rational use of natural
resources and the implementation of technological innovations to ensure the sustainable
development of agricultural product demand [11]. In terms of agricultural water resource
management, addressing water scarcity involves a combination of measures including the im-
plementation of water conservation policies [12,13] and the establishment of reasonable water
allocation frameworks [14,15]. To enhance the socio-economic benefits of water resources, it is
crucial to clarify the decoupling relationship between agricultural water use and agricultural
economic growth (AEG), as well as the influencing factors, which are of significance for
regional agricultural water resource management and sustainable development.

In 2002, Hoekstra, a Dutch scholar, proposed the concept of the water footprint,
which is a measure of humanity’s appropriation of fresh water, calculated in volumes of
water consumed [16]. Early studies on the water footprint mainly accounted for water
consumption at the national level. For example, Hoekstra et al. [17] calculated the water
footprint of multiple countries globally from 1997 to 2001, and they advised that the size of
the water footprint in a country is influenced by consumption level, consumption patterns,
climate conditions, and water efficiency. Since then, the accounting of water footprints has
gradually expanded to different scales [18–22] and perspectives (such as product-based [23],
agriculture [10], and industry [24]). For example, Mekonnen et al. [25] calculated global
water consumption based on the water footprint, and they found that it will grow by 22%
by 2090. Furthermore, approximately 57% of the blue water footprint in the world violates
environmental flow requirements. Based on the theory of the water footprint, research on
water resource assessment and its association with human activities has also been further
developed. Many studies have used indicators such as the water footprint economic
value [26] and the water poverty index [27], which are based on the water footprint, in
terms of evaluating regional water resources security [28]. Certain scholars have used
water footprints to explore the sustainable utilization of regional water resources [29], as
well as water usage coordination and its association with economic development [30] and
urbanization [31].

Decoupling was first proposed by the Organization for Economic Co-operation and
Development (OECD) [32], and this concept has been widely applied in research on the
relationship between resources, environmental consumption, and economic growth. For
instance, Dagher et al. [33,34] analyzed the relationship between resource (energy) con-
sumption and economic growth from different perspectives using various methods. They
found that energy was a limiting factor for economic growth and that government poli-
cies restricting resource imports and exports could either promote or inhibit economic
growth [35,36]. Tapio [37] subsequently developed the Tapio model, which is based on the
decoupling theory. Many studies have focused on the decoupling status between carbon
emissions [38], water use [39], energy [40], and economic growth via the Tapio model.
Certain studies have also predicted the decoupling status between carbon emissions [41],
ecological footprints [42], and economic growth. Kong et al. [42] used the Tapio model to
analyze the decoupling status between the water footprint of the marine fisheries industry
and economic growth in China; as such, they predicted the ecological footprint of the
fisheries sector by utilizing prediction models such as the autoregressive integrated moving
average (ARIMA) model and the gray forecasting model (GM(1, 1)). However, few studies
have deeply investigated the synergistic mechanisms between water resource management
policies and economic growth.
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The decoupling relationship between the agricultural water footprint (AWF) and the
AEG is influenced by a variety of factors, such as agricultural structure, agricultural tech-
nology, and policy. For instance, Aldaya et al. [43] found that agricultural policies influence
AWF and agricultural economics by directing changes in crop structure. Sun et al. [44]
stated that changes in crop water footprints are controlled by agricultural management and
agricultural water use efficiency. This provides a basis for the anthropogenic regulation of
the decoupling relationship between crop water footprints and the AEG. Davis et al. [45]
proposed that the current distribution of crops around the world is neither maximizing
yields nor minimizing water use, and also that it is possible to increase crop yields while
reducing agricultural water use by reshaping the global crop distribution within rain-fed
and irrigated farmland, based on total water use. However, most of the previous studies
have analyzed the effects of factors such as agricultural structure or of a single factor on the
decoupling relationship between the AWF and AEG by regulating agricultural structure.
Few studies have systematically analyzed the effects of multiple factors, such as epidemics
and policies, on the decoupling relationship between the AWF and AEG by regulating
agricultural structure, nor have they investigated the mechanism of their effects.

In terms of agricultural water use, integrated water resource management plays a
crucial role in achieving sustainable agriculture. Measures such as technological innova-
tions are employed to minimize agricultural water use and to ensure agricultural economic
growth. The agricultural economy in Hangzhou is well developed; however, with continu-
ous population growth, the demand for agricultural water use has been increasing, which
has brought tremendous pressure on the utilization of agricultural water resources. Ana-
lyzing the relationship between agricultural water use and agricultural economic growth
in Hangzhou from the perspective of the water footprint is crucial for water resource
management and sustainable agricultural development.

