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Abstract: Speed governing control is significant in ensuring the stable operation of pumped storage
units. In this study, a state-space equation mathematical model of the pumped storage governing
system considering the complex hydraulic pipeline structure of the pumped storage plant is proposed
to describe the system’s dynamic behaviors under small disturbance conditions. Considering the
frequent operating condition transitions and the complicated nonlinear dynamic characteristics of
the pumped storage units, the fractional-order PID (FOPID) scheme that possesses a higher degree
of control freedom than the traditional PID scheme is discussed in detail. To optimize the control
parameters of the unit governor, an improved gravitational search algorithm (IGSA) that combines
the basic searching mechanisms of the gravitational search algorithm and chaotic search, elastic
sphere boundary treatment, and elite guidance strategy is developed. Comparative studies have
been carried out under frequency and load disturbance conditions. Simulation results indicate that
the control performance of FOPID is better than that of PID under diverse operating conditions and
the proposed IGSA has satisfactory parameter optimization capability.

Keywords: pumped storage unit; governing system; fractional-order PID; improved gravitational
search algorithm

1. Introduction

With the gradual increase in the proportion of new energy sources such as wind power
and solar energy in the electrical network [1,2], pumped storage is becoming more and
more important as an effective regulation power source [3]. As the core control system
of pumped storage units, the pumped storage governing system (PSGS) undertakes the
important tasks of manipulating the start-up and shutdown of the unit, the working
condition conversions, and the peak regulation and frequency regulation [4]. PSGS is
a nonlinear complex system, which may present complicated dynamic behavior during
operation. Therefore, the establishment of an accurate and effective simulation model [5]
as well as the optimization of governor control parameters [6] can achieve a better control
effect on the unit and ensure the stable operation of the unit.

With the development of pumped storage power plants, extensive studies have been
reported on the modeling and control of PSGS. A typical PSGS consists of a hydraulic
system, pump-turbine, generator, governor and electro-hydraulic servomechanism [7]. In
system modeling, the PSGS is similar to the conventional hydraulic turbine governing
system (HTGS) in turbine mode. Usually, time-domain models are utilized to simulate
the evolution of state variables during the transition process. The state-of-the-art methods
include the method of characteristics (MOC) [8,9], the finite difference method [8,10], and
the differential equation model [10], etc. Under small disturbance conditions, the system
model ignores the system nonlinearities and selects a rigid water hammer model for the
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pipes and six-parameter model for the pump-turbine [11]; hence, the PSGS model can be
described by linearized state space equations [12]. For the speed governor, PID controller is
the most commonly used for PSGS due to its structural simplicity and applicability. With
the in-depth study of PID control laws, PID-like control laws such as nonlinear PID [13] and
FOPID [14] are increasingly used. FOPID is widely used in various engineering fields [15],
e.g., the chemical industry [16], nuclear power [17], and aerospace [18]. Compared with
traditional PID control, FOPID control possesses two more adjustable parameters, i.e., the
differential order and the integral order. It allows the FOPID controller to have better
robustness and control performance than the PID controller, but at the same time increases
the difficulty of parameter optimization [19].

In pumped storage regulation systems, the governor is a very important component.
The system’s control performances are mainly decided by the tunable control parameters,
and the optimization of these parameters can prominently enhance the system stability
level. For the controller parameter optimization problem, the traditional rectification
methods include the orthogonal test approach [20] and the simplex approach [21]. Although
these methods are simple to operate, they are not accurate enough to obtain the optimal
parameters under complex operating circumstances. The meta-heuristic algorithms [22]
(MA) have achieved better results in optimizing the controller parameters of hydropower
units. MA include the Genetic Algorithm [23] (GA) based on Darwinian evolutionary
theory, the Particle Swarm Optimization algorithm [24] (PSO) based on bird predation,
the Differential Evolution Algorithm [25] (DEA) that uses the differences between random
vectors to generate new vectors, the Gradient Descent Algorithm [26] (GDA) that uses
the gradient search algorithm to keep approaching the optimal result, the Pattern Search
Algorithm [27] (PSA) with axial exploration in the direction of feasible descent, and the
Simulated Annealing Algorithm [28] (SA) based on the annealing process of solids. The
Sine Cosine Algorithm (SCA) achieves close to the optimal result by the exact solution
of the sine–cosine function [29], and the Gravity Search Algorithm [30] (GSA) based on
gravity, etc. Unlike GA and PSO, which are based on biological phenomena, GSA is an
optimization method based on the laws of gravity and mass interaction in physics. GSA
has been verified to be more efficient than other optimization methods in optimizing the
controller parameters [31], but still suffers from localized and premature convergence
problems. However, almost all of the above research works have used the conventional
PID controller which ultimately leads to a sub-optimal response. The superiority of the
FOPID controllers are demonstrated in the results of the research work in this paper.

