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Abstract: Chlorophyll a (Chla) is a crucial pigment in phytoplankton, playing a vital role in determin-
ing phytoplankton biomass and water nutrient status. However, in optically complex water bodies,
Chla concentration is no longer the primary factor influencing remote sensing spectral reflectance
signals, leading to significant errors in traditional Chla concentration estimation methods. With ad-
vancements in in situ measurements, synchronized satellite data, and computer technology, machine
learning algorithms have become popular in Chla concentration retrieval. Nevertheless, when using
machine learning methods to estimate Chla concentration, abrupt changes in Chla values can disrupt
the spatiotemporal smoothness of the retrieval results. Therefore, this study proposes a two-stage
approach to enhance the accuracy of Chla concentration estimation in optically complex water bodies.
In the first stage, a one-dimensional convolutional neural network (1D CNN) is employed for precise
Chla retrieval, and in the second stage, the regression layer of the 1DCNN is replaced with support
vector regression (SVR). The research findings are as follows: (1) In the first stage, the performance
metrics (R2, RMSE, RMLSE, Bias, MAE) of the 1D CNN outperform state-of-the-art algorithms (OCI,
SVR, RFR) on the test dataset. (2) After the second stage, the performance further improves, with
the metrics achieving values of 0.892, 11.243, 0.052, 1.056, and 1.444, respectively. (3) In mid- to
high-latitude regions, the inversion performance of 1D CNN\SVR is superior to other algorithms, ex-
hibiting richer details and higher noise tolerance in nearshore areas. (4) 1D CNN\SVR demonstrates
high inversion capabilities in water bodies with medium-to-high nutrient levels.

Keywords: marine; chlorophyll a; remote sensing inversion; deep learning

1. Introduction

Chlorophyll a (Chla) is an important biological indicator of phytoplankton biomass
in aquatic ecosystems, and it plays a crucial role in measuring the primary productivity
of the ocean and assessing the ecological quality of water bodies [1]. Phytoplankton
absorb carbon dioxide and produce oxygen through photosynthesis, and their presence
in appropriate amounts can improve water quality, as well as help to reduce greenhouse
gas emissions [2]. However, human activities have had a particularly significant impact on
coastal waters, leading to local eutrophication and rapid increases in the surface biomass
of phytoplankton [3]. Harmful algal blooms caused by marine eutrophication are serious
aquatic ecological disasters that can severely damage the ecological environment of water
bodies and pose a threat to human society [4,5]. In summary, monitoring and analyzing
Chla concentrations can improve the ecological quality of water bodies, achieve sustainable
water resource management, and provide essential scientific evidence for addressing
climate change and protecting marine ecosystems. Therefore, the construction of a global
ocean Chla concentration field is of crucial significance for improving the ecological quality
of water bodies.
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The traditional method involves collecting water samples and measuring marine
environmental parameters through buoys and cruises. However, this approach has several
drawbacks, including low temporal and spatial resolution, high costs, and time-consuming
processes, which limit its application on large and long-term scales [6]. In contrast, remote
sensing technology offers significant advantages over traditional methods, including high
spatiotemporal resolution, low cost, and high efficiency. It can effectively overcome these
limitations [7–10]. Currently, commonly used satellite sensors [11] include the Sea-viewing
Wide Field-of-view Sensor (SeaWiFS), launched by NASA in 1997, the Moderate Resolution
Imaging Spectroradiometer (MODIS), jointly launched by NASA and the US Geological
Survey (USGS) in 1999, the Medium Resolution Imaging Spectrometer (MERIS), launched
by the European Space Agency (ESA) in 2002, and the Ocean and Land Colour Instrument
(OLCI), launched by ESA in 2016 [12]. Generic methods for Chla inversion in open ocean
areas using these sensors have been well established, such as the OCx algorithm for Chla
concentrations greater than 0.20 mg/m3 [7] and the CI algorithm for Chla concentrations
less than 0.15 mg/m3 [13]. However, these algorithms have poor accuracy in Chla in-
version in complex water bodies such as coastal waters, which cannot meet application
requirements and, therefore, require further research and exploration.