This paper investigated and predicted the decoupling status between the AWF and
AEG in Hangzhou. The objectives of this research are as follows: (1) to investigate the
dynamics of the AWF in Hangzhou, (2) to analyze the decoupling relationship between the
AWF and AEG in Hangzhou, (3) to predict the AWF and agricultural economy, as well as
their decoupling status between 2022 and 2026, and (4) to reveal the impact mechanisms of
government policies on the decoupling relationship between the AWF and AEG.

The innovations of this study are as follows: (1) analyzing the effects of multiple
factors, such as epidemics and policies, on the decoupling relationship between the AWF
and AEG, (2) exploring the mechanism of action of multiple factors indirectly by regulating
the uncoupling of the AWF and AEG through agricultural structures, and (3) enumerating
the timeline of the agricultural policy implemented in Hangzhou, as well as investigating
the impacts of agricultural policy on the decoupling relationship between the AWF and
AEG from an empirical perspective.

2. Materials and Methods
2.1. Study Region

Located on the southeast coast of China, Hangzhou (118◦21′–120◦30′ E, 29◦11′–30◦33′ N),
is located in the north of Zhejiang Province, which is adjacent to Hangzhou Bay in the east,
connected to Shaoxing, and bordering Quzhou in the southwest. In addition, it is adjacent
to Huzhou and Jiaxing in the north, as well as being bordered by Huangshan in Anhui
Province in the southwest and Xuancheng in Anhui Province in the northwest. Hangzhou
is the political, economic, cultural, educational, transport, and financial center of Zhejiang
Province. It covers ten districts, including Shangcheng District, Gongshu District, Xihu
District, etc., as well as two counties and one county-level city. In 2021, the gross domestic
product (GDP) in Hangzhou was CNY 1810.90 billion, which accounted for 24.63% of the
total economic output of the province. Moreover, the agricultural GDP of Hangzhou was
CNY 33.35 billion (ranked second in Zhejiang Province). Hangzhou is abundant in water
resources, and the total water consumption in 2021 was 2.98 billion m3, with agricultural
water consumption accounting for 37.45% (1.11 billion m3) of the total water consumption.
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The crops grown in Hangzhou are mainly grain, cotton, oil plants, fruits, tea, vegetables,
and sugar; furthermore, the animal products are mainly pork, beef, mutton, poultry, eggs,
aquatic products, and milk.

2.2. Data Sources

This article takes Hangzhou as the study area and selects agriculture-related data from
2010 to 2021 for research. The required data include agricultural GDP and the agricultural
output of 14 typical agricultural products, such as grain, cotton, oil plants, fruits, tea,
vegetables, sugar, pork, beef, poultry, eggs, aquatic products, and milk. The data were
obtained from the Hangzhou Statistical Yearbook, the Zhejiang Province Water Resources
Bulletin, and the Hangzhou Municipal Bureau of Statistics (http://tjj.hangzhou.gov.cn/,
accessed on 20 September 2023). Due to the complexity of calculating the water footprint
per unit of both crops and animal products, the water footprint values per unit of most
agricultural products were acquired from the existing literature on Zhejiang Province and
Hangzhou [46,47]. As the local data were unobtainable, the water footprint values per unit
of grain, oil plants, tea, etc., in this study were derived from the results of studies conducted
in the surrounding cities of Hangzhou, which shares the same environmental background
as Hangzhou [48–50]. The estimated results and method have been widely used in Chinese
research [51,52], as shown in Tables 1 and 2. The data used for the comparison of the AWF
and the water footprint content per unit were gathered from the work of Zheng et al. [53].

Table 1. Water footprint content per unit of crop products (m3/kg) [46–50].

Products Grain Cotton Oil Plants Fruits Tea Vegetables Sugar

Water footprint content 1.10 4.98 2.10 0.42 13.17 0.056 0.16

Table 2. Water footprint content per unit of animal products (m3/kg) [46–50].

Products Pork Beef Mutton Poultry Eggs Aquatic Products Milk

Water footprint content 3.70 19.99 18.01 3.50 8.65 5.00 2.20

2.3. Methods
2.3.1. Research Framework

We proposed a framework for the impact of policies and other factors on the decou-
pling relationship between the AWF and AEG, as shown in Figure 1. Firstly, agriculture-
related statistics were collected to account for the agricultural water footprint in Hangzhou
from 2010 to 2021. Then, the AWF and the agricultural economy from 2022 to 2026 were
forecasted using the ARIMA model and GM(1,1), respectively. In addition, we investigated
the decoupling relationship between the AWF and AEG in 2011–2026 using the Tapio
model. On the above basis, we put forward a mechanism that can be used to analyze the
decoupling between the AWF and AEG.

