Monitoring the Efficiency of a Catchment Restoration to Further Reduce Nutrients and Sediment Input into a Eutrophic Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Discharge Measurements
2.4. Phosphorous
2.5. Nitrogen
2.6. Calculation of SPM
3. Results
3.1. pH and Temperature
3.2. Oxygen
3.3. Discharge
3.4. Turbidity
3.5. SPM
3.6. Ortho-Phosphate–Phosphorous
3.7. Nitrogen
4. Discussion
4.1. Influence of the Wetland with the Floodplain
4.2. Lake-Internal Processes
4.3. Nutrient Hotspots of the Catchment Area
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. The Water Framework Directive and the Floods Directive: Actions towards the “Good Status” of EU Water and to Reduce Flood Risks. 2015. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52015DC0120 (accessed on 20 September 2023).
- Schindler, D.W. The dilemma of controlling cultural eutrophication of lakes. Proc. R. Soc. B Biol. Sci. 2012, 279, 4322–4333. [Google Scholar] [CrossRef]
- Anderson, D.; Glibert, P.; Burkholder, J. Harmful algal blooms and eutrophication: Nutrient sources, compositions, and consequences. Estuaries 2002, 25, 704–726. [Google Scholar] [CrossRef]
- Schindler, D.W.; Carpenter, S.R.; Chapra, S.C.; Hecky, R.E.; Orihel, D.M. Reducing phosphorus to curb lake eutrophication is a success. Environ. Sci. Technol. 2016, 50, 8923–8929. [Google Scholar] [CrossRef]
- He, X.; Liu, Y.L.; Conklin, A.; Westrick, J.; Weavers, L.K.; Dionysiou, D.D.; Lenhart, J.J.; Mouser, P.J.; Szlag, D.; Walker, H.W. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful Algae 2016, 54, 174–193. [Google Scholar] [CrossRef]
- Maliaka, V.; Lürling, M.; Fritz, C.; Verstijnen, Y.J.M.; Faassen, E.J.; van Oosterhout, F.; Smolders, A.J.P. Interannual and Spatial Variability of Cyanotoxins in the Prespa Lake Area, Greece. Water 2021, 13, 357. [Google Scholar] [CrossRef]
- Maar, M.; Timmermann, K.; Petersen, J.K.; Gustafsson, K.E.; Storm, L.M. A model study of the regulation of blue mussels by nutrient loadings and water column stability in a shallow estuary, the Limfjorden. J. Sea Res. 2010, 64, 322–333. [Google Scholar] [CrossRef]
- Rügner, H.; Schwientek, M.; Beckingham, B.; Kuch, B.; Grathwohl, P. Turbidity as a proxy for total suspended solids (TSS) and particle facilitated pollutant transport in catchments. Environ. Earth Sci. 2013, 69, 373–380. [Google Scholar] [CrossRef]
- Sinke, A.J.C. Phosphorus Dynamics in the Sediment of a Eutrophic Lake; Wageningen University and Research: Wageningen, The Netherlands, 1992; ISBN 9054850361. [Google Scholar]
- Horppila, J.; Holmroos, H.; Niemistö, J.; Massa, I.; Nygrén, N.; Schönach, P.; Tapio, P.; Tammeorg, O. Variations of internal phosphorus loading and water quality in a hypertrophic lake during 40 years of different management efforts. Ecol. Eng. 2017, 103, 264–274. [Google Scholar] [CrossRef]
- Søndergaard, M.; Jensen, J.P.; Jeppesen, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 2003, 506–509, 135–145. [Google Scholar] [CrossRef]
- Hupfer, M.; Lewandowski, J. Oxygen controls the phosphorus release from lake sediments—A long-lasting paradigm in limnology. Int. Rev. Hydrobiol. 2008, 93, 415–432. [Google Scholar] [CrossRef]
- Dunne, E.J.; Reddy, K.R. Phosphorus biogeochemistry of wetlands in agricultural watersheds. In Nutrient Management in Agricultural Watersheds: A Wetland Solution; Wageningen Academic Publishers: Wageningen, The Netherlands, 2004; pp. 105–119. [Google Scholar]
- Lü, C.; He, J.; Zuo, L.; Vogt, R.D.; Zhu, L.; Zhou, B.; Mohr, C.W.; Guan, R.; Wang, W.; Yan, D. Processes and their explanatory factors governing distribution of organic phosphorous pools in lake sediments. Chemosphere 2016, 145, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.; Beklioglu, M.; Moss, B. Changes in a deep lake following sewage diversion—A challenge to the orthodoxy of external phosphorus control as a restoration strategy? Freshw. Biol. 1995, 34, 399–410. [Google Scholar] [CrossRef]
- Tammeorg, O.; Horppila, J.; Laugaste, R.; Haldna, M.; Niemistö, J. Importance of diffusion and resuspension for phosphorus cycling during the growing season in large, shallow Lake Peipsi. Hydrobiologia 2015, 760, 133–144. [Google Scholar] [CrossRef]
