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Abstract: The purpose of this research was to determine the natural factors that contribute to
maintaining the standard quality of fresh drinking groundwater in areas with high strontium content.
Hazard index values for the consumption of water containing strontium were also calculated to assess
the overall non-carcinogenic health risk from combined ingestion and dermal exposure. The results
showed that the groundwater with strontium concentrations exceeding the maximum permissible
concentrations had an increased correlation of strontium concentrations with total dissolved solids
and celestite and gypsum saturation indices. A decrease in calcium content was recorded with a
simultaneous increase in the concentration of magnesium and strontium. Reducing conditions in the
aquifer were also favorable for the conservation of these waters. In waters of standard quality, all
these factors did not appear, which indicates their formation in sediments with discretely located
small inclusions of celestite and gypsum. These waters were characterized by a calcium bicarbonate
composition, low total dissolved solids (TDS), and oxidizing conditions. Elevated radiocarbon
contents indicate their relatively young age. In general, it was found that children in the study
area are most vulnerable to risks. Fifty percent of wells supply drinking water that is unsafe for
consumption. The water from about a third of the wells studied is dangerous for adults.

Keywords: drinking water; Sr; isotope–chemical composition; dating; health risks

1. Introduction

Groundwater is one of the main components of the environment, without which the
existence of living organisms, including humans, is impossible. Groundwater has a number
of significant advantages over surface water as it is better protected from environmental
pollution than surface water and should be used first [1]. However, due to their dynamism,
they actively participate in the processes of interaction between water and rocks, trans-
ferring various chemical elements into solution, including those that negatively affect the
quality of drinking water [2–5].

The greatest difficulties are presented by elements whose maximum permissible
concentrations (MPC) are characteristic of natural waters (e.g., in mg·L−1: Fe 0.3, F 1.2–1.5,
Be 0.0002, Se 0.01, As 0.05, Sr 7.0, Mn 0.1) [6]. The low maximum permissible concentrations
of these elements are explained by their organoleptic (Fe, Mn) and sanitary–toxicological
properties (F, Be, Se, As, Sr).

According to [7], animal studies have shown that the chemical similarity of strontium
to calcium allows it to be exchanged for calcium in various biological processes; the
most important of these is the replacement of calcium in the bones, which affects skeletal
development, causing changes similar to those associated with rickets [8–11]. Strontium
may reduce cartilaginous bone calcification in children and adolescents with greater effects
than those in adults [12].

The study of strontium in relation to diseases with a predominant lesion of the osteoar-
ticular system in the form of deforming chondroosteoarthritis began more than 170 years
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ago with Russian scientists’ pioneering work on Urovskaya disease (the name was given
according to the place of its first discovery: the Urov River near Lake Baikal in the south of
Central Siberia) or Kashin–Beck disease (after the names of the doctors who first studied this
disease) [13]. Later, it turned out that this disease is also common in Tadzhikistan [14], NW
China [15], North Korea, and possibly in some areas of Africa [16,17]. However, despite a
long period of study, the exact cause of this disease has not yet been established. Currently,
more than 20 theories and hypotheses are being discussed in the scientific literature to
explain the etiology and factors of the disease. The priority theory is biogeochemical,
according to which the occurrence and course of the disease depend on environmental
factors (i.e., a lack/excess of chemical elements or compounds). In particular, researchers
have paid special attention to deficiencies of selenium and calcium and the low Ca:Sr
ratio in groundwater and surface water, bottom sediments, soil, vegetation, animal bones,
human teeth, and hair [18–21].

The relevance of studying fresh groundwater is due to the fact that: (1) drinking water
is the most necessary and obligatory substance in the human diet, (2) groundwater with a
high strontium content forms regional hydrogeochemical provinces in areas of widespread
carbonate rocks in humid areas [11,22,23], and (3) groundwater with high strontium content
is also widespread in arid zones due to the evaporative concentration of relatively shallow
groundwater [2]. Significant research has been carried out in central Russia, Siberia, China,
the US, and Australia [24–30]. Geological–hydrogeological, statistical, and thermodynamic
analyses have shown that in a number of cases there is a relationship between the strontium
content in water and the lithology of rocks, the age of groundwater, the total dissolved
solids (TDS), and the degree of saturation of groundwater in relation to gypsum and
celestite. However, the correlations were often somewhat weak [29].

In northwestern Russia, the highest Sr concentrations were established relatively re-
cently in the carbonate aquifer in the mouth area of the Mezen River basin (see
Figure 1b) [31]. Contamination of groundwater with strontium was also confirmed when
drilling wells for water to the south in the cities of Karpogory, Bereznik, Shenkursk, and
Velsk (see Figure 1a), and the implementation of a joint project by geochemists from Russia,
Finland, and Norway, showed that over the entire area of distribution of Permian rocks P1s,
P2u, P2kz, and P2t (see Figure 1a), even the surface water contains strontium at a level of
0.5 to 2 mg·L−1 [32].

However, it remains unclear why there is a significant variation in strontium concen-
trations in groundwater over short distances. At the same time, in our opinion, it is obvious
that the conditions for the formation of groundwater with high and low strontium concen-
trations are different, and it is necessary to look for correlation dependencies separately
for these two types of groundwater. Due to the fact that the MPC of strontium in Russia is
7 mg·L−1, this value was chosen during the study to separate two groundwater clusters.
The statistical study also showed that there is indeed a bimodal distribution of Sr concen-
trations in water, with the above two clusters being identified (see Figure S1, Table S1, and
Section S1 of the Supplementary Materials). The Shapiro–Wilk test of normality indicated
that there is a possibility of normal distributions in these two clusters (Table S2).