2.3.2. Accounting for the AWF

The AWF is the amount of water contained in agricultural products and services, and it
is expressed as the product of the yield of each agricultural product and the corresponding
water footprint content per unit [54]. The calculation formula is as follows [39]:

AWF =
n

∑
i=1

APi ×VWi (1)

where APi represents the yield of the i-th agricultural product (108 kg), and VWi represents
the water footprint content of the i-th agricultural product per unit mass (m3/kg).

http://tjj.hangzhou.gov.cn/
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The formula for calculating the crop water footprint per unit [46] is as follows:

CVWi =
Wi
Yi

(2)

where CVWi represents the water content of the i-th crop per unit mass (m3/t); Wi repre-
sents the water requirement of the i-th crop per unit area (m3/hm2); and Yi represents the
i-th crop yield per unit area (t/hm2).

Wi = ETC = ET0 × KC (3)

Here, Wi is approximated as ETC, which represents the cumulative evapotranspiration of
the crop during the growing period; ET0 represents the reference crop evapotranspiration,
and KC is the crop coefficient.

ET0 =
0.408∆(Rn − G) + γ

900
T + 273

U2(e1 − e2)

∆ + γ(1 + 0.34U2)
(4)

Here, Rn is the net radiation (MJ/m2d); G is the soil heat flux MJ/(m2d); γ is the psychro-
metric constant (kPa/°C); T is the mean temperature (°C); U2 is the wind speed at a height
of 2 m above ground level (m/s); e1 is the saturation vapor pressure (kPa); e2 is the actual
water vapor pressure (kPa); and ∆ is the slope of the saturation vapor pressure versus
temperature curve (kPa/°C).
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Figure 1. The flow chart of the methods.

Due to the complexity of the process and the data used to calculate the water footprint
per unit of animal products, no specific formula is given in this paper. Detailed formulas
can be found in the relevant literature [55].

2.3.3. Tapio Decoupling Model

The Tapio model, a statistical method, adopts the elastic analysis method to reflect the
decoupling relationship between variables. It is not affected by statistical dimensions, and
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it effectively overcomes the dilemma of the OECD model in the selection of the base period.
The expression for this [37] is as follows:

D =
∆W/W
∆G/G

=
(Wt −Wt−1)/Wt−1

(Gt − Gt−1)/Gt−1
(5)

where D represents the decoupling index; ∆W indicates the rate of change in the agricultural
water use (108 m3); Wt and Wt−1 represent the AWF in the area in year t and year t− 1
(108 m3), respectively; ∆G represents the rate of change in the agricultural GDP (CNY 108);
and Gt and Gt−1 represent the agricultural GDP in the region in year t and year t− 1 (CNY
108), respectively. The Tapio decoupling index systems are shown in Table 3 [56].

Table 3. Tapio decoupling index systems.

Decoupling Type ∆G ∆W D Decoupling State

Decoupling
>0 <0 ≤0 Strong decoupling
>0 >0 (0, 0.8) Weak decoupling
<0 <0 ≥1.2 Recessive decoupling

Negative decoupling
<0 >0 ≤0 Strong negative decoupling
<0 <0 (0, 0.8) Weak negative decoupling
>0 >0 ≥1.2 Expansive negative decoupling

Coupling >0 >0 (0.8, 1.2) Expansive coupling
<0 <0 (0.8, 1.2) Recessive coupling

2.3.4. ARIMA Model

The ARIMA model is a time series forecasting statistical model that is widely used
in economic, financial [57], and meteorological [58] fields. Furthermore, it can convert
a non-stationary time series into a stationary time series for forecasting after differential
processing. The ARIMA model can be expressed as ARIMA (p, d, q), where p represents the
order of the autoregressive model, d represents the order of differentiation for the signal,
and q represents the order of the moving average model. In this paper, SPSS 27 software
was used to run the ARIMA model, which was based on the AWF data for Hangzhou
from 2010 to 2021; this was then used to predict the AWF from 2022 to 2026. The specific
steps were as follows: (1) the original time series was tested for smoothness, and if it
was a non-smooth series, it was transformed into a smooth series by differentiation. By
observing the autocorrelation function (ACF) coefficient plot and partial autocorrelation
function (PACF) coefficient plot for the smoothness test, if the ACF coefficients and PACF
coefficients were distributed within their respective confidence intervals and there was a
trailing phenomenon, then the series was deemed smooth. The number of times that a
different transformation of a non-stationary series into a stationary series occurred was
referred to as the order of differentiation, denoted as d. (2) The parameters p and q were
determined by the ACF, PACF coefficient plots, and the Bayesian information criterion.
(3) The predictions were fitted using the determined parameters of p, d, and q. The model
was then tested for residuals. (4) The above-determined most suitable model was used to
predict the original time series, and the predicted data were counted.