Currently, there are mainly two types of Chla inversion algorithms for coastal waters,
including band ratio algorithms [14,15] and fluorescence-based algorithms [16]. Some two-,
three-, and four-band ratio algorithms in the band ratio method can consider the impact of
water components and perform well in coastal waters, but their models only hold under
certain assumptions and are difficult to adapt to highly turbid water bodies [15]. The
fluorescence-based algorithms, including the Fluorescence Line Height (FLH), Normalized
Fluorescence Height (NFH), and Fluorescence Envelope Area (FEA) methods, can reduce
the impact of suspended particles, yellow substances, and aerosols on remote sensing
reflectance and achieve good accuracy in regional coastal chlorophyll inversion. However,
the fluorescence peak is influenced by chlorophyll concentration, and the rapid changes in
the water environment in coastal waters can limit the accuracy of this method [17,18]. The
above-mentioned algorithms for Chla in coastal waters only yield ideal results in specific
water areas and are difficult to extend to other coastal regions, making it challenging
to determine their applicability and limitations on a global scale. To address this issue,
classification or segmented inversion algorithms based on water component types have
been widely used. For example, Neil et al. [19] divided the global inland and coastal aquatic
systems into 13 different optical water types and used a dynamic ensemble algorithm to
determine the inversion model parameters for specific water bodies, achieving a correlation
coefficient of 0.89 for the inversion results. While this algorithm has high universality, its
inversion results are directly limited by the optical water classification criteria and require
the establishment of fusion algorithms between different optical water types, making it
relatively complex. Therefore, a more objective and simpler algorithm is needed.

Due to the ability of machine learning algorithms to eliminate the limitations of Chla
inversion based on water component classification and the fact that they do not require
any prior knowledge to be established between response and prediction variables, Chla
inversion based on machine learning algorithms has received increasing attention [20,21].
The Chla concentration in water affects the absorption and reflection characteristics of spec-
tra. Based on this feature, remote sensing reflectance (Rrs) can be used as an input feature
of machine learning models to predict Chla concentrations [22]. Among them, multilayer
perceptron (MLP), Gaussian process regression (GPR), support vector regression (SVR),
and random forest regression (RFR) have been proven to have potential in Chla inversion
in complex water bodies [23–26]. However, traditional machine learning algorithms have
limitations in dealing with large-scale high-dimensional data, model parameter adjustment,
and nonlinear model establishment compared to deep learning algorithms, which have
better scalability and the ability to automatically learn feature patterns [27]. Among them,
convolutional neural networks (CNNs) are a neural network architecture that can extract
high-dimensional or complex features from raw data. As long as the training dataset
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covers a wide range of data, CNNs can effectively process spectral information in remote
sensing data, thereby improving the accuracy of Chla inversion [25]. However, research on
a general method based on one-dimensional convolutional neural networks (1D CNN) for
Chla inversion is still relatively limited.

This paper proposes a universal method for Chla inversion in coastal waters, which
combines 1D CNN and other traditional machine learning algorithms to establish a re-
lationship model between remote sensing reflectance (Rrs) and Chla concentration. We
use the original Rrs as input features to predict Chla concentration and demonstrate the
performance of the model. Through comparison with other algorithms, we verify the
high accuracy of the model in coastal waters with different nutrient levels. Finally, we
conduct Chla inversion and relevant analysis in coastal waters based on this model. The
proposed method provides an effective solution for global Chla inversion in coastal wa-
ters. By conducting higher precision monitoring and analysis of Chla concentrations, it
becomes possible to gain a more accurate understanding of water nutrient levels. This, in
turn, enables timely resolution of aquatic ecosystem issues, providing a crucial scientific
foundation for achieving sustainable water resource management and safeguarding marine
ecosystems. Additionally, it plays a proactive role in addressing climate change.