The accuracy and efficiency of optimization algorithms are crucial in solving engineer-
ing problems. In recent years, scholars have performed various research works in related
fields and proposed many effective improvement ideas, including boundary processing,
strategy improvement, algorithm fusion and parameter improvement. To improve the capa-
bility of GSA, Li et al. [32] proposed an improved gravitational search algorithm combining
PSO and GSA. Sarafrazi et al. [33] proposed fusing GSA with a physics-inspired Kepler
algorithm to speed up the algorithm’s search and improve accuracy. Zhang et al. [34] de-
signed and proposed a hybrid strategy based on Cauchy and Gaussian mutation to improve
the exploration of GSA. Yin et al. [35] incorporate a cross-search in the GSA to improve the
algorithm’s development capability. He et al. [36] introduced the concept of repulsive force
and proposed an improved gravitational search algorithm under the joint effect of repulsive
and gravitational forces. Tian et al. [37] combined the Water Cycle Algorithm (WCA) with
the GSA and use the concepts of watersheds and evapotranspiration to enhance the search
capability. Based on previous research, this paper proposes an improved GSA (IGSA) in
which the following four improvement strategies are incorporated into the GSA. Firstly, the
chaotic operator is added to increase the diversity of the population and the randomness of
the search; secondly, the adaptive gravitational decay factor is introduced to improve the
change rule of the gravitational constant; subsequently, the elastic sphere strategy is carried
out in the searching boundary treatment process; finally, the population of elite particles
are applied to accelerate the convergence rate of the algorithm.
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When using MA to optimize controller parameters, defining a proper objective func-
tion is crucial for the optimization of results. Usually, the input of the objective function
is the parameter to be optimized, and the output value is the fitness value. In this paper,
we select an objective function that comprehensively takes account of the rotational speed
error and the water pressure fluctuation during the transition process.

Most of the traditional models do not take into account the hydraulic structures of
the pumped storage power plant, such as the surge tanks, and cannot reflect the transient
processes of the crucial components. In order to improve the dynamic description ability
of the model, this paper establishes an accurate state-space model of the PSGS which
fully considers the hydraulic characteristics of the pipes, surge tanks and pump-turbine.
In order to obtain better control performance, the FOPID controller with higher control
degrees of freedom is chosen and compared to the conventional PID controller. In ad-
dition, the standard GSA algorithm was improved in this study to better optimize the
control parameters.

The rest of this paper is organized as follows: In Section 2, the mathematical equa-
tions of the PSGS derived from the state-space equations are established. In Section 3,
the fractional order calculus and the structure of the FOPID controller are introduced.
Subsequently, Section 4 introduces the GSA algorithm and the proposed improvements.
Then, the simulation results are analyzed in Section 5. Finally, the conclusions of this study
are condensed in Section 6.

2. Mathematical Model

The hydroelectric power plant is an important component in the modern power
system that converts water energy into electricity. Pumped storage power plant is a special
kind of hydroelectric power plant, which uses water as an energy storage medium to
store and manage electrical energy through the mutual conversion of electrical energy and
potential energy.

The PSGS is composed of upstream and downstream reservoirs, penstock, surge tanks,
pump-turbine, generator and speed governor. Water flows from the upstream reservoir
through the diversion pipeline, upstream surge tank and penstock to the pump-turbine
inlet, the kinetic energy of the running water drives the runner of the pump-turbine to
rotate and generates mechanical energy, the shaft of the pump-turbine is connected to the
generator and drives the generator rotor to rotate synchronously. The speed governor
guarantees the system’s frequency stability by regulating the guide vane opening.

This paper divides the PSGS into five parts: hydraulic system, pump-turbine, generator
and load, speed governor, and hydraulic servomechanism, with combined modeling of the
PSGS based on mathematical models of each component.

2.1. Hydraulic Systems’ Modeling

A typical layout of a pumped storage plant with two surge tanks is shown in Figure 1.
In order to study the control strategy for the speed governor, this work divides the PSGS
into five parts: the hydraulic system, pump-turbine, generator and load, speed governor,
and hydraulic servomechanism.

As shown in Figure 1, the water level of the upstream reservoir in the pumped storage
power plant is Hu (in meters), the cross-sectional areas of the diversion tunnel, penstock and
downstream tailrace tunnel are A1,A2,A3,A4 (in square meters), the lengths are L1,L2,L3,L4
(in meters), the cross-sectional areas of the upstream and downstream surge tanks are
As1,As2, and the water levels are Hs1,Hs2. Finally, a downstream reservoir with a water
level of Hd can be seen on the far right of the Figure 1, where the reservoir levels Hu and
Hd are considered as constants.
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Figure 1. Typical layout of a pumped storage plant with two surge tanks.

2.1.1. Overall Pipeline Modeling

In applied hydraulic transients [38], if the pipe length is less than 600–800 m, or the
governing system operates in small fluctuations conditions, the error of the rigid water
hammer model can meet the engineering requirements.

If head loss is considered, the rigid water strike transfer function can be obtained
as follows:

G(s) =
H(s)
Q(s)

= −
(

TwS + h f

)
(1)

where Tw is water inertia time constant; h f is the head loss of the tunnel.
As depicted in Figure 1, the overall pipeline is divided into three parts: the upstream

diversion tunnel, the penstock and the downstream tailwater tunnel. Using the rigid water
strike transfer function, the mathematical model of the dynamic relationship between these
three sections of the tunnel is given below.

1. Upstream diversion tunnel:

As displayed in Figure 1, the upstream diversion tunnel connects the upstream reser-
voir and the upstream surge tank. Since the upstream reservoir Hu is constant, the water
pressure deviation remains constant. The end of the diversion tunnel is connected to the
upstream surge tank, so the pressure deviation of the surge tank can be considered the
same as the pressure deviation of the diversion tunnel. The mathematical model of the
upstream diversion tunnel is derived from the rigid water strike Equation (1):

h1 = −
(

Tw1s + h f 1

)
q1 h1 = hs1 (2)

where:
Tw1—water inertia time constant of the diversion tunnel;
h f 1—relative head loss of the diversion tunnel;
h1,hs1—relative water pressure deviation of the diversion tunnel and the upstream

surge tank;
q1—the relative flow deviation of the diversion tunnel.