2.3.5. GM (1, 1)

The GM (1, 1) is an evaluation model that combines qualitative and quantitative
analysis; it uses fewer data and moderate calculations, it can solve the problem that
evaluation indexes are difficult to quantify accurately, it can exclude the influence of human
factors, and it can make the evaluation results more objective. For this paper, we constructed
a GM (1, 1) model to forecast and analyze the agricultural economy in Hangzhou from 2022
to 2026, based on the agricultural economy data from 2010 to 2021. The specific steps [42]
were as follows:
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(1) Assuming that the original time series was X(0):

X(0) =
[

X(0)(1), X(0)(2), . . . X(0)(n)
]

(6)

The feasibility of the GM (1, 1) model was then determined by a cascade test:

δ(k) =
X(0)(k− 1)

X(0)(k)
(k = 2, 3, . . . , n) (7)

If the level ratio δ(k) was in the interval (e−
2

n+1 , e
2

n+1 ), then the GM (1, 1) model was
feasible. The new sequence X(1) was then formed by accumulating X(0):

X(1) =
[

X(1)(1), X(1)(2), . . . X(1)(n)
]

(8)

(2) Generators where the randomness was weakened were generated using discrete
random numbers to develop a differential equation model.

Assuming that Z(1) is the sequence of means of X(1):

Z(1) =
[

Z(1)(2), Z(1)(3), . . . Z(1)(n)
]

Z(1)(n) = 0.5
[

X(1)(n) + X(1)(n− 1)
] (9)

Then, we established the first-order differential whitening equation:

dX(1)

dt
+ aX(1) = u (10)

where a denotes the development coefficient, u denotes the amount of gray activity, and t
denotes time.

(3) Using the least squares method to solve the equation for the parameters a, u:
â = (BT B)−1BY.

â =

[
a
u

]
B =

−Z(1)(2) 1
...

...
−Z(1)(n) 1

 Y =

X(0)(2)
...

X(0)(n)

 (11)

(4) By substituting the parameters a, u into the first-order differential whitening
equation, the whitening response equation of the GM (1, 1) prediction model was obtained
as follows:

X̂(1)(k + 1) =
(

X(0)(1)− û
â

)
e−âk +

û
â

(k = 1, 2 · · · , n− 1) (12)

(5) The predicted value was obtained by calculating X(1) according to the above
formula. The predicted data were counted, and residual tests were performed on the fitted
data, as follows:

ε(k) =
X(0)(k)− X̂(0)(k)

X(0)(k)
(k = 1, 2, . . . , n) (13)

where X̂(0)(1) = X(0)(1), and the fit is satisfactory if the residual ε(k) < 0.2.

3. Results
3.1. Measurement of the AWF in Hangzhou

The AWF in Hangzhou significantly decreased from 2010 to 2021 (Figure 2), dropping
from 58.88 × 108 m3 in 2010 to 37.80 × 108 m3 in 2021. The AWF experienced a slight
upward trend from 2010 to 2013, which was contributed to jointly by crops and animal
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products. The significant reduction in grain, pork, and egg production from 2013 to 2014
resulted in a sharp decline in the AWF. From 2014 to 2020, the AWF continued to decrease,
with the trend being dominated by the water footprint of animal products. Although there
were occasional decreases in the crop water footprint during this period, it remained at a
relatively low level. Overall, the decreasing trend of the AWF in Hangzhou was mainly
dominated by grain, pork, and eggs. Among them, the water footprint of eggs decreased
most strongly (6.23 × 108 m3), followed by that of grain and pork—which decreased by
5.20 × 108 m3 and 5.62 × 108 m3, respectively—while the water footprint of other products
such as fruits and vegetables remained at a stable level.
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From the perspective of the crop water footprint (Figure 3), the temporal change
trend of the crop water footprint was divided into four stages: “slightly declining–rapidly
declining–rising and then falling–continuous increase”. From 2010 to 2012, the water
footprint of crops decreased slightly (from 22.24 × 108 m3 to 22.18 × 108 m3), and this
was mainly related to the decrease in the water footprint of grain, sugar, and other crops.
The crop water footprint decreased from 22.28 × 108 m3 to 16.89 × 108 m3 from 2012 to
2014, and this change was mainly dominated by the reduction in the water footprint of
grain (which decreased from 10.66 × 108 m3 to 6.88 × 108 m3). This was closely related
to the implementation of the strictest water resource management system, which was
instituted in 2013, as well as due to the extensive drought conditions that occurred during
the period. From 2014 to 2017, the crop water footprint showed a “convex” pattern of
change, i.e., an initial increase followed by a decrease. The main reason for this trend was
agricultural technology transformation and policy adjustments in 2015, which suppressed
the growth of the water footprint. From 2017 to 2021, the crop water footprint showed a
slight upward trend, and this was mainly attributed to the rapid population growth in
Hangzhou, which led to an increasing demand for crops. However, during this period, the
government implemented water price reform initiatives to drive the agricultural structure
adjustment process. As a result, while the economy continued to grow, the growth of the
water footprint slowed down and gradually stabilized during this stage.