- Naeher, S.; Smittenberg, R.H.; Gilli, A.; Kirilova, E.P.; Lotter, A.F.; Schubert, C.J. Impact of recent lake eutrophication on microbial community changes as revealed by high resolution lipid biomarkers in Rotsee (Switzerland). Org. Geochem. 2012, 49, 86–95. [Google Scholar] [CrossRef]
- Bhagowati, B.; Ahamad, K.U. A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrol. Hydrobiol. 2019, 19, 155–166. [Google Scholar] [CrossRef]
- Reddy, K.R.; Kadlec, R.H.; Flaig, E.; Gale, P.M. Phosphorus retention in streams and wetlands: A review. Crit. Rev. Environ. Sci. Technol. 1999, 29, 83–146. [Google Scholar] [CrossRef]
- Tang, J.L.; Zhang, B.; Gao, C.; Zepp, H. Hydrological pathway and source area of nutrient losses identified by a multi-scale monitoring in an agricultural catchment. Catena 2008, 72, 374–385. [Google Scholar] [CrossRef]
- Zeman-Kuhnert, S.; Thiel, V.; Heim, C. Effects of Weather Extremes on the Nutrient Dynamics of a Shallow Eutrophic Lake as Observed during a Three-Year Monitoring Study. Water 2022, 14, 2032. [Google Scholar] [CrossRef]
- Neukermans, G.; Ruddick, K.; Loisel, H.; Roose, P. Optimization and quality control of suspended particulate matter concentration measurement using turbidity measurements. Limnol. Oceanogr. Methods 2012, 10, 1011–1023. [Google Scholar] [CrossRef]
- Pfannkuche, J.; Schmidt, A. Determination of suspended particulate matter concentration from turbidity measurements: Particle size effects and calibration procedures. Hydrol. Process. 2003, 17, 1951–1963. [Google Scholar] [CrossRef]
- Stutter, M.; Dawson, J.J.C.; Glendell, M.; Napier, F.; Potts, J.M.; Sample, J.; Vinten, A.; Watson, H. Evaluating the use of in-situ turbidity measurements to quantify fluvial sediment and phosphorus concentrations and fluxes in agricultural streams. Sci. Total Environ. 2017, 607–608, 391–402. [Google Scholar] [CrossRef]
- NLWKN. Wasserrahmenrichtlinie Band 3. Seeburger See. Leitfaden Maßnahmenplanung Oberflächengewässer. Teil B Stillgewässer. Anhang II—Seeberichte; NLWKN: Hannover, Germany, 2010. [Google Scholar]
- NIBIS. LBEG NIBIS Kartenserver. Niedersächsisches Bodeninformationssystem. Available online: https://nibis.lbeg.de/cardomap3 (accessed on 30 July 2018).
- Blaen, P.J.; Khamis, K.; Lloyd, C.; Comer-Warner, S.; Ciocca, F.; Thomas, R.M.; MacKenzie, A.R.; Krause, S. High-frequency monitoring of catchment nutrient exports reveals highly variable storm event responses and dynamic source zone activation. J. Geophys. Res. Biogeosciences 2017, 122, 2265–2281. [Google Scholar] [CrossRef]
- De Schepper, G.; Therrien, R.; Refsgaard, J.C.; Hansen, A.L. Simulating coupled surface and subsurface water flow in a tile-drained agricultural catchment. J. Hydrol. 2015, 521, 374–388. [Google Scholar] [CrossRef]
- Li, H.; Sivapalan, M.; Tian, F.; Liu, D. Water and nutrient balances in a large tile-drained agricultural catchment: A distributed modeling study. Hydrol. Earth Syst. Sci. 2010, 14, 2259–2275. [Google Scholar] [CrossRef]
- Cyppull, B.; Küntzel, T. Durch Land und Zeit; Landschaftsverband Südniedersachsen, Ed.; Verlag Jörg Mitzkat: Holzminden, Germany, 2005. [Google Scholar]
- Streif, H. Limnogeologische Untersuchung des Seeburger Sees (Untereichsfeld); Bundesanstalt für Bodenforschung: Hannover, Germany, 1970. [Google Scholar]
- Zeman-Kuhnert, S.; Öztoprak, M.; Heim, C.; Thiel, V. Reconstructing eutrophication trends of a shallow lake environment using biomarker dynamics and sedimentary sterols. Org. Geochem. 2023, 177, 104555. [Google Scholar] [CrossRef]
- Göttingen, L. Seeanger und Aue. Renaturierung Eines Ehemaligen Sees und Eines Baches im Untereichsfeld; Landkreis Göttingen, Germany, 1999. [Google Scholar]
- Römer, W. Phosphatfrachten und potentielle Phosphatausträge (Modellberechnungen) aus dem Einzugsgebiet Friesenbeek in den Seeburger See. Master’s Thesis, Georg-August University, Göttingen, Germany, 2009. [Google Scholar]
- Römer, W. Vom Acker in den Seeburger See. Land Forst 2008, 31, 30. [Google Scholar]
- Dießel, C. Umsetzung des Seeburger Seekonzeptes in der Flurbereinigung Seeburg. Amt für regionale Landesentwicklung Braunschweig. Available online: https://www.arl-bs.niedersachsen.de/startseite/foerderung_projekte/flurbereinigung/im_landkreis_gottingen/flurbereinigung-seeburg-150390.html2013 (accessed on 30 October 2018).