2. Penstock:

As presented in Figure 1, the penstock connects the upstream surge tank and pump-
turbine inlet, and the tailrace tunnel connects the pump-turbine outlet and downstream
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surge tank. The inertia of water flow is also considered in the penstock, and the mathemati-
cal model of the penstock is deduced as follows:hs1 − h2 =

(
Tw2s + h f 2

)
qt

h3 − hs2 =
(

Tw3s + h f 3

)
qt

(3)

where:
Tw2,Tw3—water inertia time constant of the penstock and the tailrace tunnel;
h f 2,h f 3—relative head loss of the penstock and the tailrace tunnel;
hs2,h2,h3—relative water pressure deviation of the upstream surge tank, the penstock

and the tailrace tunnel;
qt—relative flow deviation of the pump-turbine.

3. Downstream tailwater tunnel

As displayed in Figure 1, the tailrace tunnel connects the downstream surge tank and
the downstream reservoir, the downstream reservoir Hd is constant and the water pressure
deviation is kept constant, the mathematical model of the downstream tailrace tunnel is
deduced as follows:

hs2 =
(

Tw4s + h f 4

)
q4 (4)

where
Tw4—water inertia time constant of the downstream tailrace tunnel;
h f 4—relative head loss of the downstream tailrace tunnel;
hs2—relative water pressure deviation of the downstream tailrace tunnel;
q4—relative flow deviation of the downstream tailrace tunnel.

2.1.2. Surge Tank Modeling

As shown in Figure 1, the upstream and downstream surge tanks are straight cylinder
surge tanks. The surge tank plays the role of reflecting water hammer waves and reducing
water hammer pressure. In omitting the surge tank inlet damping, the straight cylinder
surge tank can be described as:

∆H =
∫ ∆Qdt

As
(5)

where:
∆H—water level in the surge tank changes, and water level rises as positive;
∆Q—flow in and out of the surge tank, inflow is positive;
As—cross-sectional area of the surge tank.
Taking the relative value of Equation (5):

hs(s)
qs(s)

=
1

Tjs
(6)

where:
Tj—time constant of the surge tank;
hs—relative water pressure deviation;
qs—relative flow deviation.
Considering the flow continuity, the relationship between the flows in the upstream

and downstream surge tanks can be deduced as follows [38]:
q1 = qs1 + q2
q3 = qs2 + q4
q2 = qt = q3

(7)

where q2,q3,qs1,qs2, respectively, are the relative flow deviations of the penstock, the tailrace
tunnel, the upstream surge tank, and the downstream surge tank.
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2.2. Pump-Turbine Modeling

For the study of the mathematical model of the pump-turbine, a six-parameter lin-
ear model can be used to describe the dynamic characteristics of the hydraulic turbine
for small fluctuation problems, and the parameters of the pump-turbine are shown in
Appendix A, and near a stable operating point, the linear model of the hydraulic turbine
can be expressed as [11]: {

mt = exx + eyy + ehht
qt = eqxx + eqyy + eqhht

(8)

where:
mt—relative value of hydraulic turbine torque deviation;
ht—relative value of hydraulic turbine head deviation;
x—relative value of rotation speed deviation;
y—relative value of guide vane opening deviation;
The six transfer functions are ex = ∂Mt

∂x , ey = ∂Mt
∂y , eh = ∂Mt

∂ht
, eqx = ∂Q

∂x , eqy = ∂Q
∂y ,

eqh = ∂Q
∂ht

.

2.3. Generator Modeling

In the modeling of the governing system of a pumped storage power plant, the most
frequently used model for the synchronous generator is the first-order model. That is,
considering only the dynamic response process of rotor motion, and treating the generating
motor as a rotating rigid shaft, which is coaxial with the pump-turbine and connected by
a coupling, and the parameters of the generator are shown in Appendix B. The dynamic
model considering the load is expressed as [11]:

Ta
dx
dt

+
(
eg − ex

)
x = mt −mg0 (9)

where:
mg0—load torque;

eg =
∂mg
∂x —load self-regulation factor;

Ta—time constant of mechanical inertia of the generator, expressed as:

Ta =
GD2n2

r
3580Pr

where GD2 is the flywheel torque of the rotating part of the unit; nr is the rated speed of
the unit; Pr is the rated output of the unit.

The transition process of the pumped storage power plant governing system, the
change in mg0 is usually regarded as a load disturbance to the PSGS.

2.4. Modeling of Electro-Hydraulic Servomechanism

The electro–hydraulic servomechanism is the actuator of the governor. It receives
output signals from the controller and performs electro–hydraulic conversion and hydraulic
amplification of the electrical control signals. Eventually, the electrical signal is converted
into the displacement signal of the receiver. The electro–hydraulic servo mechanism is
usually simplified to a first-order inertia link, as stated in Equation (10) [39],

y
u
=

1
TyS + 1

(10)

where:
u—control signal output by the controller;
y—stroke of the servo motor;
Ty—servomotor response time.
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2.5. PSGS Model

Based on the separate mathematical models of each link of the governing system of the
pumped storage power plant established earlier, a block diagram of the transfer function
of the pumped storage power plant governing system can be obtained, as presented
in Figure 2:
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As shown in Figure 2, the physical state variables x, y, q1, hs1, qt, hs2, q4, ht that can
be measured, are chosen to describe the overall PSGS model in the form of the state space
equations, as displayed in Equation (11),

