Characteristics of Zinc Adsorption onto Biochars Derived from Different Feedstocks
Abstract
:1. Introduction
2. Material and Methods
2.1. Biochar
2.2. Batch Adsorption Studies
2.2.1. Kinetic Study
2.2.2. Equilibrium Study
2.2.3. Effect of pH
2.3. Fixed-Bed Column Study
3. Results and Discussion
3.1. Kinetics
3.2. Adsorption Isotherms
3.3. Influence of Initial Solution pH on Zn2+ Adsorption
3.4. Column Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ministry of Ecology and Environment of the People’s Republic of China (MEP). China’s Ecological Environment Status Bulletin; Ministry of Ecology and Environment of the People’s Republic of China (MEP): Beijing, China, 2017. [Google Scholar]
- The National People’s Congress of the People’s Republic of China (NPC). Law on the Prevention and Control of Soil Pollution of the People’s Republic of China; The National People’s Congress of the People’s Republic of China (NPC): Beijing, China, 2018. [Google Scholar]
- The State Council of the People’s Republic of China (The State Council). Water Pollution Control Action Plan; The State Council of the People’s Republic of China (The State Council): Beijing, China, 2015. [Google Scholar]
- Jagaba, A.H.; Kutty, S.R.; Khaw, S.G.; Lai, C.L.; Isa, M.H.; Baloo, L.; Lawal, I.M.; Abubakar, S.; Umaru, I.; Zango, Z.U. Derived hybrid biosorbent for zinc(II) removal from aqueous solution by continuousflow activated sludge system. J. Water Process Eng. 2020, 34, 101152. [Google Scholar] [CrossRef]
- GB/T 14848-2017; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Quality Standard for Ground Water. Standards Press of China: Beijing, China, 2017.
- Shek, T.H.; Ma, A.; Lee, V.K.; McKay, G. Kinetics of zinc ions removal from effluents using ion exchange resin. Chem. Eng. J. 2009, 146, 63–70. [Google Scholar] [CrossRef]
- Abdullah, N.; Gohari, R.; Yusof, N.; Ismail, A.; Juhana, J.; Lau, W.; Matsuura, T. Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution. Chem. Eng. J. 2016, 289, 28–37. [Google Scholar] [CrossRef]
- Srivastava, N.K.; Majumder, C.B. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J. Hazard. Mater. 2008, 151, 1–8. [Google Scholar] [CrossRef]
- Matouq, M.; Jildeh, N.; Qtaishat, M.; Hindiyeh, M.; Al Syouf, M.Q. The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. J. Environ. Chem. Eng. 2015, 3, 775–784. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.; Chen, L.; Chen, Y.; Lehmann, J.; McBride, M.B.; Hay, A.G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol. 2011, 102, 8877–8884. [Google Scholar] [CrossRef]
- Li, Q.; Tang, L.; Hu, J.; Jiang, M.; Shi, X.; Zhang, T.; Li, Y.; Pan, X. Removal of toxic metals from aqueous solution by biochars derived from long-root Eichhornia crassipes. R. Soc. Open Sci. 2018, 5, 180966. [Google Scholar] [CrossRef]
- Qian, T.T.; Wu, P.; Qin, Q.Y.; Huang, Y.N.; Wang, Y.J.; Zhou, D.M. Screening of wheat straw biochars for the remediation of soils polluted with Zn (II) and Cd (II). J. Hazard. Mater. 2019, 365, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jin, F.; Shen, Z.; Lynch, R.; Al-Tabbaa, A. Kinetic and equilibrium modelling of MTBE (methyl tert-butyl ether) adsorption on ZSM-5 zeolite: Batch and column studies. J. Hazard. Mater. 2018, 347, 461–469. [Google Scholar] [CrossRef] [PubMed]
- US. EPA. Permeable Reactive Subsurface Barriers for the Interception and Remediation of Chlorinated Hydrocarbon and Chromium (VI) Plumes in Ground Water; EPA/6ok00/F-97/008; U.S. Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 1997; 4p. [Google Scholar]
- Wilkin, R.; Jim, W.; David, J. Performance Assessment of a Permeable Reactive Barrier for Ground Water—Remediation Fifteen Years after Installation; EPA/600/F-13/324; US EPA: Washington, DC, USA, 2013. [Google Scholar]