The purpose of this research was to determine natural factors that contribute to main-
taining the standard quality of fresh drinking groundwater in areas where high strontium
concentrations occur. To assess the overall non-carcinogenic health risk from combined
ingestion and dermal exposure, hazard index (HI) values from consumption of water con-
taining strontium were also calculated (see Section S4 of Supplementary Materials). Values
below one indicate no significant non-cancer health risk. HI values greater than one re-
flect the potential for non-cancerous health outcomes, and this probability increases as HI
values rise [33].
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Figure 1. General location of the study site showing (a) geology, (b) strontium distribution in
groundwater of the first aquifer from the surface (after [31]), and (c) sampling locations. I−I—cross-
section at Figure 2.
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of the Late Proterozoic stage, a system of narrow extended grabens (aulacogens) was 
formed in this crystalline basement, which was filled with terrigenous, carbonate–
terrigenous, and effusive-terrigenous strata up to several kilometers thick. Regional 
subsidence of the territory, which is associated with the formation of the Mezen 
syneclise, began in the Vendian (Ediacaran) period of the Late Proterozoic. 

Sedimentation of the Ust Pinega (Vup) and Mezen (Vmz) formations (see Figure 2) 
proceeded in a relatively shallow epicontinental sea with weak hydrodynamics and a 
predominance of a reducing geochemical setting. Thin horizontal layering of the band 
type, accentuated by films of organic matter, probably arose during seasonal climate 
fluctuations. Against the background of calm and unidirectional subsidence, at times 
there were short-term rises of the bottom, accompanied by shallowing of the sea, as 
evidenced by the appearance of thin layers of siltstones and sandstones in the section. 
The formation of coarse-grained facies (probably deltaic or coastal-marine) in the Padun 
Formation (Vpd) is associated with the activation of multidirectional tectonic 
movements. From the end of the Vendian to the beginning of the formation of the Lower 
Carboniferous deposits, the region was mainly an area of removal and continental 
weathering. The significant proportion of kaolinite and cement in the terrigenous 
formations of the Vendian Padun Formation testifies to intense weathering processes 
[34,35]. 
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The facies variability of the rocks of the Kashir horizon of the Middle Carboniferous 
(C2kš), the absence of irregularities in the distribution of clastic material in terms of 
granulometric composition, poor roundness, and sorting of fragments, the presence of 
layers of gravelstones and conglomerates, and a sharp variability in thickness indicate 
the accumulation of these deposits in a turbulent coastal environment. The maximum 
distribution of the Middle Carboniferous Sea occurred during the Podolian time (C2pd). 
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Figure 2. Schematic hydrogeological section along line I–I in Figure 1a. The dotted lines show
the isolines of the total mineralization of groundwater (according to [31]); the red color shows the
concentrations of strontium in fresh groundwater. Designations in Figure 1.

2. Geological Conditions

The research area is located in the junction zone of the Mezen syneclise and the eastern
slope of the Baltic shield. Figure 1a shows the outcrop of this shield, composed of the most
ancient Archean–Early Proterozoic (A-Pt) primary sedimentary rocks, transformed into in-
tensely deformed and deeply metamorphosed gneisses, granite gneisses, amphibolites, and
crystalline schists. At the beginning of the Riphean period (R) of the Late Proterozoic stage,
a system of narrow extended grabens (aulacogens) was formed in this crystalline basement,
which was filled with terrigenous, carbonate–terrigenous, and effusive-terrigenous strata
up to several kilometers thick. Regional subsidence of the territory, which is associated
with the formation of the Mezen syneclise, began in the Vendian (Ediacaran) period of the
Late Proterozoic.

Sedimentation of the Ust Pinega (Vup) and Mezen (Vmz) formations (see Figure 2)
proceeded in a relatively shallow epicontinental sea with weak hydrodynamics and a
predominance of a reducing geochemical setting. Thin horizontal layering of the band type,
accentuated by films of organic matter, probably arose during seasonal climate fluctuations.
Against the background of calm and unidirectional subsidence, at times there were short-
term rises of the bottom, accompanied by shallowing of the sea, as evidenced by the
appearance of thin layers of siltstones and sandstones in the section. The formation of
coarse-grained facies (probably deltaic or coastal-marine) in the Padun Formation (Vpd) is
associated with the activation of multidirectional tectonic movements. From the end of the
Vendian to the beginning of the formation of the Lower Carboniferous deposits, the region
was mainly an area of removal and continental weathering. The significant proportion
of kaolinite and cement in the terrigenous formations of the Vendian Padun Formation
testifies to intense weathering processes [34,35].

In the Lower Carboniferous (C1), the subsidence of the territory begins. The sediments
are dominated by clays and siltstones, with interlayers of sandstones and conglomerates
and thin interlayers of carbonate rocks: dolomites, limestones, and marls. The facies
variability of the rocks of the Kashir horizon of the Middle Carboniferous (C2kš), the absence
of irregularities in the distribution of clastic material in terms of granulometric composition,
poor roundness, and sorting of fragments, the presence of layers of gravelstones and
conglomerates, and a sharp variability in thickness indicate the accumulation of these
deposits in a turbulent coastal environment. The maximum distribution of the Middle
Carboniferous Sea occurred during the Podolian time (C2pd). Large areas accumulated
dolomites and limestones. The fauna from these deposits testifies to a shallow, coastal
zone of the marine basin with a salinity close to normal. In the Upper Carboniferous (C3),
the transgression reaches its maximum size. At this time, thick strata of dolomites had
accumulated over most of the area.

The beginning of the Permian period was marked by a powerful Asselian transgression
(P1a), which manifested itself on a planetary scale. The marine basin was characterized
by normal salinity and mostly shallow water, which is confirmed by the diversity of
faunal remains. However, in some areas there was a regime in which the conditions of
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sediment deposition somewhat deviated from those of a normal sea basin, and here lagoons
periodically formed, which are associated with the appearance of gypsum interlayers. The
salinization and regression of the sea, which began in the Upper Asselian, continued
most intensively in the Sakmarian time (P1s), by the end of which the territory was a
gradually salinizing lagoon. Here, at first, the accumulation of dolomites containing
gypsum interlayers occurred, followed by the accumulation of thick strata (about 80 m) of
gypsum and anhydrites.

