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Abstract: Remote sensing plays a crucial role in modeling surface water quality parameters (WQPs),
which aids spatial and temporal variation assessment. However, existing models are often developed
independently, leading to uncertainty regarding their applicability. This study focused on two
primary objectives. First, it aimed to evaluate different models for chemical oxygen demand (COD),
total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) in a surface water body,
the J. A. Alzate dam, in the Mexican highland region (R2 ≥ 0.78 and RMSE ≤ 16.1 mg/L). The models
were estimated using multivariate regressions, with a focus on identifying dilution and dragging
effects in inter-annual flow rate estimations, including runoff from precipitation and municipal
discharges. Second, the study sought to analyze the potential scope of application for these models
in other water bodies by comparing mean WQP values. Several models exhibited similarities, with
minimal differences in mean values (ranging from −9.5 to 0.57 mg/L) for TSS, TN, and TP. These
findings suggest that certain water bodies may be compatible enough to warrant the exploration of
joint modeling in future research endeavors. By addressing these objectives, this research contributes
to a better understanding of the suitability of remote sensing-based models for characterizing surface
water quality, both within specific locations and across different water bodies.

Keywords: water quality parameter; regression model’s scope; remote sensing; surface water

1. Introduction

Effective water resource management requires monitoring supply sources’ water
quality. Alterations in water resources’ quality limit their intended functions, which
include providing safe drinking water, recreation, ecosystems services, irrigation, and
regional planning, among other vital uses [1]. Conventionally, surface water resources are
monitored by collecting water samples and analyzing them in a laboratory, which is reliable,
but time-consuming and costly [2–4]. Furthermore, this method has limitations regarding
spatio-temporal variation identification [5]. The rapid development of remote sensing
techniques has enabled the inference of water quality over time and space, even from
inaccessible sampling sites [6]. Remote sensing for water quality monitoring is regarded as
a promising and cost-effective monitoring tool that offers new opportunities to assess water
quality, particularly in developing countries. Valuable reviews for consideration include
those conducted by [5].

Numerous studies have elucidated the relationship between reflectance data acquired
from remote sensors and water quality parameters (WQPs). Reflections are affected by
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change in one or more of these parameters; this dynamic has allowed the development of
various WQP estimation analysis methods. Empirical approaches have been developed
using statistical regression techniques that establish a connection between in situ WQP
measurements and the reflectance of the optimal band or a combination of bands. Their
greatest advantages are simplicity, operability, and that their precision can be improved
by selecting spectral bands. However, these models’ applicability might be limited to the
region and temporality for which they were originally developed, and their precision is
based on the size and representativeness of field samples [7].

Some WQPs play a strategic role in decision-making processes regarding integrated
water management. Two critical parameters are chemical oxygen demand (COD) and total
suspended solids (TSS). These parameters offer valuable insights into water quality in a
given environment, which aids the identification of potential pollution sources and overall
aquatic ecosystem health. They are essential for evaluating the environmental impact of
activities such as industrial discharges, agricultural runoff, and urban development.

In addition to COD and TSS, total nitrogen (TN) and total phosphorus (TP) are also
significant WQPs that provide valuable information about the environmental and economic
dynamics associated with a water body. Elevated levels of these nutrients can lead to
eutrophication, resulting in harmful algal blooms and oxygen depletion. Monitoring
TN and TP concentrations is crucial for implementing strategies to prevent or mitigate
eutrophication. Many regions have established regulations and standards governing
permissible concentrations of COD, TSS, TN, and TP in wastewater discharges and natural
water bodies. Consequently, water treatment plants rely on data related to COD, TSS, and
nutrient levels to optimize treatment processes, ensure pollutant removal, and produce
safe drinking water [8].

Furthermore, these parameters’ concentrations are closely linked to optical mecha-
nisms that facilitate estimation. In the context of optical measurements, absorption and
scattering are the primary mechanisms associated with TSS, while absorption is a domi-
nant mechanism associated with COD, TN, and TP. Refraction plays a minor role in these
measurements, primarily when light interacts with particles in the water.

Measuring concentrations relies on the absorption of specific wavelengths. For TSS
measurement, the 600–700 nm wavelength range is particularly important, due to its influ-
ence on reflectance [9–11]. Reflectivity increases and spectral signature variations depend
on particle size and solid properties. As particle size decreases, reflectivity increases [12,13].
However, if particles are of an organic origin, reflectivity is also influenced by their chro-
matic characteristics [14]. Reflectance in the 600–700 nm wavelength range has been linearly
related to TSS concentrations ranging from 0 to 50 mg/L [15–17]. Beyond this range, the
relationship may exhibit a curvilinear trend. In the context of optical sensors such as the
Landsat 8 OLI, green (B3) and blue (B2) spectrum bands can be as effective as the red
(B4) band for TSS estimation, especially when combined with a near-infrared band (B5 or
B7) [18].