- Morgenschweis, G. Hydrometrie. Theorie und Praxis der Durchflussmessung in Offenen Gerinnen, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 9783662553138. [Google Scholar]
- Arp, G.; Hoffmann, V.; Seppelt, S.; Riegel, W. Exkursion 6: Trias und Jura von Göttingen und Umgebung. In Proceedings of the 74. Jahrestagung der Paläontologischen Gesellschaft, Göttingen, Germany, 2–8 October 2004; pp. 147–192. [Google Scholar]
- Falkowski, P.G.; Davis, C.S. Natural proportions. Nature 2004, 431, 131. [Google Scholar] [CrossRef]
- Bäthe, J.; Coring, E.; Curdt, T.; Kleinfeldt, H. Limnologische Untersuchungen in Stehenden Gewässern Niedersachsens 2017. Gartower See—Schladener Kiessee—Seeburger See (Phytoplankton und chemisch-physikalische Parameter); NLWKN: Hannover, Germany, 2018. [Google Scholar]
- Bäthe, J.; Coring, E.; Dietrich, N.; Wegener, M.; Wilbertz, M. Bericht zum Untersuchungsauftrag “Limnologische Untersuchungen in stehenden Gewässern Niedersachsens 2014”; NLWKN: Hannover, Germany, 2015. [Google Scholar]
- Hsieh, C.H.; Ishikawa, K.; Sakai, Y.; Ishikawa, T.; Ichise, S.; Yamamoto, Y.; Kuo, T.C.; Park, H.D.; Yamamura, N.; Kumagai, M. Phytoplankton community reorganization driven by eutrophication and warming in Lake Biwa. Aquat. Sci. 2010, 72, 467–483. [Google Scholar] [CrossRef]
- Gierlowski-Kordesch, E.H. Chapter 1 Lacustrine Carbonates. Dev. Sedimentol. 2010, 61, 1–101. [Google Scholar] [CrossRef]
- Collos, Y.; Harrison, P.J. Acclimation and toxicity of high ammonium concentrations to unicellular algae. Mar. Pollut. Bull. 2014, 80, 8–23. [Google Scholar] [CrossRef]
- Morscheid, H.; Fromme, H.; Krause, D.; Kurmayer, R.; Morscheid, H.; Teubner, K. Toxinbildende Cyanobakterien (Blaualgen) in Bayerischen Gewässern; Bayerisches Landesamt für Umwelt: Augsburg, Germany, 2006; Volume 125, ISBN 9783940009081. [Google Scholar]
- Coring, E.; Bäthe, J. Abschlussbericht zum Untersuchungsauftrag „Ökologisch-limnologische Untersuchungen am Seeburger See und Ausgewählten Gewässern in Seinem Einzugsgebiet“; EcoRing: Hardegsen, Germany, 2007. [Google Scholar]
- Hartmann, R. Abschlussbericht der Hydrochemischen Untersuchungen im Bereich des Seeburger Sees im Landkreis Göttingen und Dessen Zuflüsse; Landkreis Göttingen, Germany, 2007. [Google Scholar]
- Hellmann, H. Qualitative Hydrologie. Wasserbeschaffenheit und Stoff-Flüsse; Gebrüder Borntraeger: Berlin, Germany, 1999. [Google Scholar]
- Wetzel, R. Limnology: Lake and River Ecosystems; Gulf Professional Publishing: Houston, TX, USA, 2001; ISBN 9780127447605. [Google Scholar]
- Huang, W.; Chen, R.F. Sources and transformations of chromophoric dissolved organic matter in the Neponset River Watershed. J. Geophys. Res. Biogeosciences 2009, 114, 1–14. [Google Scholar] [CrossRef]
- Lannergård, E. Potential for Using High Frequency Turbidity as a Proxy for Total Phosphorus in Sävjaån; Department of Aquatic Sciences and Assessment: Uppsala, Sweden, 2016. [Google Scholar]
- Jones, A.S.; Stevens, D.K.; Horsburgh, J.S.; Mesner, N.O. Surrogate Measures for Providing High Frequency Estimates of Total Suspended Solids and Total Phosphorus Concentrations. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 239–253. [Google Scholar] [CrossRef]
- Ryberg, K.R. Continuous Water-Quality Monitoring and Regression Analysis to Estimate Constituent Concentrations and Loads in the Red River of the North, Fargo, North Dakota, 2003-05; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2006.