2. Data and Preprocessing
2.1. Data Source

This paper is based on the data from the Aerosol Robotic Network—Ocean Color
(AERONET-OC) and utilizes the validation system provided by the NASA Ocean Biology
Processing Group (OBPG) through the SeaBASS website (https://seabass.gsfc.nasa.gov)
to perform spatiotemporal matching of sensor and in situ data to obtain a remote sensing
in-situ matched dataset, access time for the 2002 to 2017. In situ data for Chla concentration
were obtained through cruise measurements, and the values obtained from both fluores-
cence and ion chromatography methods were found to be consistent. Therefore, in this
paper, the Chla concentration values obtained from both methods are considered to be
identical and are treated as true values. The Rrs values in this dataset were obtained from
the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite.
Figure 1 shows the spatiotemporal distribution of MODIS-Aqua matched with true values.
The matched data mainly cover open and coastal waters from low to high latitudes in 2003
and 2004. The remote sensing in-situ matched dataset was divided into a training set and a
validation set in a 4:1 ratio, with their spatial distribution shown in Figure 2.
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purple box represents Roi_1, while the blue box represents Roi_2.
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The inversion data are sourced from the Ocean Color SMI: Standard Mapped Image
MODIS Aqua data provided by OBPG (https://oceancolor.gsfc.nasa.gov), acquired from
2002 to 2017, with a spatial resolution of 4 km and including parameters such as Rrs and
Chla concentrations.

2.2. Data Preprocessing

Based on the spectral characteristics of Chla and the complex features of coastal areas,
the reflectance data from ten bands (412, 443, 469, 488, 531, 547, 555, 645, 667, and 678) were
selected. To reduce noise in the dataset, paired points with Chla concentrations greater
than 50 mg/m3 and negative Rrs values were excluded. Through these steps, a more
consistent spectral reflectance curve was obtained, and the impact on the true situation was
minimized, as shown in Table 1. The reflectance data were then standardized, and the Chla
data were transformed using a log10 function. After preprocessing in this manner, both
datasets contained no outliers or invalid values and were in approximate ranges, which
was beneficial for building the inversion model. The final dataset contained 1271 matched
pairs, reduced from the original 1351.

Table 1. Statistical results before and after data preprocessing.

Data Type
Before Preprocessing After Preprocessing

Min Max Mean Min Max Mean

Rrs_412 (sr−1) −0.00354 0.01914 0.00336 0.00001 0.01914 0.00355
Rrs_443 (sr−1) −0.00201 0.02393 0.00327 0.00009 0.02393 0.00344
Rrs_469 (sr−1) −0.00129 0.02973 0.00373 0.00055 0.02973 0.00388
Rrs_488 (sr−1) −0.00073 0.03174 0.00378 0.00049 0.03174 0.00392
Rrs_531 (sr−1) 0.000883 0.02765 0.00415 0.00088 0.02765 0.00425
Rrs_547 (sr−1) 0.000846 0.02539 0.00418 0.00102 0.02539 0.00427
Rrs_555 (sr−1) 0.000795 0.02306 0.00403 0.00102 0.02306 0.00410
Rrs_645 (sr−1) −0.00047 0.01438 0.00156 0.00001 0.01438 0.00159
Rrs_667 (sr−1) −0.00041 0.01277 0.00127 0.00001 0.01277 0.00130
Rrs_678 (sr−1) −0.00032 0.01226 0.00130 0.00002 0.01226 0.00133
Chla (mg/m3) 0.019 58.099 4.945 0.019 46.350 4.708

3. Model Development
3.1. 1D CNN/SVR Model Design

The model used in this paper consists of two algorithms, 1D CNN and SVR, to form
a 1D CNN/SVR inversion model. The 1D CNN module is responsible for the automatic
feature extraction of Rrs, while the SVR module performs regression for fitting Chla
concentration. Figure 3 shows the construction process of the inversion model.

https://oceancolor.gsfc.nasa.gov
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Figure 3. Illustrates the process of constructing the inversion model.