For COD, the absorption of energy occurs in wavelength bands from B1 (472 nm) to B4
(670 nm) [18,19]. For TP, absorption is prominent in bands B5 (880 nm) and B4 (670 nm). TN
mainly absorbs energy at wavelengths close to 472 and 670 nm. TP can often be found at
the water’s surface (0.0–0.60 m) and can be represented by wavelengths within the visible
spectrum, particularly in Landsat 8 OLI bands B2 and B3 [3].

Machine learning has the ability to process large amounts of information in non-linear
frameworks [4], such as decision trees (DTs), support vector machines (SVMs), artificial
neural networks (ANNs) [5], and genetic algorithms (GAs). However, the initial training
phase can be a costly and time-consuming process that is difficult to apply if sufficient data
are unavailable; therefore, non-linear models have been developed to a lesser extent [20–26].

Some bio-optical characterization studies [20–22,27–29] have reported satisfactory
results for parameters such as chlorophyll-a, total suspended solids, and turbidity; multiple
regression models have been the most used approach [30–33], while non-linear models
have been developed to a lesser extent [30,34–37].
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Linear regression analysis has allowed simplicity in the models’ explanatory capacity.
Some models consulted for this study (Table 1) had explanatory capacities in the range
0.69 ≤ R2 ≤ 0.98 of the TSS; most were above R2 ≥ 0.69. To attain these explanatory
capacities, different studies’ authors used different sampling universes. For example, other
studies, such as [38], used a density of approximately 0.32 samples/km2, whereas [39]
used a density of 0.000216 samples/km2. The study with the highest sampling density
corresponded to 0.64 samples/km2 for TSS and COD [17]. In [40], there were 14 samples
(0.001 samples/km2), and [3] used 18 samples (0.32 fields/km2). Previous studies noted
that it is advisable to collect water samples at an average depth of 0.1 m [27,35,37,41–43].

In the studies consulted, it was possible to highlight the range of concentration models
estimated. For a coastal water body [22], a TSS range between 0 and 135 mg/L was observed;
ranges between 0 and 386 mg/L were observed in continental water bodies [44,45]. For
TN and TP, 0–26 mg/L concentrations were observed in intervals [3]; these WQPs are
generally present in 0–30 mg/L intervals in rivers, dams, and lakes. Some studies [18,46]
reported 0–86 mg/L COD concentrations, highlighting similar environmental, urban, and
agricultural characteristics.

Regression models used to estimate water quality parameters (WQPs) were calibrated
considering the specific environmental conditions of each water body and each sensor’s
characteristics [31,34–36]. Thus, when these models were applied outside their intended
contexts, they tended to yield highly uncertain estimates [12]. Regarding environmental
conditions, uncertainties stem from factors such as cloud cover, geographical coordinates
(longitude, latitude, and altitude), atmospheric conditions, and concentrations of algae
within the water body [4]. Regarding sensor characteristics, limitations often pertain to
the platform type (height, inclination, etc.), as well as spatial, radiometric, and temporal
resolutions [4,10,20,47]. Nevertheless, despite these differences, one can observe a degree
of similarity in these models’ structures, such regression models’ band weights and the
choice of linear or non-linear regression techniques [4,10,20,48].

Considering the above factors, there might be some compatibility among these models
when applied to water bodies different from those for which they were initially designed.
Confirming such compatibility could facilitate the development of integrated models.
As a result, our study focused on two primary objectives. First, we aimed to assess
various models for estimating chemical oxygen demand (COD), total phosphorus (TP), total
nitrogen (TN), and total suspended solids (TSS) in a surface water body, the J. A. Alzate
Dam, in the Mexican highland region. These models were derived using multivariate
regression techniques; however, in addition to results from similar previous studies, we
intended to identify dilution and dragging effects in inter-annual flow rate estimations,
which included runoff from precipitation and municipal discharges.

Secondly, our study sought to explore these models’ potential applicability in other
water bodies by comparing mean WQP values. Importantly, this comparison was not
intended to determine which model was superior, but rather to provide evidence of their
compatibility. This comparison considered models (from [3,46,49,50]) developed in condi-
tions as similar as possible with respect to sensor types, resolution, available information,
and the choice of regression techniques.