- Wilkin, R.T.; Acree, S.D.; Ross, R.R.; Puls, R.W.; Lee, T.R.; Woods, L.L. Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in. Sci. Total Environ. 2014, 468–469, 186–194. [Google Scholar] [CrossRef] [PubMed]
- McGovern, T.; Guerin, T.F.; Horner, S.; Davey, B. Design, construction and operation of a funnel and gate in situ permeable reactive barrier for remediation of petroleum hydrocarbons in groundwater. Water Air Soil Pollut. 2002, 136, 11–31. [Google Scholar] [CrossRef]
- Obiri-Nyarko, F.; Grajales-Mesa, S.J.; Malina, G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 2014, 111, 243–259. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Y.; Jin, F.; Alessi, D.S.; Zhang, Y.; Wang, F.; Al-Tabbaa, A. Comparison of nickel adsorption on biochars produced from mixed softwood and Miscanthus straw. Environ. Sci. Pollut. Res. 2018, 25, 14626–14635. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Jin, F.; Wang, F.; McMillan, O.; Al-Tabbaa, A. Sorption of lead by Salisbury biochar produced from British broadleaf hardwood. Bioresour. Technol. 2015, 193, 553–556. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, F.; Shen, Z.; Wang, F.; Lynch, R.; Al-Tabbaa, A. Adsorption of methyl tert-butyl ether (MTBE) onto ZSM-5 zeolite: Fixed-bed column tests, breakthrough curve modelling and regeneration. Chemosphere 2019, 220, 422–431. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, J.; Yi, Y. Biochar and hydrochar derived from freshwater sludge: Characterization and possible applications. Sci. Total Environ. 2021, 763, 144550. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Loganathan, V.A.; Gupta, R.B.; Barnett, M.O. An Assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. J. Environ. Manag. 2011, 92, 2504–2512. [Google Scholar] [CrossRef]
- Gillham, R.W.; O’Hannesin, S.F. Enhanced degradation of halogenated aliphatics by zero-valent iron. Groundwater 1994, 32, 958–967. [Google Scholar] [CrossRef]
- Beiyuan, J.; Awad, Y.M.; Beckers, F.; Tsang, D.C.; Ok, Y.S.; Rinklebe, J. Mobility and Phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere 2017, 178, 110–118. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, C.; Gray, E.M.; Boyd, S.E. Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass Bioenergy 2017, 105, 136–146. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- O’Connor, D.; Peng, T.; Zhang, J.; Tsang, D.C.W.; Alessi, D.S.; Shen, Z.; Hou, D. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Sci. Total Environ. 2018, 619, 815–826. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Y.; McMillan, O.; Jin, F.; Al-Tabbaa, A. Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk. Environ. Sci. Pollut. Res. 2017, 24, 12809–12819. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Zhou, H.; Tang, S.; Zeng, P.; Gu, J.; Liao, B. A Enhancing Cd(II) adsorption on rice straw biochar by modification of iron and manganese oxides. Environ. Pollut. 2022, 300, 118899. [Google Scholar] [CrossRef] [PubMed]
- GB/T 12496.7-1999; Test Methods of Wooden Activated Carbon-Determination of pH. The State Forestry Administration of the People’s Republic of China: Beijing, China, 1999.
- Gillman, G.; Sumpter, E. Modification to the compulsive exchange method for measuring exchange characteristics of soils. Aust. J. Soil Res. 1986, 24, 61. [Google Scholar] [CrossRef]
- Cheung, C.W.; Porter, J.F.; Mckay, G. Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Res. 2001, 35, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Choy, K.K.H.; Ko, D.C.K.; Cheung, C.W.; Porter, J.F.; McKay, G. Film and intraparticle mass transfer during the adsorption of metal ions onto bone char. J. Colloid Interface Sci. 2004, 271, 284–295. [Google Scholar] [CrossRef]