.
x = − en

Ta
x +

ey
Ta

y + eh
Ta

ht − 1
Ta

mg0
.
y = − 1

Ty
y + 1

Ty
u

.
q1 = − h f 1

Tw1
q1 − 1

Tw1
hs1

.
hs1 = 1

Tj1
q1 − 1

Tj1
qt

.
qt =

1
Tw2+Tw3

hs1 −
h f 2+h f 3
Tw2+Tw3

qt − 1
Tw2+Tw3

hs2 − 1
Tw2+Tw3

ht
.

hs2 = 1
Tj2

qt − 1
Tj2

q4
.

q4 = 1
Tw4

hs2 −
h f 4
Tw4

q4
.

ht =
eqxen
Taeqh

x +
(

eqy
Tyeqh
− eqxey

Taeqh

)
y + 1

(Tw2+Tw3)eqh
hs1 −

h f 2+h f 3
(Tw2+Tw3)eqh

qt

− 1
(Tw2+Tw3)eqh

hs2 −
(

1
(Tw2+Tw3)eqh

+
eheqx
Taeqh

)
ht −

eqy
Tyeqh

u +
eqx

Taeqh
mg0

(11)

Based on the mathematical model of the penstock, the equation is discretized, and the
flow values obtained using adjacent discrete sampling times are used to calculate ∆q, then,
h2,h3 can be expressed as: {

h3 = Tw3
qt−qt−1

Ts
+ hs2 + h f 3

h2 = h3 + ht
(12)
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3. Fractional PID Algorithm of the Speed Governor
3.1. Definition of Fractional Calculus

Fractional calculus [40] is a mathematical theory that studies the properties of calculus
and integral operators of arbitrary order, and it extends the order of calculus to the field
of fractions and even plurals. Fractional calculus is a generalization of differentiation and
integration of non-integer order, and its operation basic operation operator is
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f (t) = lim
h→0

1
hα

[ t−a
h ]

∑
j=0

(−1)j
(

α
j

)
f (t− jh) (13)

where
(

α
j

)
= α(α−1)(α−2)···(α−j+1)

j! = α!
j!(α−j)! .

[ t−α
h
]

is the largest integer smaller than the

real number t−α
h , and h is the calculation step.

3.2. FOPID Controller Structure

Compared with the traditional integer-order PID, FOPID controller introduces dif-
ferential order µ and integral order λ, which has two more degrees of freedom and can
achieve better control effects. The PID and FOPID structure diagrams are given in Figure 3.
The transfer function of the FOPID controller can be expressed as:

C(s) =
u(s)
e(s)

= Kp + Kis−λ + Kdsµ (14)
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Its time domain expression is:

u(t) = Kpe(t) + KiD−λe(t) + KdDµe(t) (15)

where e(t) is the error signal, u(t) is the controller output signal, Kp,Ki,Kd are the controller
gain parameters, λ, µ are the fractional calculus orders, and λ, µ ∈ [0, 2]. When λ = µ = 1,
the FOPID controller is transformed into the integer-order PID controller.
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4. Improved Chaotic Gravitational Search Algorithm
4.1. Standard Gravitational Search Algorithm

Inspired by the law of universal gravity, Rashedi et al. proposed a new swarm
intelligence optimization algorithm—the gravitational search algorithm (GSA) in 2009 [30].
The law of gravity is a law that explains the relationship between objects interacting with
each other. In the gravitational search algorithm, gravity is equivalent to an information
transfer tool that enables information sharing among individuals and optimal search by
the group under the effect of gravity.

Assuming that there are N particles, the position and velocity of the ith individual in the D-
dimensional space are denoted as Xi =

(
x1

i , · · · , xd
i , · · · , xD

i

)
and Vi =

(
v1

i , · · · , vd
i , · · · , vD

i

)
,

where xd
i and vd

i , respectively, denote the position and velocity components of individual i
in the d-dimensions, and the position denotes the solution of the problem. The position and
velocity are first initialized in the solution space and velocity space, the objective function
values of each individual are calculated and evaluated, the mass, gravitational force and
acceleration of each individual are calculated, and finally the velocity and position of the
individual are updated [41].

According to Newton’s gravitation theory, in the d dimensions, the gravitational force
of individual j on i is expressed as:

Fd
ij(t) = G(t)

Mi(t)×Mj(t)
Rij(t) + ε

(
xd

j (t)− xd
i (t)

)
(16)

where G(t), Rij(t), respectively, are the universal gravitational constants at the tth iteration
and the Euclidean distances of individuals i and j, with the following expressions:

G(t) = G0 × exp(− α× t
T
) Rij(t) =

∣∣∣∣Xi(t), Xj(t)
∣∣∣∣2 (17)

where G0, α and ε are constants, t is the current number of iterations and T is the maximum
number of iterations, i,jε{1, 2, · · · , N} and i 6= j.

In the d dimensions, the combined force on individual i is:

Fd
i (t) = ∑N

jεKbest, j 6=i randj × Fd
ij(t) (18)

where randj is a random variable obeying a uniform distribution between [0, 1], and Kbest is
the collection of the top k individuals with the optimal fitness value and maximum quality.

The updated velocity and position can be obtained as:{
vd

i (t + 1) = randi ×Vd
i (t) + ad

i (t)
xd

i (t + 1) = xd
i (t) + vd

i (t + 1)
(19)

4.2. Improved Gravitational Search Algorithm (IGSA)

In order to improve the global search capability of GSA and avoid falling into a local
optimum, the following four improvement strategies are incorporated in this paper:

Chaos operator.
Chaos [42] is a seemingly random movement that cannot be repeated precisely that

occurs in nature. Chaotic motion is a complex state of motion unique to deterministic
nonlinear dynamical systems, it has characteristics such as class randomness, initial value
sensitivity, and ergodicity.