In the context of remote-sensing water quality studies in Mexico, some available
research focuses on chemical oxygen demand (COD), total dissolved solids, chlorophyll-a,
total suspended solids (TSS), and temperature [36,42,44]. However, comprehensive data
regarding reflectance and WQPs selected for this study were limited for replication and
thorough analysis. Furthermore, in this investigation, a select number of viable water
bodies were identified as similar for comparison purposes using the obtained models.
Based on these findings, the studies listed in Table 1 were chosen to assess the applicability
of the model derived from this study.
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Table 1. Primary contributions of different authors to WQP estimation using Landsat 8 OLI.

WQP Surface
(km2)

Resolution
(m)

Sample
of Size Bands of Normalization R2

Estimation
Interval
(mg/L)

Author

TSS
12,000 30 m 26

Ŷ = −161.98
(

B5
B4

)3
+ 713.478

(
B5
B4

)2
−

811.43
(

B5
B4

)
+ 278.46

0.98 0–386 [45]

30 m 14 Ŷ = (1.5212
(

LOG(B2)
LOG(B3)

)
− 0.3698) 0.69 0–135 [22]

TN 53 30 m 18 Ŷ = e(8.228−2.713∗(In( B3
B2 )) -------- 0–36 [3]

TP 53 30 m 18 Ŷ = e(−0.4081−8.659(In( B3
B2 )) -------- 0–26 [3]

COD 150 30 m ------- Ŷ = 2.76 − 17.27B1 + 72.15B2 − 12.11B3 -------- 0–19.3 [19]

Symbology: Chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), total suspended solids
(TSS), remote sensing bands (Bn), adjusted coefficient of determination (R2), and no data (---).

2. Materials and Methods

In the study area, a WQP estimation using multispectral images was carried out
through the development of regression models; the spatio-temporal distribution of esti-
mated WQPs; and the assessment of the scope of its application relative to other water
bodies. The WQPs considered were total suspended solids (TSS), total nitrogen (TN),
chemical oxygen demand (COD), and total phosphorus (TP). The study area was the J.
A. Alzate Dam, in Toluca, Mexico (Figure 1). Imagery from the Landsat 8 OLI sensor
(Path 26 Raw 46) [47] was obtained from the United States Geological Survey database
and coincided with dates of water quality monitoring campaigns. Notably, the Landsat
8 sensor was chosen for its appropriate spatial resolution (approximate 51,000 m2 water
body surface), and for the assessment of the model’s scope in similar studies.
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To develop regression models, measuring WQP in the laboratory from representative
samples (14 sites) and pretreating satellite images were necessary. The WQP concentra-
tions were obtained following standards for TN [51], TSS [52], TP [53], and COD [54,55].
According to some authors [37,48], samples should be collected under different seasonal
conditions, with caution and appropriate validation; therefore, samples were geograph-
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ically distributed, as indicated in Figure 1, and divided into two seasons. This research
involved two distinct sampling campaigns for two main reasons: first, to ensure the field
data robustness throughout the year; and second, to account for the varying sample densi-
ties observed in previous studies [3,19,22,45,56], which ranged from 0.0002 to 0.64 samples
per square kilometer. Interestingly, these sample density variations did not appear to
significantly affect results.

To ensure a representative sample for the finite population under study, we determined
that a resolution of 0.3 samples per square kilometer was sufficient for the J. A. Alzate
Dam. Consequently, we organized the sampling process into two campaigns, which were
conducted both before and after the rainy season (19 May 2018 and 16 October 2018,
respectively), and classified based on the standard Mexican normative [55].

The MODTRAN 4 module was used to pretreat satellite images [27,57], as it could
consider study area characteristics such as altitude, latitude, proximity to the sea, aerosol
type, atmosphere type, and image visibility in atmospheric correction. To accurately
identify pixels in each satellite image corresponding to the water body, we employed the
normalized difference water index (NDWI). The NDWI is a widely used remote sensing
index for detecting the presence of water in satellite or aerial imagery [19,32,57]. Positive
NDWI values generally indicate the presence of water; however, its specific water detection
threshold can vary depending on the dataset and environmental conditions. After analyzing
NDWI values in the J. A. Alzate Dam area, we observed a mean 0.65 NDWI value with a
0.17 standard deviation. Notably, some pixels situated along the water body’s shoreline
exhibited values below this standard deviation. Based on this observation, we established
a reliable range for water detection (0.12 < NDWI < 1.0) within a 0.17 standard deviation
in the reflectance for each multispectral band. Utilizing the NDWI not only aided in the
delineation of pixels constituting the water body, but also restricted the occurrence of
anomalous data, particularly with regard to TSS.