- Wolter, K.-D.; Köhler, G. Bilanzierung des Dümmers; NLWKN: Hannover, Germany, 2012. [Google Scholar]
- Steingrobe, B. Vorarbeiten für Restaurierungsmaßnahmen am Seeburger See 2008/2009—Abschlussbericht; Georg-August-Universität Göttingen: Göttingen, Germany, 2009. [Google Scholar]
- Lürling, M.; Waajen, G.; Van Oosterhout, F. Humic substances interfere with phosphate removal by lanthanum modified clay in controlling eutrophication. Water Res. 2014, 54, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Stefani, F.; Finsterle, K.; Winfield, I.J.; D’Haese, P.; Reitzel, K.; Tartari, G.; Crosa, G.; Yasseri, S.; Copetti, D.; Lürling, M.; et al. Eutrophication management in surface waters using lanthanum modified bentonite: A review. Water Res. 2015, 97, 162–174. [Google Scholar] [CrossRef]
- Dithmer, L.; Nielsen, U.G.; Lundberg, D.; Reitzel, K. Influence of dissolved organic carbon on the efficiency of P sequestration by a lanthanum modified clay. Water Res. 2016, 97, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Hupfer, M.; Reitzel, K.; Kleeberg, A.; Lewandowski, J. Long-term efficiency of lake restoration by chemical phosphorus precipitation: Scenario analysis with a phosphorus balance model. Water Res. 2016, 97, 153–161. [Google Scholar] [CrossRef]
- Noyma, N.P.; de Magalhães, L.; Furtado, L.L.; Mucci, M.; van Oosterhout, F.; Huszar, V.L.M.; Marinho, M.M.; Lürling, M. Controlling cyanobacterial blooms through effective flocculation and sedimentation with combined use of flocculants and phosphorus adsorbing natural soil and modified clay. Water Res. 2016, 97, 26–38. [Google Scholar] [CrossRef]
- Lürling, M.; Mackay, E.; Reitzel, K.; Spears, B.M. Editorial—A critical perspective on geo-engineering for eutrophication management in lakes. Water Res. 2016, 97, 1–10. [Google Scholar] [CrossRef]
Sampling Point | 10 January 2018 | 7 February 2018 | 12 March 2018 | 9 April 2018 | 7 May 2018 | 11 June 2018 | 2 July 2018 | 1 August 2018 | 3 September 2018 | 1 October 2018 | 5 November 2018 | 10 December 2018 | 8 January 2019 | Ø | s | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NO3-N/mg L−1 | 1 | 4.62 | 4.78 | 2.59 | 5.11 | 5.75 | 5.57 | 5.73 | 5.86 | 5.41 | 5.98 | 5.76 | 5.94 | 6.28 | 5.34 | ± | 0.95 |
2 | 3.97 | 3.68 | 3.49 | 3.65 | 3.82 | 4.93 | 4.79 | 3.64 | 4.86 | 4.02 | 4.54 | 4.16 | 3.82 | 4.11 | ± | 0.51 | |
3 | 3.37 | 3.83 | 3.03 | 2.76 | 3.40 | 2.48 | 2.80 | 2.18 | 3.45 | 3.50 | 3.63 | 2.88 | 4.05 | 3.18 | ± | 0.55 | |