Traditional CNN structures usually consist of multiple convolutional layers, pool-
ing layers, and fully connected layers [28]. The convolutional layers are used for feature
extraction, while the pooling layers reduce the size and number of features, thereby re-
ducing the computational complexity of the model. Finally, the fully connected layers
transform the features into classification or regression results. However, 1D CNNs differ
slightly from traditional CNNs in structure, as the input to the convolutional layer is a
three-dimensional vector consisting of samples, time steps, and features, and the output
is also a three-dimensional vector consisting of samples, time steps, and channels [29]. In
short, 1D CNNs are a type of convolutional neural network designed specifically for pro-
cessing one-dimensional sequence data. The original dataset used in this paper consisted
of two-dimensional vectors, including samples and features, which needed to be converted
into three-dimensional vectors. In addition, having too few features may limit the number
of convolutional layers that can be used. Therefore, this paper adopted a method of adding
features by expanding the feature volume through a fully connected layer. Specifically, we
used a fully connected layer with n neuron nodes to perform a full connection operation
(F, 1) on the input vector, with an output of (F, n). After the reshape operation, the vol-
ume can be restored to its original dimension. However, because 1D CNN is a deep
learning model, it may overfit the training set, while SVR is a nonlinear regression model
based on kernel functions with good generalization capabilities. Therefore, in this pa-
per, the final fully connected layer of the 1D CNN was replaced with an SVR module to
achieve regression.
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As shown in Figure 4, we constructed the first module of the 1D CNN/SVR inversion
model, namely the feature extraction module, based on TensorFlow. The second module,
on the other hand, was built using scikit-learn (sklearn) to create the regression module.
Firstly, a fully connected layer is used to expand the 10 original features (412, 443, 469, 488,
531, 547, 555, 645, 667, and 678) to 600 new input features. The first convolutional layer uses
a kernel size of 5, stride of 5, and 64 filters to extract 1200 × 64 high-dimensional features.
Then, three CNN blocks with the same parameters and structure are used to further process
the features, each consisting of two convolutional layers and one pooling layer. The kernel
size of the convolutional layer is 3, the stride is 1, and there are 32 filters, while the pooling
layer uses max pooling with a size of 2. The activation function is uniformly set to the ReLU
function. The final regression module is composed of an SVR model, with a regularization
parameter of 1 and a kernel function of the polynomial kernel and radial basis function,
and the other parameters are set to the default values of sklearn.
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3.2. Inversion Model Evaluation Metrics

Due to the limitations of standard statistical metrics in Chla inversion algorithms, this
paper uses both raw and log-transformed Chla metrics for performance evaluation. The
metrics used are as follows:

R2 = 1− ∑n
i=1 (log10(Mi)− log10(Ei))

2

∑n
i=1 (log10(Mi)−mean(log10(Ei)))2 (1)

RMSE =

√
1
n ∑n

i=1 (Ei −Mi)
2 (2)

RMSLE =

√
1
n ∑n

i=1 (log10(Ei)− log10(Mi))
2 (3)

MAE =
10
n ∑n

i=1

∣∣log10(Ei)− log10(Mi)
∣∣ (4)

Bias =
10
n ∑n

i=1 log10(Ei)− log10(Mi) (5)

In the Chla concentration prediction process after log10 transformation, R2 is used to
evaluate the fitting degree of the regression model, RMSLE is used to measure the difference
between the predicted values and the true values, and MAE and Bias are used to calculate
the mean absolute error between the predicted values and the true values, and the average
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error of the predicted values, respectively. In addition, the RMSE of the untransformed
Chla concentration is also calculated to evaluate the standard deviation.

