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Abstract: Fishery is vital for Taiwan’s economy, and over 40% of the fishery products come from
aquaculture. Traditional aquaculture relies on the visual observation of a water-wheel tail length
to assess water quality. However, the aging population, lack of young labor, and difficulty in
passing down experience pose challenges. There is currently no systematic method to determine
the correlation between the water quality and water-wheel tail length, and adjustments are made
based on visual inspection, relying heavily on experience without substantial data for transmission.
To address the challenge, a precise and efficient water quality control system is proposed. This study
proposes a water-wheel tail length measurement system that corrects input images through image
projective transformation to obtain the transformed coordinates. By utilizing known conditions
of the water-wheel, such as the length of the base, the actual water-wheel tail length is deduced
based on proportional relationships. Validated with two different calibration boards, the projective
transformation performance of specification A is found to be better, with an average error percentage
of less than 0.25%. Data augmentation techniques are employed to increase the quantity and diversity
of the dataset, and the YOLO v8 deep learning model is trained to recognize water-wheel tail features.
The model achieves a maximum mAP50 value of 0.99013 and a maximum mAP50-95 value of 0.885.
The experimental results show that the proposed water-wheel tail length measurement system can be
used feasibly to measure water-wheel tail length in fish farms.

Keywords: water-wheel tail; image calibration; projective transformation; aquaculture; smart monitoring

1. Introduction

In Taiwan, aquaculture is an important economic pillar with an annual output value
of over TWD 20 billion. However, traditional aquaculture is facing challenges such as
an aging labor force, a lack of young workers, and the difficulty of transferring fishing
knowledge to the next generation. Traditional aquaculture methods are labor-intensive and
not cost-effective, leading to a transition toward smart aquaculture models with the rapid
advancement of technology.

Based on the experiences of the older generation of fishermen, it is known that the
length of the water-wheel tail is closely related to water quality. However, there is currently
no systematic method to determine water quality, and adjustments are made based on
visual inspection, relying heavily on experience without substantial data for transmission.
This mode of judgment is difficult to fully pass on to the next generation. Furthermore, most
water quality detection instruments available on the market are expensive and unaffordable
for many aquaculture farmers. Sensors left in the water for an extended period are prone
to interference from algae, leading to distorted data. Sending samples to county inspection
centers for testing is time-consuming and not economically viable. Therefore, the primary
challenge in aquaculture is how to effectively manage fish ponds, improve decision-making
accuracy, reduce costs, and increase profits.
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However, to achieve the above objectives, we believe that smart aquaculture will be
an excellent approach. For example, Li et al. designed and implemented a system with
multiple-parameter sensors, enabling aquaculture environment water quality monitoring,
data collection, and analysis [1]. This system assists fishermen in making aquaculture
decisions and improves the level of aquaculture intelligence. Yuan et al. developed a water
quality monitoring system that uses computer image processing technology to analyze
fish behavior in real-time, thereby monitoring potential water contamination [2]. Kassem
et al. also created a smart aquaculture farm system that integrates recirculating aquaculture
systems (RASs) and zero-water (ZWD) or discharge biological flocculation technology,
incorporating monitoring and automation to ensure good water quality and high survival
rates of aquatic life [3]. By combining the information above, we designed a system based
on fishermen’s wisdom, integrating monocular vision technology to effectively manage
fish ponds and enhance decision-making accuracy.

Through the visual assessment method relied upon by fishermen, the quality of the
fish and shrimps’ living environment and the trend of the length of foam trails generated
by a water-wheel are determined to be related. When water-wheels are in operation, they
produce foam, which is a phenomenon formed through the combination of soluble proteins
and air in the water. The generation of foam can be influenced by various factors from
different sources. Oh explored the relationship between the design of the condenser outlet
of a thermal power plant and foam production, mentioning that high-temperature cooling
water can promote algae growth, increase the amount of organic matter, and thereby
increase the likelihood of foam formation [4]. Jenkinson discussed the relationship between
waves, ripples, foam, and aquatic organisms, stating that foam can regulate the exchange
of air and substances in water, including greenhouse gases [5]. Excessive and persistent
foam generated by the water-wheel operation indicates a high organic matter content in
the water [6,7]. Therefore, performing appropriate water exchange and reasonable feeding
can reduce the concentration of organic matter [8,9].

When recording images of water-wheel trail with a camera, perspective distortion
can occur due to factors such as shooting position and angle. Therefore, image projective
transformation is needed to correct the images. Image projective transformation is used to
correct camera lens distortion, enabling a more accurate image capture and the restoration of
images to their original shapes, accounting for translation, rotation, or deformation, among
other factors [10–12]. For example, Chong et al. used image projective transformation
to correct chest X-ray images captured with smartphones to improve the quality and
discernibility of X-ray images [13].