Chaos mapping is a mapping (evolutionary function) that exhibits some chaotic
behavior, some common chaos mappings include Logistic map, Sinusoidal map, Tent map,
Sine map and Bernoulli map.
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In this paper, we introduce the chaos operator to improve the GSA by choosing the
ergodic logistic mapping, namely:

rt+1 = urt × (1− rt) (20)

where control parameters u ∈ [0, 4], r ∈ (0, 1) and r0 /∈ [0.25, 0.5, 0.75, 1], rt ∈ (0, 1) is the
number of chaos generated in the tth iteration.

In the position update phase, chaos sequences are introduced to improve the conver-
gence of the algorithm, while chaos perturbations can help individuals escape from their
current position when they fall into a local optimum. The steps are as follows:

(1) A d-dimensional random vector cd
1 ∈ [0, 1] is generated, and the control parameter

u = 4, that is a fully chaos state is reached by Equation (20): cd
i = 4cd

i−1 × (1 − cd
i−1),

(i = 1, 2, · · · , k), generating a chaos vector with k denoting the number of individuals;
(2) The generated chaos vector is added to the search space, at which point the speed

update equation in the improved algorithm is:

vd
i (t + 1)′ =

[
randi × vd

i (t) + ξ
(

cd
i − 0.5

)]
+ ad

i (t) (21)

where ξ is the factor that controls the range of chaos;
(3) Using the improved velocity update equation to calculate the position at the

next moment:
xd

i (t + 1)′ = xd
i (t) + vd

i (t + 1)′ (22)

Adaptive universal gravitational constant decay factor.
From the gravitational force calculation Equation (16), we can see that the universal

gravitational constant G(t) is positively related to the gravitational force value, and its
value plays an important role in the calculation of the gravitational force. When G(t) takes
a larger value, the search range of the algorithm is wider to avoid falling into the local
optimum, while when G(t) takes a smaller value, the algorithm can better converge to the
global optimum. From Equation (17), it can be seen that the universal gravitational constant
decay factor α in the standard GSA is taken as a constant, which limits the performance
of the algorithm. Therefore, an adaptive universal gravitational constant decay factor
is proposed:

α(t) = α0 + w× sinh(δ× (
t
T
− θ)) (23)

where α0 is the initial value of the gravitational decay factor, w and δ are scaling factors,
w ∈ [0, 1], δ > 1, θ is the shift factor, which is taken in this paper as α0 = 20, w = 1, δ = 100,
θ = 0.35.

As the number of iterations increases, the universal gravitational constant shows
a nonlinear decrease, then the improved algorithm has a large gravitational constant at
the beginning to enhance the search ability, and the algorithm reduces the gravitational
constant at the later stage to accelerate the convergence of the algorithm.

Elastic ball boundary treatment.
Boundary constraints are added when initializing individuals, but as the iteration

proceeds, there may be individuals that cross the boundary after the position update, and
for the individuals that cross the boundary, the elastic ball boundary is handled by:{

xd
i (t) = Ub(d)− up, up = xd

i (t)−Ub(d), i f xd
i (t) > Ub(d)

xd
i (t) = Lb(d) + down, down = Lb(d)− xd

i (t), i f xd
i (t) < Lb(d)

(24)

It can be seen from Equation (24) that the elastic ball boundary treatment increases the
individual positions, enhances the search capability of the algorithm, and reduces the risk
of the algorithm falling into a local optimum.

Elite Guidance.
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The velocity update formula of GSA only considers the effect of acceleration, while the
velocity update in the particle swarm seeking algorithm takes into account the individual
memory and group information exchange, it is more convergent for particle seeking.
Therefore, the velocity update of IGSA combined with the chaos arithmetic and PSO
velocity update mechanism is obtained:

vd
i (t + 1) =

[
randi × vd

i (t) + ξ
(

cd
i − 0.5

)]
+ ad

i (t)

+c1 × rand×
(

Fd
best − xd

i (t)
)
+ c2 × rand×

(
Xd

best − xd
i (t)

) (25)

where c1, c2 are the adaptive learning factors that vary with the number of iterations, Fd
best

and Xd
best denote the individual optimal position and the global optimal position in the

d-dimensions, respectively.
Because the addition of the optimal position in the velocity update equation will

reduce the search capability of the algorithm, the adaptive learning factor is added to
balance the global search capability and local optimization capability of the algorithm. c1,
c2 update equations [43] are:

c1 = 1− exp(−30× (
t
T
)2) c2 = exp(−30× (

t
T
)2) (26)

Based on the above improvement strategies, a new improved gravitational search
algorithm (IGSA) is proposed in this paper with the following steps:

Step 1: Random initialization of the population and setting parameters. The setup
parameters include the population size N, the maximum number of iterations T, the
boundary of the position [Lb, Ub], the initial value of the universal gravitational force
G0 and the initial value of the gravitational decay factor α0. The population individual
positions are randomly initialized.

Step 2: It is determined whether the updated individual position is out of bounds.
The transgression uses the elastic ball boundary strategy of Equation (24) to assign a
new position.

Step 3: Calculate the fitness value of all individuals in the population, and determine
whether the fitness value is NaN (Not A Number) or not, if it is, then randomly initialize
the position of the individual and calculate the fitness value again, and repeat this step
until the fitness value is an output table value.

Step 4: Update global optimal position Xd
best and individual optimal position Fd

best, if
f zbest(t) < f zbest, then Xd

best= zbest(t), f zbest= f zbest(t).
Step 5: Calculating the individual mass Mi, the gravitational parameter G is calculated

according to Equations (17) and (23), the gravitational force Fd
i is calculated according to

Equations (16) and (18), finally calculating the acceleration ad
i .