To further explore the model’s performance in real space, we take the in situ data as
the reference and consider the difference between the model predictions and the actual
values as the inversion error. We employ several key metrics to evaluate the performance,
including the minimum value X(1), maximum value X(n), median X( n+1

2 ), first quartile
X( n+1

4 ), third quartile X
( 3(n+1)

4 )
, outliers, and interquartile range. The formula for calculating

the interquartile range is as follows:

IQR = Q3−Q1 (6)

IQR represents the interquartile range, where Q3 stands for the third quartile, and Q1
is the first quartile.

4. Experiments and Results
4.1. Model Performance Evaluation

To evaluate the performance metrics of the 1D CNN/SVR inversion model, it was
compared with the OCI algorithm, as well as SVR, RFR, and 1D CNN models, using the
product dataset. To ensure the objectivity of the experiments, the original inputs of all the
models were kept consistent, i.e., 10 original features, the same training data (N = 1016)
and validation data (N = 255), and the validation results are shown in Table 2 and Figure 5.

Table 2. Numerical values of evaluation metrics on the validation.

Algorithm R2 Slope RMSE (mg/m3) RMLSE Bias MAE

OCI 0.808 0.923 22.102 0.089 0.853 1.662
SVR 0.829 0.914 16.572 0.082 1.081 1.524
RFR 0.871 0.849 12.565 0.062 1.053 1.512

1DCNN 0.874 0.888 18.968 0.060 1.144 1.494
1DCNN/SVR 0.892 0.879 11.243 0.052 1.056 1.444

Water 2023, 15, x FOR PEER REVIEW 7 of 14 
 

 

𝐵𝑖𝑎𝑠 = 10𝑛 ෍ logଵ଴(𝐸௜) − logଵ଴(𝑀௜)௡௜ୀଵ  (5)

In the Chla concentration prediction process after log10 transformation, R2 is used to 
evaluate the fitting degree of the regression model, RMSLE is used to measure the differ-
ence between the predicted values and the true values, and MAE and Bias are used to 
calculate the mean absolute error between the predicted values and the true values, and 
the average error of the predicted values, respectively. In addition, the RMSE of the un-
transformed Chla concentration is also calculated to evaluate the standard deviation. 

To further explore the model’s performance in real space, we take the in situ data as 
the reference and consider the difference between the model predictions and the actual 
values as the inversion error. We employ several key metrics to evaluate the performance, 
including the minimum value X(1), maximum value X(n), median 𝑋(೙శభమ ), first quartile 𝑋(೙శభర ), third quartile 𝑋(య(೙శభ)ర ), outliers, and interquartile range. The formula for calcu-

lating the interquartile range is as follows: 𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (6)

IQR represents the interquartile range, where Q3 stands for the third quartile, and 
Q1 is the first quartile. 

4. Experiments and Results 
4.1. Model Performance Evaluation 

To evaluate the performance metrics of the 1D CNN/SVR inversion model, it was 
compared with the OCI algorithm, as well as SVR, RFR, and 1D CNN models, using the 
product dataset. To ensure the objectivity of the experiments, the original inputs of all the 
models were kept consistent, i.e., 10 original features, the same training data (N = 1016) 
and validation data (N = 255), and the validation results are shown in Table 2 and Figure 
5. 

 
Figure 5. Validation set prediction results. Figure 5. Validation set prediction results.