2.1. Statistical Analysis for Model Development

The first stage (development of regression models) was cross-validation, which has
been commonly used in similar studies. For example, in [4] and [57] the authors considered
11 random combinations to model chlorophyll (Chl-a) and suspended particulate matters
(SPM), with mean RMSEs of 1.6–1.7 mg/m3 and 8.8 to 11.4 g/m3, respectively. In [40], cross-
validation was applied in a random forest-type study with a RMSE = 0.02–3.03 (mg/L), us-
ing 10 iterations that reached an explanatory capacity of R2 = 95–99%. The developed regres-
sion models were evaluated during the cross-validation process, which included multiple
iterations (i) between the testing and validation subsets. The primary metric used for eval-

uation was the root mean square error
(

RMSE =
√

1
i ∑i

i=1(yi − ŷi)2
)

calculated as the

average of discrepancies between predicted values and actual observations. Additionally,
we considered the adjusted coefficient of determination

(
R2

= 1 −
(

n−1
n−k−1

)
∗
(
1 − R2)) to

assess the models’ explanatory power, taking the number of multispectral bands employed
into account. The coefficients’ collinearity and heteroscedasticity were also considered as
selection criteria.

A recommended range for the adjusted R2 is between 0.6 and 0.8, which is consid-
ered suitable for estimating water quality parameters (WQPs), as per the reference. This
range ensures that errors exhibit appropriate behavior. When R2 ≥ 0.9, estimates are
regarded as both statistically significant and well fitting in relation to established val-
ues [58]. The reference’s authors also analyzed the multiple linear regression from which
they obtained a RMSE = 0.03–3.14 (mg/L) using 10 iterations, reaching an explanatory
capacity of R2 = 55–91%. The multivariate regression models proposed in the present study
correspond to linear types (ŷ = β0 + β1 ∗ x1 + β2 ∗ x2 + β3 ∗ x3 + . . . + βn ∗ xn + u), such
as those presented in [35] and [56]), exponential types (ŷ = e(β0+β1∗x1+β2∗x2 ...βn∗xn) such
as those studied in [3,13,19,35]), and polynomials with the structure ŷ = β0 + β1 ∗ x1 +
β2 ∗ x2 + β3 ∗ x2

1 + β4 ∗ x2
2 + β5 ∗ x1x2 + . . . + βn ∗ xn

n [36,45,48,59]. A SIG environment,
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TerrSet® [59], tools such as IBM SPSS Statistics® [60,61], and add-ins for Excel®, including
RISK Simulator, Analyse-It, and XLSTAT [59], were used. In cases of input value validation
(reflectance and TSS sampling), the first procedure proposed in [62], it was verified that
input values complied with homoscedasticity, adequate micro numerosity, omitted outliers
(depending on the model), non-linearity (if applicable), normality, and the absence of
multicollinearity. Wavelengths that depict regressive variables were selected individually
for each WQP. For TSS, B1, B4, and B6 have shown acceptable behaviors both linearly and
non-linearly [24,31,40]. For TN and TP, some authors used B1 and B3 from the Landsat and
Sentinel sensors (non-linearly) because B3 captures chlorophyll-a pigment associated with
aquatic vegetation [3]. COD has been linearly studied based on bands 1, 2, and 3 [46], and
in a non-linear way based on bands 2, 6, and 7 [18].

2.2. Spatio-Temporal Distribution of Estimated WQPs

Once the model with the best fit was identified, its model equation could be ap-
plied to classify a water body according to intervals established by applicable regulations
(in this case, Mexican regulations) [55]. This is how regions were evaluated; intervals
were evaluated for agricultural use (whose permissible limits were TSS = 60–75 mg/L,
TN = 40–60 mg/L, and COD = 60–75 mg/L).

In addition to representing the information’s spatial distribution, it was possible to
analyze the WQPs’ temporal behaviors relative to the influent water. This study estimated
municipal water discharges (depending on population size), as well as inflow (measured
by [63]) to infer causal relationships for the WQP concentrations’ variation throughout
the year.

Furthermore, to evaluate the possibility of implementing a regression model in differ-
ent water bodies, at this stage, the difference of means was analyzed based on regression
models’ estimates for other bodies with conditions similar to those of the J. A. Alzate Dam
(sensor and model type). In this way, regression models whose mean difference (µ1–µ2)
were close to zero, or a tolerable under- or over-estimation, were considered as similar,
assuming a t-distribution (Equation (1)). The studies considered as references were [3,19,45].

(x1 − x2)− tα/2

√
s2

1
n1

+
s2

2
n2

< µ1 − µ2 <= (x1 − x2) + tα/2

√
s2

1
n1

+
s2

2
n2

, (1)

where x1 is the study’s sample mean using the authors’ equation [mg/L]; x2 is the study’s
sample mean using the present study’s equation [mg/L]; s2

1 corresponds to the variance in
the authors’ data [mg/L]; s2

2 is the variance in this study’s data [mg/L]; and n1 and n2 are
sample sizes.