There was a significant downward trend in the water footprint of animal products,
wherein it decreased from 36.64 × 108 m3 in 2010 to 21.13 × 108 m3 in 2021 (Figure 4).
This phenomenon was highly correlated with the decline in the water footprints of eggs
and pork with their large-scale production and high water footprint content per unit. The
livestock industry was supported from 2010 to 2013 and its production was increasing, thus
leading to a rising water footprint for livestock products during this period. In addition,
from 2013 to 2014, the water footprints of various types of products showed a decreasing
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trend due to the implementation of the most stringent water resource management system
at the time. Since 2013, relevant policies have been introduced multiple times to vigorously
develop high-quality animal husbandry. From the perspective of the water footprint and its
changes regarding various types of animal husbandry, these policies have achieved positive
results. From 2020 to 2021, the water footprint of animal products showed a noticeable
upward trend. The production of animal products was suspended due to the COVID-19
pandemic in 2020. With the economy resuming in 2021, the water footprints of pork, eggs,
and other products continued to increase on account of the increasing demand.
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The percentage of the AWF from 2010 to 2021 is shown in Figure 5. It can be seen that
aquatic products shared the highest proportion (17–24%) among all types of agricultural
products; in addition, their proportion has undergone the greatest changes. However,
their water footprint remained relatively stable, and this has mainly been attributed to
the changes in the production of agricultural products (such as grain, pork, and eggs)
with their high production and high water footprint content. The water footprints of
grain, eggs, aquatic products, and pork remained between 12% and 24%, and the water
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footprint of tea and fruits was below 15%, thus indicating that the water use for grain,
eggs, aquatic products, and pork products should be sufficiently reduced with agricultural
water resources management. In terms of temporal changes, the total proportion of the
water footprint of grain, eggs, aquatic products, and pork decreased from 74% in 2010 to
65% in 2021, i.e., the center of gravity of the AWF shifted from grain, pork, and eggs to
fruits, tea, and other products, thereby indicating the positive effects of agricultural water
management in Hangzhou.
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3.2. The Decoupling Relationship between the AWF and AEG

Based on the water footprint accounting results and the agricultural economy data
from Hangzhou for 2011–2021, the growth rate of the AWF (∆W) and the AEG rate (∆G),
as well as the decoupling index (D) between them, were calculated (Table 4). As can be
seen from Table 4, the decoupling between the AWF and AEG in Hangzhou was strong
from 2013 to 2017, as well as from 2019 to 2020. It was weakly decoupled in 2011–2012
and strongly negatively decoupled in 2018, with expansive coupling in 2021. During the
research period, strong decoupling accounted for 63.64% of the decoupling between the
AWF and AEG in Hangzhou.

Table 4. The decoupling relationship between the AWF and AEG in Hangzhou from 2011 to 2021.

Year ∆G ∆W D Decoupling State

2011 28.36 1.25 0.16 Weak decoupling
2012 18.34 0.05 0.01 Weak decoupling
2013 10.31 −1.13 −0.46 Strong decoupling
2014 8.93 −8.82 −4.44 Strong decoupling
2015 13.60 −1.65 −0.66 Strong decoupling
2016 16.26 −1.91 −0.70 Strong decoupling
2017 6.87 −4.56 −4.32 Strong decoupling
2018 −5.57 0.83 −1.11 Strong negative decoupling
2019 20.19 −3.12 −1.10 Strong decoupling
2020 0.52 −2.85 −44.79 Strong decoupling
2021 7.27 0.81 0.98 Expansive coupling

In terms of the decoupling status, the decoupling between the AWF and AEG can
be mainly divided into two stages: “the decoupling stage from 2011 to 2017 and the
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non-stationary decoupling stage from 2018 to 2021”. During the decoupling phase, the
relationship between the AWF and AEG transitioned from a weak decoupling state to a
strong decoupling state (from 2012 to 2013). This shift was mainly attributed to a series
of favorable agricultural policies that improved agricultural production. During the non-
stationary decoupling stage, the decoupling state went through a process of “deterioration–
improvement–deterioration”. During 2017–2018, the decoupling status deteriorated from
a strong decoupling to a strong negative decoupling. This was primarily caused by the
increase in demand for the production of water-intensive agricultural products, which,
thus, led to an increase in agricultural water use.