4 | 3.59 | 3.94 | 3.41 | 3.37 | 3.81 | 3.66 | 3.96 | 3.89 | 4.26 | 4.27 | 4.43 | 3.35 | 4.49 | 3.88 | ± | 0.40 | |
5 | 3.88 | 4.44 | 4.87 | 3.56 | 4.02 | 3.87 | 4.01 | 4.21 | 4.41 | 4.38 | 4.44 | 3.35 | 4.52 | 4.15 | ± | 0.42 | |
6 | 1.27 | 1.47 | 1.86 | 1.20 | 0.45 | 0.01 | 0.01 | 0.20 | 0.07 | 0.08 | 0.16 | 0.51 | 1.01 | 0.64 | ± | 0.64 | |
7 | 1.15 | 1.51 | 1.58 | 1.23 | 0.36 | 0.01 | 0.01 | 0.20 | 0.11 | 0.07 | 0.16 | 0.57 | 0.89 | 0.60 | ± | 0.59 | |
PO4-P/mg L− | 1 | 0.044 | 0.054 | 0.020 | 0.027 | 0.044 | 0.045 | 0.043 | 0.041 | 0.045 | 0.031 | 0.023 | 0.048 | 0.035 | 0.039 | ± | 0.010 |
2 | 0.053 | 0.049 | 0.027 | 0.025 | 0.044 | 0.049 | 0.032 | 0.037 | 0.047 | 0.050 | 0.033 | 0.088 | 0.054 | 0.045 | ± | 0.016 | |
3 | 0.102 | 0.065 | 0.020 | 0.038 | 0.073 | 0.093 | 0.056 | 0.216 | 0.066 | 0.040 | 0.055 | 0.120 | 0.051 | 0.077 | ± | 0.050 | |
4 | 0.063 | 0.057 | 0.026 | 0.036 | 0.075 | 0.074 | 0.062 | 0.130 | 0.057 | 0.037 | 0.040 | 0.108 | 0.045 | 0.062 | ± | 0.029 | |
5 | 0.072 | 0.044 | 0.040 | 0.048 | 0.079 | 0.085 | 0.069 | 0.100 | 0.064 | 0.044 | 0.045 | 0.110 | 0.063 | 0.066 | ± | 0.022 | |
6 | 0.034 | 0.018 | 0.005 | 0.005 | 0.006 | 0.010 | 0.014 | 0.067 | 0.202 | 0.226 | 0.132 | 0.113 | 0.059 | 0.069 | ± | 0.077 | |
7 | 0.034 | 0.018 | 0.002 | 0.011 | 0.004 | 0.014 | 0.007 | 0.032 | 0.219 | 0.228 | 0.134 | 0.107 | 0.058 | 0.067 | ± | 0.080 | |
Turb/NTU | 1 | 5.8 | 4.2 | 4.0 | 9.0 | 4.8 | 1.6 | 4.7 | 7.6 | 5.2 | ± | 2.3 | |||||
2 | 6.8 | 7.2 | 37.5 | 14.4 | 10.1 | 6.2 | 7.2 | 6.3 | 12.0 | ± | 10.7 | ||||||
3 | 3.7 | 5.6 | 0.8 | 3.0 | 2.4 | 2.3 | 5.1 | 3.9 | 3.3 | ± | 1.6 | ||||||
4 | 8.6 | 9.1 | 4.5 | 4.1 | 1.3 | 1.3 | 4.2 | 3.1 | 4.5 | ± | 2.9 | ||||||
5 | 14.7 | 7.3 | 10.9 | 10.5 | 3.9 | 9.7 | 4.6 | 4.4 | 8.2 | ± | 3.8 | ||||||
6 | 7.6 | 10.0 | 27.0 | 18.1 | 17.9 | 5.2 | 2.3 | 2.0 | 11.3 | ± | 8.9 | ||||||
7 | 6.7 | 11.2 | 20.9 | 10.9 | 12.8 | 6.7 | 3.5 | 2.3 | 9.4 | ± | 6.0 | ||||||
pH | 1 | 8.2 | 8.2 | 7.9 | 8.4 | 8.3 | 8.4 | 8.4 | 8.4 | 8.3 | 8.4 | 8.3 | 8.4 | 8.5 | 8.3 | ± | 0.1 |
2 | 7.7 | 7.6 | 7.8 | 8.3 | 8.2 | 8.3 | 8.5 | 8.7 | 8.2 | 8.0 | 8.1 | 8.3 | 8.2 | 8.1 | ± | 0.3 | |
3 | 7.7 | 7.8 | 7.8 | 8.2 | 7.9 | 7.9 | 8.1 | 7.6 | 7.8 | 7.9 | 8.1 | 8.3 | 7.5 | 7.9 | ± | 0.2 | |
4 | 7.7 | 7.8 | 8.0 | 8.2 | 7.9 | 8.1 | 8.2 | 8.0 | 8.0 | 8.1 | 8.0 | 8.2 | 8.0 | 8.0 | ± | 0.2 | |
5 | 7.7 | 7.2 | 7.7 | 8.4 | 8.0 | 8.3 | 8.2 | 8.1 | 8.1 | 8.2 | 8.1 | 8.0 | 8.1 | 8.0 | ± | 0.3 | |
6 | 7.9 | 8.1 | 7.9 | 8.2 | 8.4 | 8.6 | 8.8 | 8.8 | 9.3 | 9.0 | 8.0 | 8.5 | 8.5 | 8.5 | ± | 0.4 | |