3. Results and Discussion

To develop multivariate regression models (stage 1), each model type’s reflectances
from the considered bands and each sample’s WQP concentrations were evaluated. Al-
though it was difficult to observe a clear spatial trend, Table 2 shows that, in general, WQPs
before the rainy season had, on average, 59.3% higher concentrations than after the rainy
season, assuming a preliminary dilution effect.

In contrast, Table 3 shows the results of various statistical tests regarding the quality
treatment of input data. In general terms, the data showed a normal trend, homoscedasticity
(i.e., W-pvalue > 0.1 and χ2 < Vcrit), no globally identified outliers (≤1 sample), and no
collinearity of sampling results (r ≤ 0.75 and VIF ≤ 4.0); most models did not present
multi-collinearity (F > Vcrit). Finally, the p-value was significant (Pvalue < Vcrit) for variables
in exponential models for COD, TP, and TSS; in linear models for TN and TP; and in
polynomial models for TP.
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Table 2. Sampling in the J. A. Alzate Dam, Mexico.

ID
X

(W Longitude)
Y

(N Latitude) Season

Chemistry Parameters Physics p.

TN (mg/L) COD (mg/L) TP (mg/L) TSS (mg/L)
PL = 40–60 PL = 60–75 PL = 20–30 PL = 12–75

1 −99.660564 19.451172

Before the rain
season

18th May

33 173 99.76 92.5
2 −99.658486 19.453087 11 127 46.27 151.5
3 −99.658131 19.455031 16 66 44.34 198
4 −99.650393 19.445229 9 93 34.25 48
5 −99.646237 19.436919 28 107 70.91 33
6 −99.642504 19.434917 20 98 67.34 55
7 −99.640462 19.431472 10 109 74.92 42

8 −99.662355 19.457317

After the rain
season

26th October

7.2 67.5 33.16 35
9 −99.657869 19.453669 6.3 64 34.46 34
10 −99.648234 19.445605 3.9 80 23.64 15.2
11 −99.644043 19.436555 4.4 21 30.76 11
12 −99.641932 19.435785 3.5 30 32.79 16
13 −99.639985 19.430514 2.8 26 30.39 17
14 −99.647021 19.437027 3.3 39.5 33.71 19

Symbology: sample fields (ID), Total phosphorus (TP), total nitrogen (TN), chemical oxygen demand (COD), total
suspended solids (TSS), permissible limits (PL).

Table 3. Validation assumptions in the input data.

Statistical Test

WQP Total Nitrogen (TN) Chemistry Oxygen Demand (COD)

Model Type Exponential Linear Polynomial Exponential Linear Polynomial

Independent
Variables

B1, B3 B3, B6,
(B3 + B7) (B1/B3)

LN(B5),
LN(B2/B3),

LN(B7)

(B1/B6),
(B7/B4),
(B2/B1),
(B2/B3)

(B3/B1), (B3/B5)

Vcrit V Vcrit V Vcrit V Vcrit V Vcrit V Vcrit V

Homoscedasticity W-pvalue > Vcrit 0.1 0.25 0.1 0.33 0.1 0.23 0.1 0.18 0.1 0.25 0.1 0.38
Square chi test χ2 < Vcrit 7.81 4.54 7.81 4.65 11.07 9.30 7.81 2.25 9.48 2.26 11.07 0.82
Atypical values Vcalc ≤ Vcrit 2 1 2 1 2 1 2 1 2 0 2 1

Collinearity VIF < Vcrit 4 0.21 4 0.16 4 4.0 4 0.21 4 2.6 4 1.17
r ≤ Vcrit 0.75 0.74 0.75 0.75 0.75 0.86 0.75 0.74 0.75 0.78 0.75 0.78

Multicollinearity F > Vcrit 3.70 22.90 3.70 13.20 3.68 6.25 3.70 19.08 3.63 6.75 3.68 11.82
Normality D < Vcrit 0.22 0.12 0.22 0.17 0.17 0.22 0.22 0.19 0.22 0.08 0.22 0.16

Significance Pvalue ≤ Vcrit 0.05 0.19 0.05 0.05 0.05 0.06 0.05 0.00 0.05 0.09 0.05 0.79

Statistical Test

WQP Total Phosphorus (TP) Total Suspended Solids (TSS)

Model Type Exponential Linear Polynomial Exponential Linear Polynomial

Independent Variables
LN(B5),
LN(B6) (B5/B4), (B5/B6) (B5/B2),

(B5/B2)

LN(B4),
LN(B3+B5),
LN(B5+B7),
LN(B2/B3),
LN(B2/B4)