Water 2023, 15, 3864 8 of 14

The performance in the logarithmic space is shown in Figure 5A–E. The OCI algorithm
has poor predictive ability because it is based on an empirical model constructed using
global ocean data, while the Chla concentration in coastal waters is influenced by many
nonlinear factors, leading to limited prediction accuracy. Among the machine learning
algorithms, the SVR algorithm has poor predictive ability, with a total prediction error
of 1.081. The predictive ability of the RFR algorithm is better than that of the SVR, with
an R2 of 0.871 and a reduced prediction error of 1.053. Although the 1D CNN algorithm
has better predictive ability than the RFR, the prediction error is as high as 1.144. Finally,
the 1D CNN/SVR algorithm has an R2 of 0.892, explaining 89.2% of the variance of the
target variable. The average error is 11.243 mg/m3, and the RMSLE is 0.052, indicating that
the prediction error follows a log-normal distribution; the Bias is 1.056, and the MAE is
1.444. These metrics indicate that the model has the strongest predictive ability, the smallest
prediction error, and the smallest deviation between the predicted and actual values overall.
Therefore, according to the results of this experiment, the 1D CNN/SVR model is the most
suitable for Chla concentration inversion in coastal waters.

4.2. Evaluation of the Inversion Capability of the Model at Different Trophic Levels

In this section, we evaluated the inversion capability of the model at different trophic
levels on a global spatial scale using the monthly average data from August 2003. Figure 6A–E
shows the global spatial distribution of Chla concentration inversion results based on the
OCI, SVR, RFR, and 1D CNN/SVR algorithms. The inversion results of these algorithms
exhibit similar spatial patterns, such as the characteristics of upwelling near the equator
and high Chla concentrations in coastal waters. However, the SVR algorithm shows
overestimated Chla concentrations and noise points in the spatial regions of 30◦–60◦ S and
60◦–90◦ N, indicating that the inversion results of this algorithm are sensitive to noise in
mid- to high-latitude regions, and the inversion capability is relatively weak. However, the
1D CNN/SVR algorithm did not exhibit this phenomenon, indicating that the 1D CNN used
in the first phase of the model can effectively improve this drawback of the SVR algorithm.
In addition, there are some differences in performance among the algorithms, as shown in
Table 2, but it is difficult to observe the performance differences between the algorithms
in the global Chla inversion results, and it is difficult to observe the spatial smoothness of
Chla concentrations across different trophic levels, especially in coastal waters. Coastal
areas are influenced by nutrient inputs from rivers, streams, and groundwater, as well as
the presence of suspended particles such as sediments and organic matter. These factors
contribute to the complexity of the coastal water body. Therefore, we further reduced
the spatial scale and selected two regions for inversion, the coastal waters of the North
Atlantic (60◦–80◦ W, 30◦–50◦ N) and the southern Indian Ocean (40◦–60◦ E, 30◦–50◦ S),
represented as roi_1 (purple box) and roi_2 (blue box), respectively, as shown in Figure 1.
This is because roi_1 and roi_2 are located in mid- to high-latitude regions, have more
in situ measured points, and have coastal waters with low-nutrient, nutrient-rich, and
eutrophic environments [30], which can fully verify the inversion capability of the model
in mid- to high-latitude regions with different trophic levels and ensure the accuracy of the
inversion results.

The inversion results of roi_1 are shown in Figure 7A–E. The inversion results of
the 1D CNN/SVR model are smoother than those of other algorithms, and there are
almost no noise points in the relatively open sea areas. The Chla concentration exhibits
a smooth transition in the mesotrophic and eutrophic zones, while the OC3M, SVR, and
RFR algorithms show sudden increases. This indicates that other algorithms may be more
sensitive to noise, resulting in sudden changes or outliers. In contrast, the 1D CNN/SVR
model can better capture and smooth the noise and outliers in the data, thereby improving
the accuracy and stability of the inversion results for Chla concentration.
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Figure 8 reflects the errors of the four algorithms, OCI, SVR, RFR, and 1D CNN/SVR,
in the inversion results of roi_1 compared to the true values, using 100 in situ data points
(N = 100). Figure 8A shows that in areas with high Chla concentrations, the OCI algorithm
has poor overall fit to the true values, while the SVR and RFR algorithms have improved
overall fit but may overestimate Chla concentration. The 1D CNN/SVR algorithm has
a higher overall fit and has improved the overestimation of Chla concentration. From
Figure 8B and Table 3, it can be seen that the inversion error of RFR is the smallest, but the
inversion smoothness of RFR is poor. In addition, the average inversion error of the 1D
CNN/SVR algorithm is lower than that of SVR but higher than that of 1D CNN, while the
maximum and minimum inversion errors are lower than those of 1D CNN. This indicates
that 1D CNN/SVR is a combination of SVR and 1D CNN algorithms, complementing each
other’s disadvantages. However, the accuracy of the model still needs to be improved in
practical predictions.