The type of sediments of the Ufimian stage of the Upper Permian (P2u), represented
mainly by red-colored siltstones, indicates that their accumulation occurred in a lagoonal–
continental setting under arid climate conditions. The gypsum content of the rocks is
replaced by celestite ore occurrences in the direction from the base to the top of the formation
(see Figure 1b). The accumulation of sediments of the Kazanian stage of the Upper Permian
(P2kz) is associated with successive transgressions of the sea and its regression. Therefore,
marls and calcareous clays are replaced by clayey, sandy, and dolomitic limestones with
inclusions of gypsum and anhydrite. The Tatarian stage (P2t) is represented at the base of
the section by marls and siltstones with horizontal or similar bedding, which indicates the
existence of a basin whose conditions were close to marine ones. Subsequently, there was
an increasing desalination of the saline lagoons with the formation of the sandy–silty part
of the sediments.

This regime did not last long. Subsequently, the entire territory entered the path of the
predominantly continental Mesozoic–Cenozoic stage of denudation leveling. During this
period, a significant part of the Lower Permian gypsum anhydrite sequence, distributed at
least 100–150 km west of the currently observed boundary of the Sakmarian stage of the
Lower Permian, was eroded (see Figures 1 and 2) [31].

As shown in Figure 2, the maximum concentrations of strontium, at 7–40 mg·L−1, in
fresh groundwater are confined to the distribution area of the Kazanian-stage carbonate
deposits. To the west, in the area of accumulation of thick strata of gypsum and anhydrites,
they decrease to 2–7 mg·L−1, and further to the west, terrigenous-carbonate rocks contain
groundwater with minimal concentrations of strontium. In [31], it is shown that, in general,
one can note the dependence of the strontium content in water on its concentrations in
rocks: in the direction from east to west they decrease from 2400 to 10 mg·kg−1. The Sr
content in sandstones is 200 mg·kg−1, and in carbonate rocks is 610 mg·kg−1 [36,37].

The waters with the highest concentrations of strontium are the most dangerous for
consumption, since in addition to the strontium content above the MPC for fresh drinking
water, Ca/Sr << 100 ratios are also observed, which can cause the occurrence of Urov
endemia (Kashin–Beck disease) [2].

3. Materials and Methods

In June 2022, 17 samples of drinking water used for water supply to the population
were taken from boreholes located in the estuary zone of the Mezen River basin (see
Figure 1c) for the purpose of studying the isotopic chemical composition (see Tables 1–3).
The field sample preparation was carried out as described in a previous paper [38]. The
analytical procedures are also described in previous papers [38,39]. The calcium, strontium,
magnesium, sodium, and potassium concentrations were determined with an uncertainty
degree of 1–2% by using an atomic absorption spectrometer (AAS) (Perkin-Elmer 5100 PC,
Turku, Finland). Alkalinity was measured by potentiometric titration with HCl using
an automated titrator (Metrohm 716 DMS Titrino, Metrohm AG, Herisau, Switzerland)
using the Gran method (detection limit 10−5 M, uncertainty at ≥0.5 mmol·L−1 1–3% and
at <0.5 mmol·L−1 7%). The major anion concentrations (Cl−, SO4

2−) were measured by
ion chromatography (HPLC, Dionex ICS 2000, ThermoFisher, Waltham, MA, USA) with an
uncertainty of 2%.
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Table 1. The physicochemical parameters of groundwater.

Sample ID Location H,
m.a.s.l.

Sample Date//
Depth (m)

T
(◦C)

pH
(Unit)

Eh
(mV)

O2
(mg·L−1)

TDS
(mg·L−1)

Sr
(mg·L−1)

K-120 N 65.87238 E 44.13921 6 18 June//40–60 5.3 8.03 151 3.0 410 12.09
K-1 N 65.88087 E 44.12091 22 18 June//40–60 7.1 7.99 155 8.0 446 8.23

M-200 N 65.85261 E 44.23201 11 21 June//40–60 4.8 7.90 −60 2.8 469 1.91
M-84 N 65.86652 E 44.21601 13 20 June//40–60 5.3 7.77 73 3.2 473 0.76
M-10 N 65.86009 E 44.23067 10 19 June//40–60 5.5 7.87 −121 2.1 538 17.10
M-20 N 65.83675 E 44.26264 28 21 June//40–60 4.0 7.89 −103 2.2 562 1.50
M-85 N 65.84367 E 44.23960 10 19 June//40–60 5.6 7.82 8 6.0 646 26.31
M-4 N 65.86776 E 44.20915 11 20 June//40–60 4.2 7.45 66 0.6 656 1.02

M-169 N 65.83541 E 44.25338 19 21 June//40–60 5.0 7.78 −58 3.4 663 6.60
M-48 N 65.84318 E 44.24603 12 22 June//40–60 5.3 7.86 −78 2.8 669 4.62
M-44 N 65.84731 E 44.24515 17 22 June//40–60 5.3 7.67 −6 3.0 705 2.40
M-43 N 65.84137 E 44.24300 9 19 June//40–60 6.5 7.61 −109 0.6 731 32.00

M-165 N 65.86820 E 44.22311 17 20 June//40–60 4.6 7.56 58 2.0 752 1.50
M-172 N 65.84790 E 44.23991 13 22 June//40–60 8.2 7.64 38 5.6 780 2.70

K-4 N 65.89190 E 44.11613 10 17 June//40–60 6.0 7.28 −41 4.5 803 40.11
K-5 N 65.89627 E 44.11808 11 17 June//40–60 5.7 7.06 −116 0.0 857 27.14

K-119 N 65.88612 E 44.10291 12 17 June//40–60 5.0 7.67 −16 3.1 979 39.06

Sample ID Na+(mg.L−1) Ca2+ Mg2+ K+ Cl− SO4
2− HCO3

− Ca2+/Sr Water Type a (-)

K-120 24.0 48.3 16.8 3.61 24.8 16.0 265 4.0 Ca-Mg-HCO3
K-1 18.9 58.1 20.5 3.73 21.2 26.7 289 7.1 Ca-Mg-HCO3

M-200 23.1 61.3 21.1 3.49 10.6 7.1 341 32.0 Ca-Mg-HCO3
M-84 19.8 74.1 15.7 3.60 14.2 15.6 330 98.0 Ca-HCO3
M-10 27.4 64.5 25.2 3.68 38.9 8.3 353 3.8 Ca-Mg-HCO3
M-20 49.0 65.3 18.7 3.71 10.6 9.2 404 43.0 Ca-Na-HCO3
M-85 35.4 61.3 29.6 3.91 17.7 85.1 387 2.4 Ca-Mg-HCO3
M-4 38.9 107.0 9.1 4.25 15.9 56.5 424 107.0 Ca-HCO3