Specifically, in 2018, the outbreak of African swine fever resulted in a decrease in pork
production. As a result, other animal products with a higher water footprint content per
unit, such as mutton, contributed to an increase in the AWF. The shift from a strong negative
decoupling state to a strong decoupling state in 2018–2020 was due to the government’s
pro-agricultural policies, which have solidified AEG. From 2019 to 2021, the decoupling
status deteriorated from strong decoupling to growing coupling. In 2019, Hangzhou was
not yet affected by the pandemic, and there was a strong decoupling between the AWF and
AEG. In the early months of 2020, the pandemic led to a slow increase in residents’ demand
for agricultural products. In the mid-term of 2020, the pandemic caused a significant
increase in resident demand for agricultural products [59–61]. Despite the impact of the
pandemic for over six months, it only changed the decoupling index and did not completely
alter the decoupling status. The AWF and the AEG still exhibited a strong decoupling
status. In 2021, the impact of the pandemic still continued, resulting in a change in the
decoupling status. There was a sharp increase in agricultural products, thereby leading
to a simultaneous rise in the AWF and the agricultural economy. They also exhibited a
connected growth status.

3.3. Decoupling State Prediction of the AWF and AEG
3.3.1. Model Test

The AWF from 2010 to 2021 showed a downward trend and was a non-stationary
series; as such, it should be converted into a stationary series by a first-order differentiation
process. The ACF and PACF coefficients after first-order differentiation were within the
confidence interval and showed signs of trailing (Figure 6), thus indicating that an ARIMA
(0, 1, 0) model could be built. In addition, a residual series test was used to calculate the
ACF and PACF of the model residuals. It can be seen that the autocorrelation coefficient
and partial autocorrelation coefficient of the residual series were within the confidence
interval; moreover, the p-value of the Q-statistic information of the model was greater than
0.1, thus indicating that the residual series was a white noise series. There were similar
trends between the predicted curve of the AWF and the actual curve (shown in Figure 7,
R2 = 0.89), and the residuals were all within the confidence interval. Therefore, the results
were reliable enough that the ARIMA (0, 1, 0) model could be used to predict the AWF
in Hangzhou.

The GM (1, 1) model test is shown in Table 5, and the results indicate that the residuals
of the 2010–2021 time series, ε(k) < 0.2, and the model accuracy level were qualified.

3.3.2. Prediction of the Decoupling Relationship between the AWF and AEG

Considering the AWF and agricultural GDP data in Hangzhou from 2010 to 2021 as
the original time series, the ARIMA (0, 1, 0) model and the GM (1, 1) model were used to
predict the AWF and agricultural GDP in Hangzhou from 2022 to 2026, respectively. Under
the current conditions of high-intensity control of agricultural water use and a reasonable
agricultural structure, the AWF in Hangzhou will most likely drop to 35.88 × 108 m3 in
2022 (Figure 8) and it will continue to drop at a high rate in the next four years. The upper
and lower limits of the predicted AWF indicate that if there is a relaxation of control on
agricultural water use in the future, the water footprint will continue to rise significantly.
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In a future state with intensive water resource management, the above forecast results are
conducive to supporting agricultural water resource allocation.
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Table 5. The GM (1, 1) model test.

Year Residuals Relative Error Stage Ratio

2010 0.000 0.00 —
2011 0.053 5.27 0.880
2012 0.008 0.83 0.928
2013 0.001 0.02 0.961
2014 0.001 0.13 0.967
2015 0.018 1.80 0.953
2016 0.041 4.07 0.947
2017 0.032 3.18 0.978
2018 0.017 1.75 1.018
2019 0.015 1.50 0.938
2020 0.015 1.49 0.998
2021 0.025 2.46 0.978
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The trend of the predicted curve from 2010 to 2021 was consistent with the actual
curve (shown in Figure 8). The agricultural economy in Hangzhou from 2022 to 2026 will
grow from CNY 35.27 billion in 2022 to CNY 40.01 billion in 2026, without the influence of
external factors. This growth will probably be related to the improvement of agricultural
production technology, the increase in demand for agricultural products, the increase in the
agricultural economy, and the implementation of beneficial agriculture policies. With an
increasing population in Hangzhou in the future, the demand for agricultural products will
continue to grow, which will bring about the sustained growth of the agricultural economy.
The agricultural GDP in Hangzhou in 2022 was CNY 34.60 billion, which is close to the
predicted value, thus demonstrating that the prediction was reliable.

The decoupling forecast of the AWF and AEG in Hangzhou from 2022 to 2026 is shown
in Table 6. The results showed that there would be a strong decoupling between the AWF
and AEG in Hangzhou from 2022 to 2026. This means that Hangzhou will achieve the
coordinated development of agricultural water use and the agricultural economy in the
future, thus providing for the long-term sustainability of Hangzhou’s agricultural practices.

Table 6. Prediction of the decoupling state between the AWF and AEG in Hangzhou from 2022
to 2026.