7 | 7.9 | 8.0 | 8.2 | 8.2 | 8.4 | 8.6 | 8.7 | 8.8 | 9.0 | 8.7 | 7.9 | 8.5 | 8.8 | 8.4 | ± | 0.4 | |
Temp/°C | 1 | 6.0 | 4.9 | 7.5 | 8.8 | 10.3 | 13.2 | 13.5 | 16.4 | 13.4 | 8.9 | 9.9 | 6.9 | 7.0 | 9.7 | ± | 3.5 |
2 | 3.6 | 2.5 | 8.0 | 13.5 | 18.6 | 15.2 | 21.4 | 26.7 | 14.9 | 9.6 | 10.0 | 5.2 | 5.2 | 11.9 | ± | 7.3 | |
3 | 3.2 | 2.6 | 8.2 | 12.7 | 15.7 | 19.2 | 18.8 | 22.5 | 15.4 | 9.9 | 9.5 | 4.9 | 5.8 | 11.4 | ± | 6.5 | |
4 | 3.5 | 2.9 | 7.8 | 11.3 | 15.0 | 17.6 | 16.7 | 19.9 | 14.4 | 9.6 | 9.3 | 5.2 | 6.0 | 10.7 | ± | 5.6 | |
5 | 3.8 | 3.1 | 7.7 | 13.3 | 15.6 | 17.8 | 14.5 | 18.9 | 14.3 | 9.8 | 9.7 | 5.3 | 6.0 | 10.8 | ± | 5.3 | |
6 | 3.2 | 2.5 | 6.4 | 12.7 | 18.5 | 25.6 | 22.2 | 25.9 | 19.2 | 13.7 | 9.0 | 5.1 | 4.2 | 12.9 | ± | 8.6 | |
7 | 3.2 | 2.6 | 5.8 | 13.9 | 18.7 | 26.0 | 20.9 | 25.2 | 18.4 | 13.3 | 9.3 | 4.9 | 4.2 | 12.8 | ± | 8.4 | |
O2/mg L | 1 | 11.9 | 12.5 | 11.3 | 12.0 | 10.8 | 10.0 | 10.0 | 9.4 | 10.0 | 10.9 | 10.6 | 11.7 | 11.8 | 11.0 | ± | 1.0 |
2 | 10.0 | 11.4 | 9.5 | 14.8 | 10.4 | 9.6 | 13.7 | 16.0 | 10.5 | 9.1 | 9.7 | 9.1 | 9.2 | 11.0 | ± | 2.3 | |
3 | 10.0 | 11.4 | 8.7 | 12.8 | 6.8 | 6.1 | 10.2 | 3.4 | 5.8 | 8.3 | 8.8 | 9.9 | 9.0 | 8.6 | ± | 2.5 | |
4 | 10.0 | 11.5 | 9.2 | 11.7 | 7.0 | 8.3 | 9.8 | 6.6 | 7.6 | 9.3 | 7.2 | 10.2 | 9.8 | 9.1 | ± | 1.6 | |
5 | 11.0 | 12.2 | 10.1 | 14.1 | 8.1 | 9.2 | 8.8 | 7.6 | 8.4 | 10.1 | 9.1 | 10.6 | 10.4 | 10.0 | ± | 1.8 | |
6 | 12.2 | 13.0 | 12.1 | 11.0 | 12.2 | 11.7 | 14.2 | 11.4 | 12.7 | 10.5 | 6.3 | 11.6 | 12.3 | 11.6 | ± | 1.8 | |
7 | 13.5 | 12.9 | 12.1 | 11.1 | 13.2 | 11.8 | 12.5 | 11.7 | 7.8 | 8.4 | 4.5 | 12.0 | 13.0 | 11.1 | ± | 2.6 |
Sampling Point | 10 January 2018 | 7 February 2018 | 12 March 2018 | 9 April 2018 | 7 May 2018 | 11 June 2018 | 2 July 2018 | 1 August 2018 | 3 September 2018 | 1 October 2018 | 5 November 2018 | 10 December 2018 | 8 January 2019 | Ø | s | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NO3-N/mg L−1 | Inflow A | 5.24 | 5.43 | 2.49 | 5.03 | 4.39 | 4.84 | 4.82 | 5.54 | 5.42 | 5.22 | 4.93 | 3.55 | 3.53 | 4.65 | ± | 0.92 |
Inflow B | 3.23 | 2.29 | 1.88 | 0.83 | 0.02 | 0.02 | 0.18 | 0.21 | 0.06 | 0.03 | 0.04 | 0.38 | 0.64 | 0.75 | ± | 1.05 | |
Inflow C | 6.97 | 8.50 | 6.27 | 7.86 | 8.65 | 8.00 | 8.41 | 8.21 | 7.83 | 7.52 | 6.09 | 5.37 | 4.34 | 7.23 | ± | 1.34 | |
Inflow D | 9.70 | 8.80 | 5.82 | 7.47 | 7.12 | 6.44 | 6.44 | 5.53 | 5.94 | 6.61 | 6.42 | 5.68 | 4.89 | 6.68 | ± | 1.34 | |
PO4-P/mg L−1 | Inflow A | 0.036 | 0.049 | 0.052 | 0.040 | 0.058 | 0.080 | 0.105 | 0.055 | 0.079 | 0.042 | 0.035 | 0.036 | 0.025 | 0.053 | ± | 0.023 |