M-169 55.9 74.9 25.1 4.16 24.8 6.5 465 11.0 Ca-Na-Mg-HCO3
M-48 39.8 83.0 29.8 3.78 24.8 15.7 467 18.0 Ca-Mg-HCO3
M-44 54.5 105.0 11.8 4.22 10.6 4.4 512 44.0 Ca-Na-HCO3
M-43 80.0 49.3 25.1 4.31 33.6 72.9 433 2.2 Na-Ca-HCO3

M-165 63.9 111.0 21.3 4.62 37.2 36.0 476 74.0 Ca-Na-HCO3
M-172 72.4 111.0 7.9 3.90 33.6 44.0 494 41 Ca-Na-HCO3

K-4 43.7 85.0 33.4 4.13 54.9 52.3 489 2.1 Ca-Mg-HCO3
K-5 84.0 85.4 21.9 6.41 65.8 108.0 458 3.2 Ca-Na-HCO3

K-119 170.0 58.9 37.2 11.10 158.0 123.0 382 1.5 Na-Mg-Ca-HCO3-Cl

a Cations and anions with a content higher than 25 mg-eq·% are listed in descending order.

Table 2. The mineral saturation indices (SI) of groundwater.

Sample ID Dolomite Calcite Strontianite Anhydrite Gypsum Celestite

K-120 0.88 0.42 1.87 −2.98 −2.56 −2.57
K-1 0.90 0.43 1.64 −2.70 −2.28 −2.54

M-200 0.91 0.44 0.98 −3.25 −2.84 −3.76
M-84 0.58 0.38 0.45 −2.83 −2.42 −3.81
M-10 0.98 0.44 1.92 −3.19 −2.78 −2.76
M-20 1.03 0.54 0.95 −3.13 −2.72 −3.77
M-85 0.84 0.33 2.02 −2.23 −1.82 −1.59
M-4 −0.03 0.27 0.30 −2.16 −1.75 −3.18

M-169 1.08 0.53 1.52 −3.26 −2.85 −3.31
M-48 1.33 0.64 1.44 −2.85 −2.44 −3.10
M-444 0.75 0.60 1.02 −3.29 −2.88 −3.92
M-43 0.38 0.09 1.96 −2.40 −1.98 −1.57

M-165 0.79 0.50 0.69 −2.39 −1.98 −3.25
M-172 0.44 0.55 0.99 −2.28 −1.87 −2.88

K-4 0.16 0.04 1.77 −2.34 −1.93 −1.66
K-5 −0.59 −0.24 1.32 −2.02 −1.61 −1.51

K-119 0.79 0.25 2.14 −2.19 −1.77 −1.35
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Table 3. Characteristics of the isotopic composition of groundwater and parameters used to estimate
the residence time of groundwater in the aquifer.

Sample ID 14C
(pmc)

δ13C
(‰)

14C a

(pMC)

14C0
b

(pmc)

14C0
c 14C0

d 14C0
e

K-120 44.04 ± 0.47 −10.6 42.79 ± 0.46 45.00 NC 60.42 85
K-1 45.4 ± 0.41 −10.7 44.1 ± 0.4 45.36 NC 60.99 85

M-200 50.15 ± 0.53 −9.1 48.56 ± 0.51 39.64 NC 51.87 85
M-84 65.02 ± 0.58 −13.2 63.49 ± 0.57 54.29 50.47 76.95 85
M-10 57.45 ± 0.66 −8.7 55.58 ± 0.64 38.21 NC 49.59 85
M-20 54.57 ± 0.54 −13.3 53.29 ± 0.53 54.64 53.98 75.81 85
M-85 49.32 ± 0.61 −11.8 49.02 ± 0.59 49.29 NC 67.26 85
M-4 74.47 ± 0.66 −14.6 72.92 ± 0.65 59.29 63.17 83.22 85

M-169 60.53 ± 0.65 −15.7 59.4 ± 0.64 63.21 90.87 89.49 85
M-48 58.3 ± 0.54 −15.8 57.23 ± 0.5 63.57 93.62 90.06 85
M-44 61.39 ± 0.60 −13.5 59.98 ± 0.59 55.36 52.79 76.95 85
M-43 44.64 ± 0.55 −9.9 43.29 ± 0.53 42.50 NC 56.43 85
M-165 72.2 ± 0.67 −12.0 70.32 ± 0.65 50.00 24.61 68.4 85
M-172 62.87 ± 0.56 −15.2 61.64 ± 0.55 61.43 77.44 86.64 85

K-4 50.24 ± 0.44 −9.8 48.71 ± 0.43 42.14 NC 55.86 85
K-5 59.23 ± 0.54 −13.3 57.84 ± 0.53 54.64 21.96 75.81 85

K-119 29.53 ± 0.49 −8.6 28.56 ± 0.47 37.86 NC 49.02 85

Sample ID 14C Age b

(year BP)

14C Age c 14C Age d 14C Age e U
(ppb)

234U/238U
(unit)

K-120 424 ± 104 NC 2675 ± 163 6171 ± 144 0.130 1.12
K-1 214 ± 213 NC 2529 ± 169 5968 ± 204 0.075 1.13

M-200 modern NC 236 ± 235 5027 ± 187 0.243 2.78
M-84 modern modern 1337 ± 187 2237 ± 82 0.649 1.67
M-10 modern NC modern 3472 ± 102 0.026 1.63
M-20 208 ± 207 modern 2836 ± 84 4014 ± 128 0.094 1.65
M-85 modern NC 2628 ± 138 5143 ± 163 0.225 2.08
M-4 modern modern 842 ± 78 1049 ± 121 0.607 1.81

M-169 570 ± 76 3588 ± 109 3468 ± 91 2898 ± 109 0.027 3.48
M-48 804 ± 99 4369 ± 131 4540 ± 240 3336 ± 106 0.108 3.43
M-44 modern modern 1801 ± 92 2810 ± 65 1.633 1.54
M-43 modern NC 1820 ± 84 6130 ± 136 0.042 2.06
M-165 modern modern modern 1259 ± 76 0.994 1.23
M-172 modern 1632 ± 83 2791 ± 61 2605 ± 118 1.885 1.57

K-4 modern NC 817 ± 88 4935 ± 92 0.078 2.26
K-5 modern modern 2007 ± 104 3186 ± 140 0.085 1.59

K-119 2424 ± 272 NC 4662 ± 206 9828 ± 285 0.014 3.94

a normalized radiocarbon concentration; b initial carbon isotopic composition and calibrated age according to the
Pearson model; c same for Mook model; d same for Ferronsky model; e same for Vogel model; NC not calculated.