(B7/B4),
(B7/B5) (B3/B5), B3

Vcrit V Vcrit V Vcrit V Vcrit V Vcrit V Vcrit V

Homoscedasticity W-pvalue > Vcrit 0.1 0.18 0.1 0.64 0.1 0.10 0.1 0.11 0.1 0.11 0.1 0.12
Square chi test χ2 < Vcrit 5.99 4.87 5.99 2.62 11.07 5.61 11.07 5.93 3.32 5.99 11.07 1.90
Atypical values Vcalc ≤ Vcrit 2 1 2 0 2 1 2 1 2 0 2 1

Collinearity FIV < Vcrit 4 2.63 4 6.31 4 2.88 4 4.1 4 1.28 4 1.38
r ≤ Vcrit 0.75 0.78 0.75 0.9 0.75 0.80 0.75 0.87 0.75 0.46 0.75 0.52

Multicollinearity F > Vcrit 3.98 18.65 3.98 24.3 3.68 25.63 3.68 30.60 3.98 11.28 3.68 136.12
Normality D < Vcrit 0.22 0.16 0.23 0.22 0.22 0.12 0.22 0.15 0.22 0.20 0.22 0.15

Significance Pvalue ≤ Vcrit 0.05 0.00 0.05 0.003 0.05 0.00 0.05 0.04 0.05 0.07 0.05 0.09

Symbology: Water quality parameter (WQP), significance for White test (W-pvalue), variance inflation factor (VIF),
calculated value (V), critical value (Vcrit), and significance (Pvalue).

The development of the current regression models used various statistical criteria,
including the adjusted determination coefficient, mean square error, p-values of coefficients,
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and confidence intervals. Additionally, techniques such as cross-validation were employed
to mitigate the risk of overfitting, while residual analysis was used to assess model assump-
tions and check for heteroscedasticity. The cross-validation results are presented in Table 4
and provide insights into each regression model’s coefficients.

Table 4. Multiple regression models to different WQPs.

WQP Type Regression Model i RMSE R2

TN (mg/L)

Exp. e(−4.49−2.47LNB1+1.10LNB5−0.69LNB7) 5 3.82 0.79
Linear 30.71 + 1120.39B3 + 823.79B6 − 1269.80(B3 + B7) 7 4.24 0.73

Pol. 8.4 − 42.3
(

B7
B1

)
+ 21.6

(
B5
B4

)
+ 109.3

(
B7
B1

)2
+ 34.5

(
B5
B4

)2
− 123

(
B7
B1

)(
B5
B4

)
14 31.13 0.68

COD (mg/L)

Exp. e(4.2069+0.9788234LNB5−2.4215LN(B2/B3)−0.5209LNB7) 6 16.1 0.80
Linear −66.73 + 5.66

(
B1
B6

)
+ 110.16

(
B7
B4

)
+ 240.1259

(
B2
B1

)
− 222.73

(
B2
B3

)
5 21.4 0.62

Pol.
−129.04 + 612.5

(
B3
B1

)
− 396.95

(
B3
B5

)
− 266.95

(
B3
B1

)2
+ 42.51

(
B3
B5

)2
+

173.42
(

B3
B1

) (
B3
B5

) 9 15.35 0.84

TP (mg/L)

Exp. e(5.1265551+1.154335LNB5−0.52206356LNB6) 8 10.25 0.74
Linear LogTP = 1.3544 + 0.1240

(
B5
B4

)
+ 0.04610

(
B5
B6

)
5 9.63 0.79

Pol.
14.79 + 62.96

(
B5
B2

)
− 1644.8B6 + 41.86

(
B5
B2

)2
+ 71481.28B62 −

3642.34
(

B5
B2

)
B6

5 5.49 0.92

TSS (mg/L)

Exp. e(−0.2663−4.05LNB4+7.49LN(B3+B5)−4.03LN(B5+B7)+3.99LN(B2/B3)+1.4LN(B2/B4)) 5 14.37 0.90
Linear LogTSS = 2.0848 + 0.339

(
B7
B4

)
− 1.316

(
B7
B5

)
5 43.9 0.61

Pol.
−72.79 + 1695.66B3 + 36.58

(
B3
B5

)
+ 51578.99B32 + 143.87

(
B3
B5

)2
−

6246.61
(
(B3)

(
B3
B5

)) 6 7.19 0.98

Symbology: total suspended solids (TSS), chemistry oxygen demand (COD), total phosphorus (TP), total nitrogen
(TN), wavelength band (Bi), adjusted determination coefficient (R2), number of iterations (i), root mean square
error (RMSE), best model ( --- ), and other models (---).