Inflow B | 0.033 | 0.019 | 0.023 | 0.036 | 0.037 | 0.048 | 0.058 | 0.080 | 0.047 | 0.032 | 0.030 | 0.039 | 0.018 | 0.038 | ± | 0.017 | |
Inflow C | 0.066 | 0.083 | 0.029 | 0.070 | 0.084 | 0.099 | 0.117 | 0.112 | 0.113 | 0.102 | 0.069 | 0.095 | 0.051 | 0.084 | ± | 0.026 | |
Inflow D | 0.076 | 0.086 | 0.079 | 0.093 | 0.091 | 0.095 | 0.113 | 0.083 | 0.116 | 0.067 | 0.073 | 0.106 | 0.067 | 0.088 | ± | 0.016 | |
Turb/NTU | Inflow A | 3.4 | 7.5 | 6.9 | 3.5 | 2.5 | 1.9 | 2.1 | 2.4 | 3.8 | ± | 2.2 | |||||
Inflow B | 7.9 | 10.7 | 3.7 | 10.3 | 2.7 | 1.8 | 2.2 | 3.4 | 5.4 | ± | 3.7 | ||||||
Inflow C | 28.4 | 23.1 | 11.9 | 22.3 | 12.5 | 34.6 | 9.8 | 7.2 | 18.7 | ± | 9.8 | ||||||
Inflow D | 28.9 | 31.0 | 20.6 | 22.5 | 6.7 | 11.9 | 5.2 | 4.3 | 16.4 | ± | 10.8 | ||||||
pH | Inflow A | 7.4 | 7.6 | 7.4 | 7.6 | 7.6 | 7.8 | 8.0 | 8.1 | 7.8 | 8.0 | 7.9 | 7.4 | 7.5 | 7.7 | ± | 0.3 |
Inflow B | 7.6 | 7.6 | 7.7 | 8.1 | 7.9 | 7.9 | 7.6 | 7.5 | 7.7 | 7.8 | 7.9 | 8.1 | 7.9 | 7.8 | ± | 0.2 | |
Inflow C | 7.4 | 7.5 | 7.6 | 7.7 | 7.7 | 7.9 | 8.0 | 7.9 | 7.9 | 8.2 | 7.9 | 7.9 | 7.5 | 7.8 | ± | 0.2 | |
Inflow D | 7.6 | 7.5 | 7.4 | 8.2 | 7.9 | 7.9 | 7.9 | 8.0 | 7.8 | 8.1 | 7.9 | 8.2 | 7.6 | 7.8 | ± | 0.2 | |
Temp/°C | Inflow A | 5.8 | 5.0 | 7.4 | 8.2 | 10.0 | 11.5 | 12.7 | 13.5 | 13.0 | 11.3 | 11.1 | 6.1 | 8.4 | 9.5 | ± | 2.9 |
Inflow B | 3.7 | 2.0 | 3.7 | 8.4 | 11.0 | 15.2 | 12.8 | 14.2 | 14.6 | 8.3 | 9.6 | 5.1 | 5.2 | 8.8 | ± | 4.6 | |
Inflow C | 5.7 | 4.5 | 6.1 | 8.6 | 10.5 | 14.0 | 12.7 | 16.8 | 13.2 | 10.2 | 10.1 | 6.4 | 6.2 | 9.6 | ± | 3.8 | |
Inflow D | 5.7 | 4.2 | 7.6 | 12.4 | 14.1 | 17.1 | 16.0 | 18.8 | 14.1 | 9.9 | 9.6 | 5.9 | 5.9 | 10.9 | ± | 4.9 | |
O2/mg L−1 | Inflow A | 9.2 | 9.0 | 4.8 | 9.3 | 8.2 | 7.9 | 9.0 | 9.2 | 5.5 | 9.5 | 8.6 | 5.2 | 8.5 | 8.0 | ± | 1.7 |
Inflow B | 11.1 | 12.0 | 10.3 | 10.2 | 9.1 | 7.4 | 4.7 | 4.0 | 6.1 | 8.9 | 8.8 | 11.2 | 10.7 | 8.8 | ± | 2.6 | |
Inflow C | 11.3 | 11.8 | 10.5 | 10.5 | 10.4 | 9.6 | 10.0 | 9.0 | 9.6 | 10.4 | 8.9 | 10.5 | 10.8 | 10.2 | ± | 0.8 | |
Inflow D | 10.9 | 12.5 | 10.5 | 13.8 | 8.2 | 7.9 | 8.4 | 7.8 | 8.7 | 10.2 | 9.0 | 9.8 | 10.7 | 9.9 | ± | 1.8 |
Sampling Point | 9 April 2018 | 7 May 2018 | 11 June 2018 | 2 July 2018 | 1 August 2018 | 3 September 2018 | 1 October 2018 | 5 November 2018 | 10 December 2018 | 8 January 2019 | Ø | s | Ø | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L s−1 | L s−1 | L s−1 | L s−1 | L s−1 | L s−1 | L s−1 | L s−1 | L s−1 | L s−1 | L s−1 | L s−1 | m3 d−1 | |||