Year ∆G ∆W D Decoupling State

2022 19.16 −1.92 −0.88 Strong decoupling
2023 11.30 −1.92 −1.67 Strong decoupling
2024 11.67 −1.91 −1.75 Strong decoupling
2025 12.04 −1.92 −1.87 Strong decoupling
2026 12.42 −1.92 −1.99 Strong decoupling

3.4. Mechanisms of the Decoupling Relationship between the AWF and AEG

Based on the above analyses, we proposed the potential mechanism determining the
decoupling relationship between the AWF and AEG (Figure 9), thus providing a decision-
making basis for the integrated management of agricultural water resources and sustainable
agricultural development. The factors that impact the decoupling relationship between the
AWF and AEG consist of agricultural structure, technological advancements, and public
emergencies. In terms of agricultural structure, through policy guidance, increasing the
yields of agricultural products with a lower water footprint per unit can reduce the AWF
while increasing the agricultural economy. In terms of technological effects, by enhancing
the level of agricultural mechanization and promoting agricultural production efficiency,
agricultural product yields can be increased, thereby improving the agricultural economy.
Outbreaks such as epidemics can lead to an increased demand for certain agricultural
products with high water consumption, a dampening decline in the AWF, and increases
in the agricultural economy. Policies can further influence the AWF and the agricultural
economy by changing the agricultural structure and technological effects. This means
that policies can guide the agricultural sector to enhance mechanization levels and adjust
local agricultural structure, thus maintaining a decoupling relationship between AWF and
AEG. Moreover, certain policies could also mitigate the impact of unforeseen events on
the decoupling relationship between them, which can be achieved by properly adjusting
the agricultural structure to reduce the AWF. It is worth noting that government policies
influence the decoupling relationship between the AWF and AEG through the synergistic
effects of multiple factors.
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4. Discussion
4.1. Comparison of the Water Footprint Results and Analyses of the Limitations

The AWF in Hangzhou from 2010 to 2021 showed a decreasing trend, which was
consistent with the results of Zheng et al. [53]. Both studies adopted the same calculation
methods and shared the same data sources regarding agricultural products. However,
there was a narrow difference in the total amount of water footprint determined (Table 7).
The main cause for the disparity can be attributed to the differences in the water footprint
content per unit that was selected when calculating the water footprint. The water foot-
print content per unit, as adopted by Zhang et al., came from the results published by
Mekonnen et al. [62,63], who measured the mean global water footprints of agricultural
products. The values for water footprint content per unit in the current study were taken
from the results published by Zhao et al. [46], Zhang et al. [47], Liu et al. [48], Li et al. [49],
and Sun et al. [50], who all measured the water footprint content of agricultural products
in the cities near Hangzhou, Zhejiang Province, and Hangzhou itself. The water footprint
content per unit depends largely on regional environmental background conditions, such
as evapotranspiration, climate, and soil. As these conditions vary across different regions,
the water footprint content per unit for crops also differs [64]. In this paper, the values
of water footprint content per unit of the cities near Hangzhou, Zhejiang Province, and
Hangzhou itself were selected to provide a more accurate estimation of AWF consumption
in Hangzhou. As a result, the AWF calculated in this paper provided a closer approxi-
mation to the actual utilization of agricultural water within Hangzhou. Furthermore, the
difference in crop categorization also plays a role in the discrepancies seen in the calculation
results of the water footprint. For instance, Zheng et al. [53] implemented a more detailed
subdivision of grain crops, while this study calculated the water footprint of grain crops as
a whole.

Table 7. Comparison of the agricultural water footprint in Hangzhou from 2010 to 2016 (unit 108 m3).

Years 2010 2011 2012 2013 2014 2015 2016

This study 58.88 60.12 60.18 59.06 50.25 48.60 46.70
Zheng et al. [53] 58.08 58.91 59.21 52.86 48.99 48.45 47.12

The results of the water footprint calculations in this study also have certain limitations.
Due to the difficulty in obtaining the values of the local water footprint content per unit, the
water footprint content per unit of a few indicators was selected from cities near Hangzhou
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instead. Despite their sharing a similar climatic background and exhibiting only a relatively
small variation from the actual water footprint content per unit in Hangzhou, this still has
a certain impact on the results of the water footprint. Moreover, this study did not calculate
the water footprint for all agricultural products in Hangzhou. While this method is often
employed in AWF assessments and produces quantitative results that are close to the actual
AWF, it still leads to an underestimation of the AWF. Furthermore, blue water footprints
and green water footprints were not distinguished in the AWF analysis in this study, which
might result in a lack of clarity regarding which water footprint played a predominant role
in the decoupling relationship between the AWF and AEG. Hence, the assumptions made
in this study will have introduced errors in terms of the selection of the water footprint
content per unit, the subdivision of grain crops, and the adoption of agricultural products,
which can lead to a deviation between the calculated AWF and the actual agricultural
water consumption.