Estimates of the residence time of groundwater in the aquifer were made using carbon
isotopes 14C and 13C [40,41]. Two models were used to determine the initial radiocarbon
content in the groundwater recharge area (14C0). For isotopic exchange between solid
carbonate and total dissolved inorganic carbon (TDIC), the Ingerson and Pearson model
was used [42]. For isotope exchange between soil CO2 and TDIC, the Mook model [43,44]
was used (see [38,45]).

Due to the fact that calculations using these models showed a very young age of
groundwater, Ferronsky and Polyakov’s [46] model to account only for the dissolution of
carbonates was also used:

14C0 = −5.7δ13C (1)

In addition, according to Vogel’s [47] generalization that the radiocarbon activity
of freshly formed groundwater in many parts of the world averages 85 ± 5% of the
radiocarbon activity of a modern wood standard, the simplest model was also used:

14C0 = 85pmc (2)

Calib Rev 8.1.0 was used to calibrate the radiocarbon ages [48,49].
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4. Results
4.1. The Physicochemical Parameters of Groundwater

Physicochemical parameters characterizing the water composition of the Upper
Permian Kazan carbonate aquifer (P2kz) are shown in Table 1 and Section S2 of the
Supplementary Materials and illustrated by Piper diagrams in Figure 3.
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TDS in fresh water ranged from 410 to 979 mg·L−1. The Ca-Mg-HCO3 composition was
typical for low-mineralized waters. With an increase in their mineralization, the chemical
composition changed to Ca-Na-HCO3 and Na-Mg-Ca-HCO3-Cl. As the composition
of the groundwater changed, its pH also changed from the range of 7.45–8.03 (average
value = 7.84) to the range of 7.06–7.67 (average value = 7.47). Sr concentrations ranged
from 0.76 to 40.11 mg·L−1, regardless of the overall water composition (Table 1). The
water saturation indices (SI) for gypsum and anhydrite were largely negative (Table 2),
and there was a deficiency of SO4

2− relative to Ca2+ (Figure 4a), which indicated relatively
small amounts of Ca2+ transferred into water due to the dissolution of gypsum. The
exception was the most mineralized sample K-119, in which the Ca2+:SO4

2− ratio was close
to unity (1.15).

In low-mineralized waters, the ratio (Ca2+ + Mg2+):HCO3
− is close to unity. As

the degree of water mineralization increases, a deficiency (Ca2+ + Mg2+) is observed
(Figure 4b). At the same time, the ratios Na+:HCO3

− (Figure 4c) and Na+:Ca2+ (Figure 4d)
increase. Sea coasts are characterized by an observed increase in the concentration of
chlorine in groundwater up to 158 mg·L−1 (see Figures 1a and 2). However, an excess
of sodium compared to chlorine (Figure 4f) and negative values of chlor-alkali indices
(Figure 4e) indicate the possibility of Na+ passing into solution due to the cation exchange
of alkaline earth elements for alkaline ones [50,51]. Additional sources of sodium can be
aluminosilicates such as albite and oligoclase.
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4.2. Isotopic Parameters of Groundwater

The results of determinations of carbon and uranium isotopes in groundwater of the
Upper Permian Kazan carbonate aquifer (P2kz) are presented in Table 3.

As can be seen from the table, the Pearson and Mook models generally provide
values for the residence time of groundwater in the aquifer that can be characterized as
“modern.” Four samples showed values ranging from 1632 ± 83 to 4540 ± 240 years.
Calculations using the Ferronsky model showed groundwater age values comparable to
those determined by the Mook model approximately up to 4662 ± 206 years, and according
to the Vogel model they were twice as high.

In general, for all models, one can see a tendency to correlate the age of groundwater
with radiocarbon concentrations in groundwater (Figure S2), and we considered it more
logical to use the 14C (pmc) values when analyzing changes in the strontium concentration
depending on water age (see Section 4.5).

The 14C values varied from 74.47 ± 0.66 to 29.53 ± 0.49 pmc. They did not correlate
with TDS. A more detailed description is given in Section 4.5.

Uranium concentrations were maximum (0.2–1.9 µg·L−1) under oxidizing conditions,
where uranium was in the 6+ form; under reducing conditions, uranium passed into
the 4+ state, and its content, as a rule, does not exceed 0.1 µg·L−1 (Figure S3a). The
maximum concentrations of uranium tended to be in more alkaline conditions than the
minimum concentrations (pH 7.5–8; Figure S3b), where they were in the composition of
uranyl-carbonate complexes. The maximum concentrations of uranium also predomi-
nated in younger waters (14C = 60–80 pmc) when compared to the minimal concentrations
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(14C = 20–60 pmc; Figure S3c). In waters with maximum uranium concentrations, where
rock dissolution processes predominate, the ratio of uranium isotopes 234U:238U was mini-
mal (1–2); in reducing conditions where recoil loss factors predominate, it rose to 4 (Figure
S3d). Under oxidizing conditions, elevated uranium concentrations correlated with TDS
(R2 = 0.59; Figure S3e) and the main TDS-determining ions—Na+ (R2 = 0.73; Figure S3f),
HCO3

− (R2 = 0.75; Figure S4a), and Ca2+ (R2 = 0.67; Figure S4b)—but did not correlate with
SO4

2−, Cl−, or Mg2+ (Figure S4c–e). Under reducing conditions, there was no correlation
between the minimum concentrations of uranium, TDS, and basic ions.