Step 6: The adaptive learning factor is calculated according to Equations (26), and the
speed and position are updated according to Equations (25) and (19).

Step 7: The number of iterations t = t + 1, if t < T, go to step 2, otherwise end
the loop and obtain the optimal objective function value f zbest and the optimal position
vector Xd

best.
The algorithm flow chart of IGSA is indicated in Figure 4:
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4.3. Objective Function

Time multiplied by the integral of the absolute value of the error (ITAE) is often used
as an evaluation index for the performance of the speed regulation system of hydropower
units. The objective function proposed in this paper takes into account the rotational speed
error value and the water pressure deviation. The calculated ratio of ITAE to the number of
samples is taken as the first output, and the second output is the absolute value of water
pressure deviation minimum value during the transition process. By adjusting the weights
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of both during the parameter optimization process to ensure that the two output values are
approximately equal. The objective function can be presented as:

f = w1 ×
∫

t|e(t)|dt
N

+ w2 × |htmin| (27)

Its discrete expression is given by:

f = w1 ×
∑N

k=1 T(k)|xre f − x(k)|
N

+ w2 × |htmin| (28)

where w1, w2 are weighting factors, N is the number of samples, T indicates the time
sequence and htmin indicates the minimum value of water pressure deviation.

5. Simulation Results Analysis
5.1. Simulation Parameter Setting

In this section, the HTGS model proposed in Section 2.5 is simulated in the MATLAB
R2020b software environment, the simulation environment is under a 2.4 GHz inteli7 CPU
and 16G RAM. Tables 1 and 2 show the simulation parameters of HTGS and the transfer
coefficients of the pump-turbine, respectively. The values of the boundary on the FOPID
and PID tuning parameters are given in Table 3.

Table 1. HTGS simulation parameters [44].

Parameters Values

Water inertia time constant Tw1, Tw2, Tw3, Tw4 0.6, 0.5, 0.5, 0.6
Head loss of the tunnel h f 1, h f 2, h f 3, h f 4 0.0026, 0.003, 0.003, 0.0015
Time constant of the surge tan k Tj1, Tj2 10, 10

Time constant of mechanical inertia of the generator Ta 3.4
Load self− regulation factor eg 0.05
Servomotor response time Ty 0.2

Table 2. Transfer coefficients of water pump-turbine.

ex ey eh eqx eqy eqh

−0.45 1.0 1.5 0.0 1.0 0.5

Table 3. The values of the boundary on the FOPID and PID tuning parameters.

Kp Ki Kd λ µ

FOPID [0, 5] [0, 5] [0, 5] [0, 2] [0, 2]
PID [0, 5] [0, 5] [0, 5] - -

Based on the above unit parameters, the frequency disturbance and load disturbance
simulation tests are performed in this study.

5.2. Load Disturbance Scenario

According to the model established in this paper, under a 10% load disturbance, the
optimization performances of four parameter optimization algorithms (i.e., SA, GA, PSO
and IGSA) and the control effects of the PID and FOPID are compared, respectively.

5.2.1. Comparison of SA, GA, PSO and IGSA

The parameters of SA are set as follows: initial temperature Ts = 100, termination
temperature Te = 0.01, temperature decay factor α = 0.95, maximum number of iterations
T = 100, maximum number of iterations at temperature Tk Lk = 30.
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The parameters of GA are set as follows: population size N = 30, maximum number
of iterations T = 100, crossover probability Pc = 0.7, variance probability Pm = 0.01.

The parameters of PSO are set as follows: population size N = 30, maximum number
of iterations T = 100, learning factor c1 = c2 = 2, velocity weight w = 0.6.

The parameters of IGSA are set as follows: population size N = 30, maximum number
of iterations T = 100, G0 = 20, the gravitational constant decay factor parameter is set the
same as revealed in Section 4.2.

When the weight factor w1 = 0.05, w2 = 0.95, after 100 iterations, the convergence
curves of the fitness functions of SA, GA, PSO and IGSA are shown in Figure 5:
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According to the fitness convergence trend displayed in Figure 5, it can be seen that
among the four algorithms, the final fitness value of GA is the largest and that of IGSA
is the smallest. From the convergence curve, SA starts with the largest fitness value and
decreases the fastest, PSO decreases the fitness more slowly during the descent process,
and GA converges the slowest. Comparing the final fitness values, it can be seen that SA,
GA and PSO easily fall into the local optimum and have difficulty in jumping out of it,
while the final fitness value of IGSA is smaller. This shows that as the number of iterations
increases, the fitness value of IGSA has been decreasing. The chaos perturbations added in
the position update phase enables IGSA to jump out of the local optimum continuously,
which indicates that IGSA has better global exploration ability.

Table 4 shows the dynamic indicators for SA, GA, PSO and IGSA with optimal
control parameters:

Table 4. Dynamic indicators of SA, GA, PSO and IGSA optimal control parameters under load disturbance.

f Overshoot Stabilization Time |hmin|

SA 0.0509 -- 45.0 0.034
GA 0.1230 -- 60.6 0.036
PSO 0.0482 -- 40.1 0.033
IGSA 0.0452 -- 21.2 0.029

Figure 6 compares the relative values of rotation speed deviation x, guide vane opening
deviation y and hydraulic turbine head deviation ht variation curves under the optimal
control parameters of SA, GA, PSO and IGSA during load disturbance:
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Combining Table 4 and Figure 6, the dynamic indexes under the optimal control
parameters of IGSA are significantly better than the other three algorithms. In Table 4,
IGSA has the smallest objective function, stabilization time and absolute value of the
minimum value of water pressure deviation. It can also be seen in Figure 6 that the
unit speed deviation transition process optimized by the IGSA algorithm is significantly
improved compared to the other three algorithms. The speed increase process is smoother,
the stabilization time is shorter, and the absolute value of the minimum value of the
water pressure deviation is also the smallest, which achieves better control parameter
optimization. Overall, the transition process of x, y, ht under the optimal control parameters
of IGSA is obviously improved.