4.2. The Impact of Government Policies on the Decoupling Relationship between the AWF
and AEG

The decoupling relationship between the AWF and AEG is closely related to gov-
ernment policies. A series of policies were implemented by the Hangzhou Municipal
Government from 2011 to 2021, as shown in Figure 10. In 2011, significant initiatives
were undertaken to promote the high-quality and sustainable development of animal
husbandry. The structure of the livestock industry was adjusted by boosting the production
of agricultural products such as pork, eggs, and dairy, which have a relatively lower water
footprint per unit. Consequently, although the agricultural economy continued to expand,
there was only a marginal increase in the AWF. In 2012, an increase in the production of
products with lower water footprint content per unit, such as fruits, vegetables, and grain,
helped mitigate the increase in the water footprint. Additionally, an improvement in agri-
cultural technology promoted the AEG. In 2013, strict water management systems drove
down the yields of crops with a high water footprint content per unit, thereby reducing
the AWF. In 2014, dedicated efforts were undertaken to bolster the production area and
yield of drought-resistant crops, thereby resulting in an enhanced agricultural structure
and a subsequent decrease in the AWF. In 2016, significant attention was devoted to the
advancement of agricultural technology to amplify agricultural production efficiency. This
endeavor encouraged higher yields of grain and vegetables. Nonetheless, a decline in egg
production dominated the contributions to the reduction in the AWF. In 2018, the outbreak
of African swine fever and other factors triggered a substantial drop in pork production,
thus leading to an agricultural economic downturn. Conversely, the production of high
water-consumption products such as mutton experienced an increase, thereby resulting in a
rise in the AWF. However, the implementation of policies aimed at enhancing technological
advancements and promoting drought-resistant grain production in the year 2018 helped
to partially inhibit the increase in the water footprint.

In addition, similar conclusions regarding the impact of government policies on the
water footprint and the economy can also be drawn from research conducted in Europe [43]
and the United States [65]. For example, farmers tend to cultivate irrigated cereals that
offer high economic returns. Furthermore, they are encouraged to cultivate crops using
rainfed systems by the implementation of policy subsidies, thus achieving a reduction in
the AWF and an increase in the agricultural economy at the same time. Therefore, the
impact mechanism of government policies on the AWF and the agricultural economy is
also applicable in other countries or regions.



Water 2023, 15, 3705 17 of 20

Figure 10. Agricultural policies issued by the government from 2011 to 2021.

4.3. Research Insights and Policy Recommendations

In terms of changes in the AWF and the agricultural economy, changes in the structure
of agricultural products (Figure 5) reduced the water footprint of agriculture while pro-
moting the AEG in Hangzhou. According to the water footprint proportion of agricultural
products, we believe that a reduction in the water footprint proportion of aquatic products
will further reduce the agricultural water footprint in Hangzhou. In different regions, it is
necessary to develop a planting structure pattern that is compatible with local agricultural
water resources, as well as reduce the area planted with high water-consumption crops
and increase the areas planted with low water-consumption crops, in accordance with the
objectives of local water conservation and economic development. At the same time, by
drawing on successful policies implemented in Europe and the United States in terms of
regulating agricultural structures by subsidizing farmers, there could be the creation of
further incentives for farmers to reduce water use in agricultural practices. Although this
article does not address the impact of water-saving technologies on changes in the agricul-
tural water footprint, the reduction in the agricultural water footprint through the active
development of water-saving agricultural technologies cannot be ignored. In epidemics
and other emergencies (e.g., swine fever), the government may consider products with a
low water footprint (e.g., poultry) as substitute products through which they can minimize
the production of products with a high water footprint.

5. Conclusions

In this paper, we analyzed the decoupling relationship between the AWF and AEG
from 2011 to 2021, based on an estimation of the AWF from 2010 to 2022, as well as predict-
ing the decoupling state of the AWF and AEG from 2022 to 2026. The main conclusions are
as follows:

(1) The water footprint of agriculture in Hangzhou decreased from 60.14 × 108 m3 in
2010 to 38.42 × 108 m3 in 2021, and this decreasing trend was dominated by the
water footprint of animal products. The temporal trend of the crop water footprint
was divided into four stages: “small decline–rapid decline–rising and then falling–
continuous rise”, while the water footprint of animal products mainly showed the
trend of a rise and then a fall, which was highly correlated with the change in the egg
production water footprint. The main factor driving this reduction in the AWF was
the change in agricultural structure.

(2) From 2011 to 2021, there was a strong decoupling between the AWF and AEG in
Hangzhou. Overall, there were seven strong decouplings, two weak decouplings,
one expansive coupling, and one strong negative decoupling. The decoupling state
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between the AWF and AEG was mainly divided into two stages: “the decoupling
stage and the non-smooth decoupling stage”. The main factor promoting the de-
coupling between the AWF and AEG was determined by the agricultural structure
adjustment, while the main factors inhibiting the decoupling were external factors
such as COVID-19.

(3) There will be a continuing strong decoupling between the AWF and AEG in Hangzhou
in the future.
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