4.3. Dependence of Strontium on the Acid–Base and Redox Properties of Fresh Water in the Upper
Permian Kazan Carbonate Aquifer (P2kz)

Elevated strontium concentrations showed a tendency to increase simultaneously
with a decrease in pH to neutral values (Figure 5a), although the significance level for this
dependency was above 5% (coefficient of determination R2 = 0.44, coefficient of correlation
r = –0.67, significance value p = 0.07; see Section S3 of the Supplementary Materials). For
low strontium concentrations there was no correlation (R2 = 0.09, r = 0.31, p = 0.42).

The dependence of the SI values for calcite and dolomite on pH was well pronounced
for groundwater with high strontium concentrations (R2 = 0.93–0.88, r = 0.97–0.94, p = 0).
At the same time, the supersaturation of water in relation to these minerals was replaced
by undersaturation, which was characterized by a change in SI from 0.4 and 1 to –0.2 and
–0.6, respectively, as it approached neutral pH values (Figure 5b). There was practically no
tendency to increase Sr in this direction (Figure 5g) (R2 = 0.35 and 0.18, r = –0.59 and –0.43,
p = 0.12 and 0.29, respectively).

A correlation between saturation indices for dolomite and pH was observed in ground-
water with low strontium concentrations (R2 = 0.64, r = 0.8, p = 0.01), with SI changing
from 1.3 to –0.03. There was no correlation between SI values for calcite and pH (R2 = 0.19,
r = 0.45, p = 0.22), with SI changing from 0.6 to 0.3. The concentration of Sr increased in the
direction of increasing the supersaturation of water with respect to calcite and dolomite
(R2 = 0.30–0.34, r = 0.56–0.58, p = 0.12–0.1), which may indicate other sources of Sr in
the water.

The SI values for strontianite did not correlate with pH (R2 = 0.28 and 0.34, r = 0.53
and 0.58, p = 0.18 and 0.1 for water samples with high and low strontium concentrations,
respectively; Figure 5c). The same can be said about the concentration of Sr in water with a
high content of it. Low strontium concentrations increased towards increasing the water
supersaturation with strontianite from SI 0.3 to 1.5 (Figure 5h) (R2 = 0.79, r = 0.89, p = 0.01).

Negative saturation indices for gypsum and celestite were recorded throughout the
entire range of their values. For water with high strontium contents they increased as
they approached neutral pH values from –2.8 to –1.6 and –1.4, respectively (Figure 5b,c)
(R2 = 0.49–0.45, r = –0.7 to –0.67, p = 0.05 –0.07). The concentrations of strontium increased
in a similar manner (Figure 5g,h) (R2 = 0.48–0.74, r = 0.7–0.86, p = 0.06–0.006). For samples
with low strontium contents, SI increased from −2.9 and −3.9 to −1.8 and −2.9, respectively
(Figure 5b,c) (R2 = 0.59–0.18, r = –0.76 to –0.42, p = 0.02–0.26); however, they were not
correlated with Sr (Figure 5g,h) (R2 = 0.14–0.12, r = –0.37 to 0.35, p = 0.32–0.36).

There was a dependence of TDS on pH (R2 = 0.56, r = –0.75, p = 0.03 in water samples
with high strontium contents and R2 = 0.36, r = –0.6, p = 0.09 in water samples with low
strontium contents), which was expressed with an increase in TDS as the pH approached
neutral values in the P2kz carbonate aquifer (Table 1). Elevated strontium concentrations
showed a high positive correlation with TDS (Figure 5d) (R2 = 0.82; r = 0.9, p = 0.002). Low
strontium concentrations did not correlate with TDS (R2 = 0.09, r = 0.3, p = 0.43).

As in the case of pH, for groundwater with a high content of strontium, a slight
decrease in the supersaturation of water in calcite and dolomite was found as the degree of
water mineralization increased (R2 = 0.49–0.31; Figure 5e). Saturation indices for strontianite
did not correlate with TDS (R2 = 0.01; Figure 5f). The most pronounced undersaturation
of water was with respect to gypsum and celestite (Figure 5e,f), and this undersaturation



Water 2023, 15, 3846 11 of 21

decreased as TDS increased from SI = –2.8 to –1.6 and from –2.8 to –1.4, respectively
(R2 = 0.64–0.73, r = 0.8 –0.89, p = 0.02–0.003). For groundwater with a low content of
strontium, there was no correlation of TDS with saturation indices for all minerals except
celestite (Figure 5e,f).
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Groundwater with high Sr concentrations tended to predominate in the lowlands near
the river (Figure 5i) and in the reducing conditions of the aquifer (Figure 5j). Figure 6a
shows the correlation between the maximum Sr concentrations and the minimum U con-
centrations characteristic of a reducing environment in aquifers [52] (see Table 2). Figure 6b
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also demonstrates the presence of two different correlation trends for the maximum and
minimum Sr concentrations with 234U:238U activity ratios, with the same correlation co-
efficients (R2 = 0.64). A similar trend (without separation of water types according to Sr
concentrations) was noted by Plechacek et al. [30].
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4.4. Strontium vs. Chemical Composition of the Fresh Groundwater in the Upper Permian Kazan
Carbonate Aquifer

Figures 5d and 7a,b show that increased strontium concentrations were correlated
with TDS, Mg2+, and HCO3

− (R2 = 0.82–0.69, r = 0.91–0.83, p = 0.002–0.01). There was a
trend of increasing Sr concentrations with increasing SO4

2−, Na+, and Cl− (Figure 7c–e)
(R2 = 0.5–0.38, r = 0.71–0.62, p = 0.05–0,1). There was virtually no correlation with Ca2+

(R2 = 0.16; Figure 7f).
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For these waters, a close dependence of the contents of sulfates and sodium on
the total amount of dissolved substances was also recorded (R2 = 0.77–0.72) (Figure 8a).
The dependence of TDS on the contents of chlorides, bicarbonates, and magnesium was
somewhat lower (R2 = 0.62–0.52), and the correlation with calcium was practically absent
(R2 = 0.23).
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Figure 8c,d show that the contents of Mg2+, SO4
2−, Na+, and Cl− in water with

strontium concentrations above the MPS are noticeably higher than in water of standard
quality; the concentrations of HCO3