Q | 1 | 194 | 132 | 117 | 91 | 81 | 94 | 84 | 85 | 125 | 171 | 117 | ± | 39 | 10,133 |
4 | 195 | 140 | 119 | 96 | 75 | 86 | 40 | 73 | 177 | 203 | 121 | ± | 56 | 10,423 | |
5 | 225 | 157 | 136 | 115 | 99 | 95 | 84 | 97 | 195 | 223 | 143 | ± | 54 | 12,314 | |
7 | 293 | 184 | 127 | 81 | 79 | 60 | 55 | 85 | 187 | 218 | 137 | ± | 80 | 11,834 | |
kg d−1 | kg d−1 | kg d−1 | kg d−1 | kg d−1 | kg d−1 | kg d−1 | kg d−1 | kg d−1 | kg d−1 | kg d−1 | kg d−1 | t a−1 | |||
NO3-N | 1 | 85.72 | 65.49 | 56.23 | 44.89 | 40.93 | 43.80 | 43.34 | 42.51 | 64.01 | 92.68 | 57.96 | ± | 18.82 | 21.2 |
4 | 56.67 | 46.24 | 37.62 | 32.97 | 25.39 | 31.82 | 14.74 | 28.07 | 51.26 | 78.82 | 40.36 | ± | 18.45 | 14.7 | |
5 | 69.07 | 54.51 | 45.52 | 39.86 | 36.12 | 36.12 | 31.64 | 37.26 | 56.26 | 87.13 | 49.35 | ± | 17.66 | 18.0 | |
7 | 31.23 | 5.79 | 0.01 | 0.01 | 0.07 | 0.04 | 0.34 | 1.18 | 9.23 | 16.68 | 6.46 | ± | 10.31 | 2.4 | |
PO4-P | 1 | 0.46 | 0.50 | 0.46 | 0.34 | 0.29 | 0.37 | 0.23 | 0.17 | 0.51 | 0.52 | 0.38 | ± | 0.13 | 0.14 |
4 | 0.62 | 0.91 | 0.76 | 0.52 | 0.85 | 0.43 | 0.13 | 0.26 | 1.65 | 0.79 | 0.69 | ± | 0.42 | 0.25 | |
5 | 0.95 | 1.07 | 1.00 | 0.69 | 0.85 | 0.52 | 0.32 | 0.38 | 1.85 | 1.21 | 0.88 | ± | 0.45 | 0.32 | |
7 | 0.29 | 0.07 | 0.15 | 0.05 | 0.22 | 1.13 | 1.08 | 0.99 | 1.73 | 1.09 | 0.68 | ± | 0.59 | 0.25 | |
SPM | 1 | 160 | 123 | 109 | 132 | 114 | 114 | 170 | 237 | 145 | ± | 44 | 53 | ||
4 | 167 | 135 | 103 | 117 | 53 | 97 | 240 | 273 | 148 | ± | 75 | 54 | |||
5 | 199 | 160 | 141 | 135 | 113 | 137 | 265 | 303 | 182 | ± | 69 | 66 | |||
7 | 175 | 115 | 120 | 86 | 79 | 118 | 253 | 292 | 155 | ± | 79 | 57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nachtigall, S.; Heim, C. Monitoring the Efficiency of a Catchment Restoration to Further Reduce Nutrients and Sediment Input into a Eutrophic Lake. Water 2023, 15, 3794. https://doi.org/10.3390/w15213794
Nachtigall S, Heim C. Monitoring the Efficiency of a Catchment Restoration to Further Reduce Nutrients and Sediment Input into a Eutrophic Lake. Water. 2023; 15(21):3794. https://doi.org/10.3390/w15213794
Chicago/Turabian StyleNachtigall, Solveig, and Christine Heim. 2023. "Monitoring the Efficiency of a Catchment Restoration to Further Reduce Nutrients and Sediment Input into a Eutrophic Lake" Water 15, no. 21: 3794. https://doi.org/10.3390/w15213794
APA StyleNachtigall, S., & Heim, C. (2023). Monitoring the Efficiency of a Catchment Restoration to Further Reduce Nutrients and Sediment Input into a Eutrophic Lake. Water, 15(21), 3794. https://doi.org/10.3390/w15213794