In the context of TSS, both linear and non-linear models indicated that the B3 and B5
wavelengths had the most substantial influence; this aligns with findings from previous
studies [48,50]. In contrast to the model presented in [3], the exponential model for TN
was primarily influenced by B1. Although the polynomial model exhibited a higher
determination coefficient and a lower RMSE, it raised concerns related to the significance
and collinearity of certain coefficients.

For TP, the ratio B5/B2 and B6 exerted significant influence and provided acceptable
estimates within the 18 to 98 mg/L concentration range in the polynomial model, whereas
in the model used in [3], this parameter was largely dependent on B2.

COD was primarily influenced by the B2/B3 relationship in the exponential model,
consistent with findings in [46] and [63]. The exponential model demonstrated a superior
explanatory capacity for TN and COD (as shown in Figure 2a,b) based on the determina-
tion coefficient and RMSE. However, the model might have slightly overestimated COD
concentrations exceeding 150 mg/L.

All models (as depicted in Figure 2c,d) exhibited a good fit with determination coef-
ficients greater than 0.92, particularly in the polynomial configuration (Table 4); notably,
both linear and exponential models tended to underestimate concentrations in these cases.

The application of regression models (stage 2) was carried out according to a classi-
fication based on standard Mexican concentrations [51–55] permitted for discharges into
rivers, streams, and drains (C1); reservoirs, lakes, and lagoons (C2); and outside permissible
limits (C3). It was observed that before the rainy season, 92% of the surface (1.32 km2) was
below the permissible C1 limit for TN discharge (Figure 3a). After the rainy season, this
area increased (especially in the southern zone) to 99.7% (1.42 km2), inferring a dilution
process (Figure 4a). COD presented a similar dilution behavior; in the dry season 73.2%
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of the surface was below the permissible C2 limit; after the rainy season, it increased to
99.7%, mainly in the central zone (Figures 3b and 4b). The water body’s surface presented
92.2% and 41.0% concentrations out of TP’s range (C3) before and after the rainy season,
respectively (Figures 3c and 4c). The surface outside permissible TSS limits decreased
from 97.01% to 60.7% before and after the rainy season, respectively (Figures 3d and 4d).
TSS’ and COD’s percentages presented a lower sensitivity to rain and can be explained by
municipal and industrial discharges along the Lerma River. It should be noted that certain
data points in Figures 3 and 4 may appear to be outside the established region’s range due
to the dots’ size relative to the resolution of the value distribution image.
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(mg/L). C1: permissible limit concentration for any discharge; C2: permissible limit for discharge
into reservoirs, lakes, and lagoons; C3: out of permissible limit.

In addition to examining the WQPs’ spatial distributions, we also investigated their
interannual variations by applying the developed models to imagery captured between
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2019 and 2021. These variations were influenced by factors such as dilution and dragging,
which were identified through changes in inflow and domestic discharge patterns. The
analysis considered recorded inflows at gauge station 12,374, known as ‘La Y’ [48], and
municipal wastewater discharges, which were estimated based on demographic data (as
shown in Figure 5).
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Through WQP estimation using selected models over a two-year period, we were
able to elucidate patterns of concentration influenced by dilution and dragging effects.
This analysis involved comparing variations in WQP concentrations with inflow varia-
tions, which encompassed both runoff and municipal discharges (based on observations
from [64]).

Figure 5 illustrates the dynamic relationship between inflow and WQP concentrations.
Notably, there was a nearly constant minimum flow of 5 m3/s stemming from municipal
discharges. During the rainy season, this flow could increase up to fourfold. In contrast,
concentrations of COD, TN, and TP exhibited their highest values during the dry season; on
average, TN and COD concentrations doubled, while TP concentrations increased threefold.
This behavior is indicative of a dilution effect resulting from increased water volume.

However, TSS concentrations followed a different pattern. As the inflow rate increased,
TSS concentrations also increased, indicating a dragging effect. Notably, during the last
few months, TSS experienced a significant increase, deviating from this typical trend. In
summary, this analysis demonstrates the interplay between inflow dynamics and WQP
concentrations. While TN, COD, and TP exhibited dilution patterns, TSS displayed a
dragging effect, with exceptions noted during the later months. Understanding these
effects is crucial for effective water quality management and environmental monitoring.

In the context of modeling water quality parameters, it is essential to explore the
similarities and differences between various models. This discussion focuses on the TSS,
TN, and TP models (Figure 6).
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Figure 6. Spatio-temporal distribution of estimated WQPs for author model [45] and current model
for TSS.