− and Ca2+ show the opposite pattern (Figure 8e).
In addition, in water of standard quality there was no correlation between strontium con-

tents and the ionic composition and total amount of dissolved substances (Figures 5d and 7).
At the same time, there was a close dependence of TDS on the contents of bicarbonates,
sodium, and calcium (R2 = 0.89–0.71; Figure 8b). It was somewhat lower in relation to
chlorides (R2 = 0.52) and was practically absent in relation to sulfates and magnesium
(R2 = 0.23 and 0.04).
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4.5. Dependence of Strontium Content on Water Age

Figure 9a shows a decrease in Ca2+ concentrations with decreasing 14C (pmc) values,
that is, increasing age of water. At the same time, the concentrations of Sr and Mg2+

increased, and in Figure 9c,d a clear increase in Mg2+:Ca2+ and Sr:Ca2+ can be seen. It
should be noted that these graphs were built for the entire data set (17 water samples). For
water with high (8 samples) and low (9 samples) Sr content, a weak correlation was found
between 14C and Ca2+ (Figure 9b) (R2 = 0.30–0.58, r = 0.55–0.76, p = 0.16–0.02); there is no
correlation between 14C and Sr (R2 = 0.07–0.08, r = –0.27 to –0.28, p = 0.52 to 0.46).
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Graphs constructed from the entire data set (17 water samples) (Figure 9e,f) also
show a correlation of SI for strontianite with the age of water (R2 = 0.65) and a weak
correlation of SI for celestite with the age of water (R2 = 0.34). In water of standard quality
(9 samples), there was also a correlation of SI for strontianite with the age of water (r = –0.61,
p = 0.047) and no correlation of SI for celestite with the age of water (r = 0.41, p = 0.27).
In water exceeding the MPC for strontium, the correlation of the saturation indices of
strontianite and celestite with the age of the water was not established (r = –0.64 and –0.27,
p = 0.08 and 0.52).

5. Discussion
5.1. Groundwater with Strontium Concentrations above the MPC

We have shown above that an increase in strontium concentrations in fresh groundwa-
ter was observed simultaneously with an increase in the amount of dissolved substances
and a decrease in pH to approximately neutral values. Similar trends were also noted by
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Krainov [2] and Macgrove [29]. However, the correlation of strontium and pH in our case
was insignificant (r = –0.67, p = 0.07) compared to the correlation of strontium and the
amount of dissolved substances (r = 0.9, p = 0.002). As a result, there was a clear increase
in the values of SIcelestite and SIgypsum simultaneously with an increase in the content of
dissolved substances in water (r = 0.89–0.8, p = 0.003–0.02), while the correlation of SIcelestite
and SIgypsum with pH was noticeably less pronounced (r = –0.67 and –0.7, p = 0.07 and
0.05). There was also a clear increase in strontium concentration along with an increase
in SIcelestite and SIgypsum (r = 0.86–0.7, p = 0.006–0.06), while water saturation with calcite
and dolomite had little effect on the increase in strontium content. A relationship between
SIcelestite and SIstrontianite and the age of groundwater was noted.

A correlation of magnesium with strontium and total mineralization of groundwater
(r = 0.84 and 0.75, p = 0.01 and 0.03) and no correlation of calcium with strontium and total
mineralization of groundwater (r = 0.4 and 0. 48, p = 0.32 and 0.23) were found for strontium-
rich groundwater. In addition, it was found that with increasing water age, there was a
decrease in calcium concentration with a parallel increase in strontium and magnesium
concentrations and an increase in magnesium–calcium and strontium–calcium ratios.

Thus, it can be assumed that it is not an increase in magnesium concentrations as a
result of the dedolomitization of rocks [23,29,53–55], but a decrease in the calcium con-
centrations (Figures 9a and 10) that causes an increase in the content of strontium, which
replaces it.
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However, a separate analysis of age-related changes in the concentrations of Ca and
Sr in waters with strontium contents above and below the MPC (Figure 9b) shows less
certain dependencies, and therefore it is advisable to check them in the future using more
extensive material through periodical samplings.

The correlation of strontium with bicarbonate ions is also significant (r = 0.83, p = 0.01),
since bicarbonate ions are one of the main components of low-mineralized water. However,
in more mineralized waters they are partially “replaced” by sulfate ions and chloride [24,25]
(see Figure 8a,c–e). At the same time, as shown above, calcium concentrations increased in
proportion to the concentrations of bicarbonate ions, also in low-mineralized waters, and
then were partially “replaced” by sodium (see Figure 8e,d).

Based on the established correlation of the concentrations of strontium (Figure 5d),
chlorine ions, and sodium (Figure 8d) with the total mineralization of groundwater and
the tendency of increasing strontium concentrations with increasing sodium and chlorine
content, it can be assumed that there is an influence of the upwelling of salt waters from
the lower substage of the Kazan aquifer (see Figure 2) to increase the strontium content in
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drinking water. According to [26], the contents of TDS and Sr in saline groundwater are
3100 and 9 ppm, respectively. That is, water mineralization up to 700–1000 ppm can be
obtained by mixing one part of salt water with 4–8 parts of fresh water (400 ppm). However,
to achieve a Sr concentration in this mixture of 7 ppm, its concentration in fresh water
should already be about 6.6 ppm: (9 x 1 + 6.6 x 6)/7 = 7. That is, the effect of salt water is
insignificant in relation to the increase in strontium concentration [56].

The correlation of strontium with sulfate ions and a significant increase in the concen-
tration of sulfate ions with an increase in TDS, as well as the correlation of strontium with
SIcelestite and SIgypsum indicate the formation of high concentrations of strontium due to the
dissolution of these minerals.

The occurrence of the collected water samples with a high content of strontium in the
zone of reducing conditions is possibly due to the difficult water exchange in this area and
its relatively weak flushing, as a result of which celestite inclusions are preserved there.
Other researchers have noted a similar trend [29,30].