Multiple studies have shown that neural networks play a crucial role in object recogni-
tion [14–16]. Their ability to automatically learn features, identify complex patterns, and
adapt to new situations efficiently enables them to effectively distinguish object categories
and continually improve recognition accuracy. For example, Yandouzi et al. combined
deep learning object recognition with drone technology to detect fires and smoke in forests
using YOLO v8, aiming to monitor forest fires [17].

Data augmentation is a widely used technique in deep learning aimed at increasing
the diversity of training data and improving model generalization [18–20]. By applying
random transformations or specific operations to training data, additional training samples
are generated, enhancing data diversity [21–24]. In DeVries et al.’s research [25], a data
augmentation method called “Cutout” was proposed, which simulates image occlusion
or missing parts by randomly blocking certain areas of the image to enhance the model’s
ability to learn local details. Cubuk et al.’s study [26] introduced a method named “Au-
toAugment”, which uses reinforcement learning algorithms to automatically learn suitable
data augmentation strategies to enhance image classification performance. In the context of
face recognition, Zhang et al.’s research [27] presented a method called “Facial landmark-
guided augmentation”, which adds virtual facial landmarks to facial images to increase the
diversity of training samples.
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Therefore, to address the challenge, a precise and efficient water quality control
system is proposed in this study. This study aims to use photography to capture the
water-wheel tail and perform image calibration and projective transformation on the
photos using calibration boards. By utilizing known conditions and the proportional
relationship, the actual length of the water-wheel tail can be calculated. Additionally, a
target detection algorithm is employed to identify the characteristic of the water-wheel tail.
The system’s key feature lies in its ability to measure and record the length of the water-
wheel tail. In the future, the system’s measurement results will be combined with data
from water-quality sensors. Through machine learning, the correlation between the two
can be determined. Guo et al. utilized comprehensive data on early-season rice in China
from 1981 to 2010, including phenological, climatic, pre-season, geographical, and yield
data. They applied three advanced machine learning methods, namely, backpropagation
neural network (BP), support vector machine (SVM), and random forest (RF), along with
a traditional statistical approach, multiple linear regression (MLR), to model rice yield.
This approach was employed to address the impact of phenology on rice yield prediction
and to assess the influence of pre-season crops on rice yield prediction [28]. Andrej et al.
also employed automated machine learning to establish the knowledge base of an expert
system for habitat suitability identification, specifically to determine the habitat range of
brown bears in southwestern Slovenia [29]. Similarly, Pham et al. used machine learning
integration techniques to evaluate and compare landslide model performance for landslide
susceptibility assessment [30]. The information provided underscores the capacity of
machine learning to assist in prediction, particularly in forecasting water quality changes
based on water-wheel tail length trends [31].

2. Materials and Methods

This study recorded the water-wheel tail using commercial cameras. The fish farms
are located in Annan District, a coastal district located in the west of Tainan, Taiwan [32],
as shown in Figure 1. Milkfish and white shrimp are mixed in the fish farms.
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The purpose of this study is to measure the length of water-wheel tails through
imagery. To achieve this, projective transformation is employed to obtain no-perspective-
distortion images. Projective transformation is a type of transformation commonly used
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in geometry that maps one two-dimensional or three-dimensional space to another two-
dimensional or three-dimensional space while preserving the collinearity of the points.
Projection transformation can describe the projection process of a camera and eliminate
the perspective distortion of an image. It is widely used in computer graphics, computer
vision, and geometry. Suppose that the point of a point (w, z) transformed by projection is
(x′, y′), the relation can be expressed as:

[
x′ y′ h

]
=
[
w z 1

]a11 a12 a13
a21 a22 a23
b1 b2 1

 (1)

where a13 and a23 are not zero, and x′ = hx while y′ = hy. Figure 2 illustrates the
schematic diagram of the projective transformation process, and it can be observed that
the transformed image has been corrected to eliminate distortion. The definition of a
water-wheel tail length is depicted in Figure 3.
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The definition of the water-wheel tail’s starting and ending points is based on the
knowledge gained from fishermen’s experience. The starting point is the location where it
intersects with the water surface of the fish pond and is aligned with the central upright
pillar of the water-wheel body (indicated by the red arrow in Figure 3). The ending point
is where the foam in the water-wheel tail disappears. Additionally, in accordance with
fishermen’s experience, if there is a break in the foam generation followed by a reappearance
(as indicated by the green circle in Figure 3), it may be due to interference from the water
flow caused by other nearby water-wheels or other factors. In such cases, the ending point
is considered to be the location where the foam initially ceased during the first occurrence.
Therefore, the yellow line segment represents the actual length of the water-wheel tail.