5.2.2. Comparison of PID and FOPID

In order to prove that FOPID control has a better control effect than PID control in
the parameter optimization of pumped storage speed regulation systems, tests select the
optimal control parameters for both controls. Figure 7 compares x, y and ht variation curves
of the model under the load disturbance of the two controllers:
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Table 5 shows the dynamic indicators for PID and FOPID with optimal control parameters:

Table 5. Dynamic indicators of PID and FOPID optimal control parameters under load disturbance.

f Overshoot Stabilization Time |hmin|

PID 0.0505 -- 40.2 0.0332
FOPID 0.0452 -- 21.2 0.0290

In Figure 7, it is obvious that the dynamic performance of the FOPID controller is
significantly better than that of the PID controller during load disturbance. From the
data presented in Table 5, it can be concluded that the values of the objective function,
stabilization time and absolute value of the minimum value of water pressure deviation
under the FOPID control are reduced by 0.0053, 19 and 0.0042, respectively, which verifies
the superiority of the FOPID control.

5.3. Frequency Disturbance Scenario

Under a 5% frequency disturbance, this section compares four different parameter
optimization algorithms of SA, GA, PSO and IGSA and the control effects of the two
controllers PID and FOPID.

5.3.1. Comparison of SA, GA, PSO and IGSA

The SA, GA, PSO and IGSA parameters are set the same as in Section 5.2.1. When the
weight factor w1 = 0.115, w2 = 0.885, after 100 iterations, the convergence curves of the
fitness functions of SA, GA, PSO and IGSA are displayed in Figure 8:
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Figure 8. Convergence curves of the fitness functions under frequency disturbance.

According to the fitness convergence trend displayed in Figure 8, in the 5% frequency
disturbance, SA starts with the largest fitness value and the fitness value falls into the local
optimum after two decreases, PSO falls into the local optimum after about seven iterations,
and GA has the largest fitness value after the continuous optimization search. Comparing
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the final fitness values of the four algorithms, it is observed that SA, GA and PSO easily
fall into the local optimum and have difficulty jumping out of it. The proposed IGSA has a
wider search range and better search capability, and the optimal fitness value decreases
continuously during the iterative process. It proves that the IGSA has better applicability
and explorability.

Table 6 shows the dynamic indicators for SA, GA, PSO and IGSA with optimal
control parameters:

Table 6. Dynamic indicators of SA, GA, PSO and IGSA optimal control parameters under frequency
disturbance.

f Overshoot Stabilization Time |hmin|

SA 0.0587 23.26% 44.85 0.0180
GA 0.1667 42.22% 67.70 0.0213
PSO 0.0319 10.14% 32.10 0.0140
IGSA 0.0254 2.28% 17.05 0.0084

Figure 9 compares x, y and ht variation curves under the optimal control parameters
of SA, GA, PSO and IGSA during frequency disturbance:
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Combining Table 6 and Figure 9, the dynamic indexes under the optimal control
parameters of IGSA are significantly better than the other three algorithms. In Table 6,
the values of the objective function, overshoot, stabilization time and absolute value of
the minimum value of water pressure deviation of IGSA are lower than the other three
algorithms. From Figure 9, the speed deviation transition process of the unit optimized
by the IGSA algorithm is significantly improved compared to the other three algorithms.
The speed increase process is smoother and reaches stability faster, the speed overshoot is
almost nothing, and the absolute value of the minimum value of the hydraulic pressure
deviation is also the smallest, which achieves a better optimization of the control parameters.
In conclusion, the transition process of x, y, ht under the optimal control parameters of
IGSA is obviously improved.

5.3.2. Comparison of PID and FOPID

Figure 10 compares x, y and ht variation curves of the model under the frequency
disturbance of the two controllers:
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Table 7 shows the dynamic indicators for PID and FOPID with optimal control parameters:

Table 7. Dynamic indicators of PID and FOPID optimal control parameters under frequency disturbance.

f Overshoot Stabilization Time |hmin|

PID 0.0452 45.98% 30.75 0.0339
FOPID 0.0254 2.28% 17.05 0.0084

It is evident from Figure 10 that the FOPID controller achieves better results in PSGS
control at frequency disturbance. By analyzing the results of each parameter in Table 6,
it is found that the values of the objective function, overshoot, stabilization time and
absolute value of the minimum value of water pressure deviation are reduced by 0.0198,
43.7%, 13.7 and 0.0255, respectively. Combined with Table 7 and Figure 10, it is found that
under frequency disturbance, the adjustment quality improvement under FOPID control is
more obvious.

5.4. Results Analysis

Through the frequency disturbance and load disturbance tests on the model, com-
paring the four algorithms of SA, GA, PSO and IGSA, it is proved that the optimization
results of IGSA are better than those of SA, GA and PSO, and IGSA has better search ability,
while the FOPID parameters optimized by IGSA can make the pumped storage regulation
system have better dynamic performance; comparing the control effects of both FOPID and
PID controllers, it can be seen that the dynamic performance obtained through the action
of the FOPID controller is better than that of the PID controller.