Table 3. Minimum, maximum, and average inversion errors (roi_1).

OCI SVR RFR 1DCNN 1DCNN\SVR

Min −12.804 −5.747 −5.092 −5.429 −4.651
Max 14.619 6.810 5.968 12.940 12.669

Average −1.416 −0.296 −0.130 −0.154 −0.190
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The inversion results of roi_2 are shown in Figure 9A–E. The inversion results of the
1D CNN/SVR model are similar to those of OC3M, indicating that the model has some
ability to invert Chla concentration in low-nutrient areas. However, the spatial smoothness
of the inversion results is greatly reduced. This is because the training data are mostly
concentrated in the nearshore areas, and the 1D CNN/SVR model may pay more attention
to the features and patterns of the nearshore areas during the training process, resulting in
insufficient feature learning for low-nutrient areas and poor inversion results in these areas.
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To further observe the inversion errors of the algorithms, we reduced the number of in
situ data points (N = 27) and compared the inversion results of the four algorithms to the
true values in roi_2, as shown in Figure 10 and Table 4. It can be observed from Figure 10A
that the inversion errors of the algorithms are generally low, but their ability to handle
outliers is poor, which is consistent with the inversion results in roi_1. From Figure 10B and
Table 4, it can be seen that the minimum and maximum prediction errors of 1D CNN/SVR
are lower than those of 1D CNN, confirming that 1D CNN/SVR is a combination of SVR
and 1D CNN algorithms.
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Table 4. Minimum, maximum, and average inversion errors (roi_2).

OCI SVR RFR 1DCNN 1DCNN\SVR

Min −11.695 −2.096 −4.446 −3.254 −2.667
Max 11.156 4.553 1.5071 8.611 8.173

Average −1.007 −0.219 −0.009 −0.254 −0.268

In summary, compared with other algorithms, the 1D CNN/SVR model can better
capture and smooth the noise and outliers in the data, improve the accuracy and stability of
the inversion results, and may show more details and fluctuations in the spatial smoothness
of the inversion results. However, the ability of the model to invert Chla concentration in
low-nutrient areas still needs to be improved.

5. Conclusions

In this study, we developed a global ocean surface Chla inversion model based on
machine learning. Using ocean Chla concentration as the research object, we standardized
and removed outliers from the original Rrs before inputting it into the model for prediction.
The performance evaluation experiments demonstrate that the 1DCNN\SVR model outper-
forms current mainstream algorithms, namely OC3M, SVR, RFR, and 1DCNN. Moreover,
the respective R2, RMSE, RMLSE, Bias, and MAE in logarithmic space achieved values of
0.892, 0.879, 11.243 (mg/m3), 0.052, 1.056, and 1.444. Evaluation of inversion capabilities
in different nutrient levels showed that the 1D CNN/SVR model addresses the weakness
of SVR in inverting Chla concentration in middle and high latitudes and exhibits richer
details and higher noise tolerance in the inversion results in nearshore areas, making it a
viable alternative for inverting Chla concentration in nearshore areas. At the same time, the
model also has the ability to invert Chla concentration in different nutrient waters, although
its performance in low-nutrient areas is slightly weaker, which is a direction for further
research. This model not only overcomes the complexity and inefficiency of traditional
models but also excels in constructing a high-precision global ocean Chla concentration
field. Monitoring and analysis of Chla concentration enables the timely detection of water
nutrient levels. Additionally, it provides a crucial scientific basis for addressing climate
change and protecting marine ecosystems.
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