The regularity of this factor is also justified by the increase in strontium concentrations
in boreholes gravitating to the lowlands near the river (see Figure 1c, Kamenka village and
Figure 11).
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5.2. Groundwater with Strontium Content below the MPC

Strontium concentrations in strontium-poor groundwater did not correlate with pH or
TDS. Their average values fluctuated around 2.6 mg·L−1. Water with strontium content
below the MPC was characterized by reduced saturation in relation to SrSO4 and CaSO4,
and strontium did not correlate with SIcelestite and SIgypsum. Water was supersaturated in
CaCO3, CaMg(CO3)2, and SrCO3; as its supersaturation decreased, the strontium content
in water also decreased.

Strontium concentrations in strontium-poor groundwater also did not correlate with
major groundwater ions. The concentrations of most ions were noticeably lower than in
groundwater with a high content of strontium. The exceptions are bicarbonate ions and
calcium. The SO4

2− content was most significantly reduced (Figure 8c), and there was no
dependence of strontium concentrations on sulfate (r = –0.36, p = 0.34), which indicates
the formation of strontium due to leaching of discretely distributed small inclusions of
SrSO4 and CaSO4. Chloride and sodium concentrations were also reduced, indicating
less upwelling of the salty groundwater. But assessments of its influence showed that the
upwelling effect of brackish waters on increasing strontium concentrations is significant
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(44%) [56]. The dedolomitization processes had virtually no effect on Sr concentrations
(Figure 10).

Thus, the main factors characteristic of groundwater with strontium content above the
MPC (correlation of Sr with TDS and SIcelestite and SIgypsum and the effect of dedolomitiza-
tion) were not manifested in groundwater with strontium content below the MPC.

5.3. Estimation of Exposure and Human Health Risk

Data on the carcinogenicity of strontium are very limited, and there is insufficient
information to assess its carcinogenic potential due to the lack of adequate studies on
long-term chronic exposure [57].

The assessment of non-carcinogenic risk to human health from contact with ground-
water was carried out in accordance with the procedure described by the US Environmental
Protection Agency [33,57,58]. A deterministic approach was used for two routes of exposure
(ingestion and water through the skin) to two subpopulations (adults and children). It is
important to emphasize that strontium is not volatile, thus inhalation exposure is not likely,
and therefore inhalation was not included in the risk assessment models in this study.

The methodology for assessing exposure and risk to human health, as well as the
main parameters and values used for deterministic exposure calculations, are provided in
Section S4 Supplementary Materials.

The calculation results are shown in Figure 12:
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Figure 12. Hazard index (HI) to assess the overall non-carcinogenic health risk from combined
ingestion and skin exposure of investigated fresh drinking waters.

Values of HI lower than one indicate no significant non-cancer health risk. Values of
HI greater than one depict an existing likelihood of non-cancer health effects occurring and
the probability increases as the values rise (see Section S4 Supplementary Materials).

Children in the area are most vulnerable to risks. Fifty percent of the wells contain
water that is dangerous for consumption by children of about nine years of age weighing
30 kg. For younger children, the situation is even worse.

For adults weighing up to 70 kg, water from about a third of the studied wells
is dangerous.

6. Conclusions

The purpose of this research was to determine natural factors that contribute to main-
taining the standard quality of fresh drinking groundwater in areas with high strontium
content. The results showed that:
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(1) For waters with strontium concentrations above the MPC, the following features
are characteristic:

• Correlations of strontium with TDS and saturation indices for celestite and
gypsum, indicating the formation of these waters in sediments with high contents
of celestite and gypsum.

• An increase in strontium–calcium and magnesium–calcium ratios during the period
when groundwater is in the aquifer, associated with the process of dedolomitization.

• Correlation of strontium concentrations with the concentrations of the main ions,
except for calcium.

• Reducing conditions in the aquifer, indicating difficult water exchange in the
aquifer, promoting the preservation of strontium-containing minerals.

(2) For waters with strontium concentrations below the MPC, the following features
are characteristic:

• Strontium concentrations do not correlate with TDS, SIcelestite, and SIgypsum,
indicating the formation of water in sediments with discretely located small
inclusions of celestite and gypsum.

• The processes of dedolomitization practically do not affect the growth of stron-
tium concentrations.

• Oxidizing conditions and active water exchange in the aquifer are favorable for
the formation of water with standard quality.

In general, areas of development of groundwater of a Ca-HCO3 composition with re-
duced values of the total content of dissolved substances and increased values of the oxidation-
reduction potential will be favorable for obtaining drinking water of standard quality.

The assessment of non-carcinogenic risk to human health from contact with ground-
water has shown that children in this area are currently the most vulnerable to risks.
Fifty percent of wells contain water that is dangerous to drink.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/w15213846/s1, S1. Statistical distribution of strontium
concentration values in drinking groundwater in the North-West of Russia; S2. Summary statistics
on compositions of drinking groundwater in the North-West of Russia; S3. Correlation matrices
on compositions of drinking groundwater in the North-West of Russia; S4. Estimation of exposure
and human health risk; Figure S1. Histograms (a) all 17 samples, (b) 9 samples with strontium
contents less than 7 mg/L, (c) 8 samples with strontium contents more than 7 mg/L; Figure S2.
Plots of the radiocarbon/residence time in the fresh groundwater Pearson model (a), Ferronsky
model (b), and Vogel model (c); Figure S3. Plots of the U concentration in the fresh groundwater
vs. Eh (a), pH (b), 14C (c), 234U/238U (d), TDS (e), Na2+ (f). (Ox)—oxidizing conditions in the
aquifer, (Red)—reducing conditions in the aquifer; Figure S4. Plots of the U concentration in the fresh
groundwater vs. HCO3

− (a), Ca2+ (b), SO4
2− (c), Cl− (d), Mg2+ (e). (Ox)—oxidizing conditions in

the aquifer, (Red)—reducing conditions in the aquifer. Table S1. Summary statistics on strontium
concentration values. Table S2. Test of Normality Shapiro-Wilk. Table S3. Parameters and values
used for deterministic exposure calculations. Refs [59–64] cited in Supplementary Materials.
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