6. Conclusions

This paper establishes a simulation model of a pumped storage speed regulation
system with double surge tanks and compares the control effects of two controllers PID
and FOPID. The IGSA is proposed to optimize the governor parameters. By comparing
the convergence curves of the fitness function under load disturbance and frequency
disturbance, it is verified that the IGSA proposed in this paper has better search capability
than SA, GA and PSO, and it can address the algorithm precociousness and the local
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optimum trapping problem. In addition, under load disturbance and frequency disturbance,
comparing the control effects under two different controllers PID and FOPID, it is found
that FOPID has better comprehensive control performances.

In summary, the main contribution of this paper lies in the following two aspects:
(1). A new PSGS state-space equation model which fully considers the hydraulic char-

acteristics of the pipes, surge tanks and pump-turbine and the eletromechanical behaviors
of the generator and hydraulic servomechanism is proposed.

(2). An improved GSA optimizer combining the basic searching mechanisms of the
gravitational search algorithm and chaotic search, elastic sphere boundary treatment, and
elite guidance strategy is developed for the control parameter optimization of the FOPID
scheme. Through comparative case studies under load disturbance and frequency distur-
bance, it is proved that the proposed IGSA shows superiority over parameter optimizers
on governor parameter optimization.

Future work will also focus on comparing simulation results with experimental results.
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Nomenclature

PSGS:
Tw water inertia time constant
h f head loss of the tunnel

Tw1, Tw2, Tw3, Tw4
water inertia time constant of diversion tunnel, penstock,
tailrace tunnel and downstream tailrace tunnel

hs relative water pressure deviation

hs1, hs2
relative water pressure deviation of upstream surge tank
and downstream tailrace tunnel

h1, h2, h3
relative water pressure deviation of the diversion tunnel, penstock,
tailrace tunnel

h f 1, h f 2, h f 3, h f 4
relative head loss of diversion tunnel, penstock, tailrace tunnel
and downstream tailrace tunnel

qs relative flow deviation

q1, q2, q3, q4, qs1, qs2

relative flow deviation of diversion tunnel, penstock, tailrace tunnel,
downstream tailrace tunnel, upstream surge tank
and downstream surge tank

∆H water level in the surge tank changes
∆Q flow in and out of surge tank
As cross-sectional area of surge tank
Tj time constant of surge tank
Tj1, Tj2 time constant of upstream surge tank and downstream surge tank
mt relative value of hydraulic turbine torque deviation
ht relative value of hydraulic turbine head deviation
qt, qt−1 relative flow deviation of the pump-turbine at moments t and t− 1
x, y relative value of rotate speed deviation and guide vane opening deviation
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y (servo mechanism) stroke of the servo motor

ex, ey, eh
partial derivatives of the torque with respect to head, guide vane
and turbine speed

eqx, eqy, eqh
partial derivatives of the flow with respect to head, guide vane
and turbine speed

Ta time constant of mechanical inertia of the generator
mg0 load torque
eg load self-regulation factor
en synthetic self-regulation coefficient
GD2 flywheel torque of rotating part of the unit
nr rated speed of the unit
Pr rated output of the unit
u control signal output by the controller
Ty servomotor response time
FOPID:
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operation basic operation operator of fractional calculus
a, t upper and lower bounds of the operation operator
α order of the calculus
h calculation step[ t−α

h
]

the largest integer smaller than the real number t−α
h

Kp proportional adjustment coefficient
Ki integral adjustment coefficient
Kd differential adjustment coefficient
e(t) error signal
u(t) controller output signal
λ, µ integral order and differential order
s the Laplace operator
IGSA:
xd

i , vd
i the position and velocity components of individual i in the d-dimensions

Fd
ij(t) gravitational force of individual j on i

G(t), Rij(t)
the universal gravitational constants at the tth iteration and the Euclidean
distances of individuals i and j

G0, α, ε gravitational constant
t, T current number of iterations and the maximum number of iterations
randj a random variable obeying a uniform distribution between [0, 1]

Kbest
the collection of the top k individuals with the optimal fitness value
and maximum quality

ad
i (t) the acceleration of individual i in the d-dimensions

rt the number of chaos generated in the tth iteration
u chaos control parameters
cd

1 a d-dimensional random vector
ξ factor that controls the range of chaos
α0 initial value of the gravitational decay factor
w, δ scaling factors
θ shift factor

Ub(d), Lb(d)
the upper and lower boundaries of the positions of the individuals
in d-dimension

c1, c2 adaptive learning factors

Fd
best, Xd

best
individual optimal position and the global optimal position
in the d-dimensions

f fitness value
w1,w2 weighting factors
N, T the number of samples and time sequence
htmin the minimum value of water pressure deviation
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Appendix A

Table A1. The parameters of the pump-turbine.

Parameters Values

Rated rotation speed 500 r/min
Power frequency 50 Hz
Maximum head 565 m

Rated head 540 m
Minimum head 526 m
Rated discharge 62.09 m3/s

100% GVO 20.47◦

Rated Power output 300 MW

Appendix B

Table A2. The parameters of the generator.

Parameters Values

Rated capacity (generator) 334 MVA
Rated power (generator) 300 MW

Rated capacity (electric motor) 338 MVA
Rated power (electric motor) 325 MW

Rated voltage 15.75 kV
Power factor (generator) 0.9

Power factor (electric motor) 0.975
Rated rotation speed 500 rpm

Number of rotor magnetic poles 12 (Pole logarithm 6)
Rated frequency 50 Hz
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