First, when examining [45]’s TSS model, we noted that it (along with one of the models
developed for the J. A. Alzate Dam) employs a non-linear function based on bands 4
and 5. Both models predict TSS concentrations that reach up to 500 mg/L. Comparing
these models’ estimations to a stratified sample using the same reflectance images, we
observed that the authors’ TSS model appeared to exhibit more scattering, with a standard
deviation 2.5 times higher than the current model’s. However, on average, the models
indicated the potential for providing similar estimations, as the difference between their
means ranged from −9.51 to 0.57 (Table 5). In other words, the current model tended to
slightly overestimate TSS concentrations compared to the authors’ model. It is important to
note that this comparison did not intend to determine which model was superior. Instead,
it highlighted that certain models, even when developed under different climatological
and geographical conditions, can exhibit close correlations, as demonstrated in Figure 6.
The spatial distribution of estimations in this case not only helped identify the location of
detected overestimations (northeastern shore) for high TSS values, but also indicated slight
underestimations of concentrations ranging from 95 to 110 mg/L.

Table 5. Differences in means between regression models.

WQP Mean in Samples (mg/L) Standard Deviation (mg/L)
Confidence
Interval for

Difference in Means (µ1−µ2) (mg/L)
Author

A.M. C.M. A.M. C.M.
TSS 11.06 15.74 22.79 8.81 −9.51 0.57 [45]
TN 23.71 26.99 1.36 0.94 −3.62 −2.94 [3]
TP 33.21 36.14 8.15 5.32 −4.92 −0.92 [3]

Symbols: Author model (A.M.), current linear model (C.M.), total nitrogen (NT), total phosphorus (TP), total
suspended solids (TSS). The images used for the estimation are the same as those used by the author.

Notably, the current TN and TP models tended to overestimate concentrations by 2.8%
for TN and 14.8% for TP. However, the dispersion of these estimates appeared to follow
a pattern similar to that observed for TSS when considering deviation standards. This
suggests that it would be advisable to develop integrative models that take the nature and
type of model specific to each water quality parameter (WQP) into account.
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In summary, the comparison of these models underscores the need to carefully assess
model performance and consider the variability associated with different environmental
conditions. By doing so, we can make informed decisions about which models are suitable
for particular applications, and whether integrated models should be developed to account
for the nuances of each WQP.

4. Conclusions

As noted in similar studies, some regression models were satisfactorily adjusted using
cross-validation to estimate (through remote sensing) some water quality parameters, such
as total nitrogen (TN), total phosphorus (PT), chemical oxygen demand (COD), and total
suspended solids (TSS), in a surface water body, the J. A. Alzate Dam, in the Mexican
highlands. The proposed configurations of these models were polynomial, exponential,
and linear for each WQP, according to a review of similar previous studies. Several model
characteristics were identified. First, the polynomial model provided a better fit for COD
than the exponential model did; however, it presented a slower cross-validation conver-
gence. These models’ respective terms might be subject to a lower significance and greater
collinearity. Second, the exponential model presented a higher determination coefficient
for TN; its terms had no problems of significance, homoscedasticity, or collinearity. Third,
the polynomial models for TP and TSS presented a better goodness-of-fit, although their
collinearity of terms could be present in any TP model. Therefore, given the present re-
search, it is recommended that input data be evaluated under linear and non-linear schemes.
Notably, using remote sensing requires the proper identification of pixels corresponding to
the water body. In this case, in addition to using the normalized water index, the dispersion
of reflectance values (represented by their standard deviations) was relevant, which helped
significantly reduce outliers in the models’ terms.

In addition to identifying the most appropriate models, it was possible to determine
a spatial distribution of WQP concentrations and their temporal behaviors. On the one
hand, spatial distribution serves as a tool for the classification of critical regions under
some regulations. For example, in this case study, Mexican regulations were used to
determine areas that exceeded maximum permissible limits for water discharges. On the
other hand, the estimation of WQPs’ temporal behavior was useful during the monitoring
and retrospective evaluation of the water body. To do this, it was necessary to estimate
influents (such as flows) using precipitation and discharge from human settlements. This
provided evidence of dilution and drag effects, as observed in this case study. Dilution
was associated with a decrease in concentrations of TN, TP, and COD, while the drag
effect corresponded to TSS, which presented higher concentrations in the first months
after the rain. In this sense, it is important to consider a strategic distribution of sampling
throughout the year to enhance a model’s scope.

Each model’s scope was evaluated with respect to different regression types and
its applicability to other water bodies under conditions similar to those in which the
model was developed (regression and sensor types). In general, a low relationship was
observed between results obtained using the current models and those of other authors.
However, in three models differences between their means were identified as acceptable,
indicating model compatibility. This supports the approach of studies that developed
integrated models according to the characterization or regionalization of surface water
bodies, e.g., [65,66].
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