- Naidu, R.; Kookana, R.S.; Sumner, M.E.; Harter, R.D.; Tiller, K.G. Cadmium Sorption and Transport in Variable Charge Soils: A Review. J. Environ. Qual. 1997, 26, 602–617. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Jin, F.; Al-Tabbaa, A. The performance of blended conventional and novel binders in the in-situ stabilisation/solidification of a contaminated site soil. J. Hazard. Mater. 2015, 285, 46–52. [Google Scholar] [CrossRef]
- Wang, F.; Al-Tabbaa, A. Leachability of 17-year old stabilised/solidified contaminated site soils. In GeoCongress 2014: Geo-Characterization and Modeling for Sustainability; ASCE: Atlanta, GA, USA, 2014. [Google Scholar]
- Kogbara, R.B.; Al-Tabbaa, A.; Yi, Y.; Stegemann, J.A. pH-dependent leaching behaviour and other performance properties of cement-treated mixed contaminated soil. J. Environ. Sci. 2012, 24, 1630–1638. [Google Scholar] [CrossRef]
- Chen, T.; Zhou, Z.; Xu, S.; Wang, H.; Lu, W. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge. Bioresour. Technol. 2015, 190, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Li, J.; Fang, Y.; Zhang, J. The treatment process for groundwater with excessive zinc content. Sci. Technol. Eng. 2021, 21, 11023–11033. [Google Scholar]
- Masoumeh, F.; Adel, R.; Nosratollah, N.; Shahin, O. Kinetic and equilibrium studies on the zinc adsorption-desorption characteristics of some promising biochars in aqueous solutions. Arab. J. Geosci. 2022, 15, 794. [Google Scholar]
WD600 | CS550 | RS500 | FS500 | |
---|---|---|---|---|
Surface area (m2/g) | >700 | >900 | >300 | >500 |
pH | 8.98 | 6.89 | 3.49 | 10.84 |
CEC (cmol/kg) | 6.86 | 5.54 | 4.30 | 7.31 |
Particle size (mm) | >0.075 | >0.075 | 0.075–0.15 | 0.09–0.18 |
Ferric salts (%) | <0.1 | <0.05 | <0.1 | <0.1 |
Mass density (mg/L) | <450 | <450 | <450 | <500 |
Moisture content (%) | <10 | <10 | <10 | <10 |
Biochar | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||||
---|---|---|---|---|---|---|---|---|
k1 (1/h) | qe (mg/g) | R2 | AIC | K2 (g/mg/h) | qe (mg/g) | R2 | AIC | |
WD600 | 4.94 ± 1.24 | 7.71 ± 0.41 | 0.66 | 8.01 | 0.89 ± 0.24 | 8.19 ± 0.33 | 0.83 | 0.61 |
CS550 | 10.30 ± 2.19 | 6.20 ± 0.22 | 0.60 | −2.81 | 2.92 ± 0.86 | 6.44 ± 0.21 | 0.73 | −6.63 |
Freundlich Isotherm Mode | |||
---|---|---|---|
KF (L/mg) | 1/n | R2 | |
WD600 | 1.32 ± 0.76 | 0.56 ± 0.12 | 0.868 |
CS550 | 1.11 ± 0.96 | 0.50 ± 0.18 | 0.642 |
RS500 | 0.01 ± 0.03 | 1.15 ± 0.38 | 0.719 |
FS500 | 21.5 ± 5.07 | 0.17 ± 0.06 | 0.516 |
10% WD600 | 20% WD600 | 10% RS500 | 20% RS500 | ||
---|---|---|---|---|---|
Mass of Adsorbents (g) | 2.13 | 4.36 | 3.80 | 7.22 | |
Model | Parameters | ||||
Dose–Response | a | 2.27 ± 0.22 | 1.14 ± 0.14 | 1.04 ± 0.14 | 1.42 ± 0.23 |
q0 (mg/g) | 13.42 ± 0.66 | 7.57 ± 0.59 | 4.56 ± 0.55 | 4.22 ± 0.42 | |
R2 | 0.873 | 0.721 | 0.675 | 0.638 | |
Thomas | KTh (mL−1 mg−1 min−1) | 0.07 ± 0.01 | 0.04 ± 0.004 | 0.04 ± 0.005 | 0.04 ± 0.006 |
q0 (mg/g) | 15.16 ± 0.84 | 9.35 ± 0.58 | 6.13 ± 0.88 | 5.21 ± 0.43 | |
R2 | 0.827 | 0.681 | 0.577 | 0.619 | |
Yoon–Nelson | KYN (min−1) | 0.003 ± 3.5 × 10−4 | 0.002 ± 2.1 × 10−4 | 0.002 ± 2.7 × 10−4 | 0.002 ± 3.2 × 10−4 |
Tb (min) | 645.9 ± 35.8 | 814.9 ± 50.9 | 466.3 ± 66.7 | 752.9 ± 62.4 | |
R2 | 0.827 | 0.681 | 0.577 | 0.619 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, F.; Xu, W. Characteristics of Zinc Adsorption onto Biochars Derived from Different Feedstocks. Water 2023, 15, 3789. https://doi.org/10.3390/w15213789
Liu J, Wang F, Xu W. Characteristics of Zinc Adsorption onto Biochars Derived from Different Feedstocks. Water. 2023; 15(21):3789. https://doi.org/10.3390/w15213789
Chicago/Turabian StyleLiu, Jiajia, Fei Wang, and Wangqi Xu. 2023. "Characteristics of Zinc Adsorption onto Biochars Derived from Different Feedstocks" Water 15, no. 21: 3789. https://doi.org/10.3390/w15213789
APA StyleLiu, J., Wang, F., & Xu, W. (2023). Characteristics of Zinc Adsorption onto Biochars Derived from Different Feedstocks. Water, 15(21), 3789. https://doi.org/10.3390/w15213789