Two different specifications of calibration boards were used in this study for projec-
tive transformation, as illustrated in Figure 4. The left image displays specification A,
which comprises seven vertically aligned grid squares, while the right image showcases
specification B with five vertically aligned grid squares. In this experiment, recordings
of the water-wheel tail were captured at five fixed points, as illustrated in Figure 5. This
was performed to simulate the scenario where fishermen capture the water-wheel tail
from different positions. At each fixed point, at least three images were taken to ensure
measurement repeatability.
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Additionally, at each fixed point, images were captured with the water-wheel turned
off and positioned elsewhere. This step was taken to prevent the water-wheel body and
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the water splashes it generated from obstructing the corner points of the calibration board.
These images served as the target coordinate system for the projective transformation at
each fixed point. Since there are two different specifications for the calibration board, these
steps were repeated twice during each experiment to compare the calibration effectiveness
of the two board specifications. Furthermore, two different camera specifications were
used in this study to confirm whether the measurement system was applicable to different
camera models. Table 1 shows the specifications of the cameras and the calibration board
in the experimental setup. Figure 6 illustrates the detailed process of image projective
transformation.

Table 1. Specification of experimental setup.

Item Model Specifications

Camera

Canon
EOS R10

Effective pixels: 24.2 million pixels

Resolution: 6000 × 4000

Sensor type: CMOS
Sensor size: APS-C (22.3 mm × 14.8 mm)

FUJIFILM
FinePix HS10

Effective pixels: 10.3 million pixels

Resolution: 3648 × 2736

Sensor type: CMOS
Sensor size: 1/2.3′′ (6.17 mm × 4.55 mm)

Calibration
board

Custom

Type Square side
length Pattern array Pattern size

Spec. A 100 mm 7 × 115 0.7 m × 11.5 m

Spec. B 144 mm 5 × 80 0.72 m × 11.52 m
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The operation of the measurement system involves using MATLAB to perform pro-
jective transformation to obtain undistorted images. Then, known parameters such as
the length of the water-wheel base and proportional relationships are used to deduce and
assess the length of the target object, which is the water-wheel tail. In addition to using the
length of the water-wheel base to estimate the length of the water-wheel tail, the system
also employs the measurement of the lateral grid length on the calibration board to verify
the effectiveness of the projective transformation. This involves assuming that only the
length of the first grid square is known, as shown in Figure 7, with corner a and corner b.
The entire length of the lateral grid square is measured, as indicated by corner a and corner
c in Figure 7. Subsequently, the measured value is compared to the theoretical value to
calculate the percentage error.
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Furthermore, in this study, YOLO v8 was used to train a model for the purpose of
identifying water-wheel tails. Since “water-wheel tails” are specific and not commonly
found features, general pre-trained models are often trained on more common objects like
humans, cats, dogs, cars, etc., and may not handle these data effectively. Therefore, in
this research, training and prediction were carried out using a custom dataset to achieve
the goal of recognizing water-wheel tails. The training process with the custom dataset is
illustrated in Figure 8.
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To evaluate the detection performance of a water-wheel tail, we trained a machine
learning model using YOLO v8. In classification or detection tasks, the confusion matrix
is commonly used as an evaluation metric. It is a two-dimensional matrix where rows
represent the actual labels and columns represent the model’s predicted results (as shown
in Table 2). Based on the confusion matrix, various commonly used evaluation metrics can
be calculated, including precision, recall, and F1 score. Precision measures the accuracy
of the model in predicting positives, with a higher proportion of true positives among
all samples predicted as positive (refer to Equation (2)). Recall measures the predictive
ability of the model for positive samples by correctly predicting more among all actual
positives (refer to Equation (3)). The F1 score is a harmonic mean of precision and recall
and is often used in imbalanced class problems. It also serves as one of the indicators for
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evaluating the accuracy of this water-wheel tail detection model. It provides a single metric
to comprehensively assess model performance.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Table 2. Confusion matrix.

Predicted Positive Predicted Negative

Actual positive TP FN
(Type I Error)

Actual negative FP
(Type II Error) TN

In the model training, the definition of the water-wheel tail, as shown in Figure 9,
differs slightly from the previous definition. To make it easier for the model to learn the
complete characteristics of water-wheel tails, the starting point of the water-wheel tail was
changed to the outer side of the water-wheel base, while the ending point remained the
same as that of the previous definition for measuring the length of the water-wheel tail. To
augment the dataset and improve its generalization, various data augmentation techniques
were employed in this study, including random brightness adjustment, random saturation
adjustment, horizontal flipping, 5-degree clockwise and counterclockwise rotations, ran-
dom translation, random cropping, 90-degree clockwise and counterclockwise rotations,
and the addition of Gaussian noise. The images before and after data augmentation are
shown in Figure 10. The original dataset consisted of 100 images of water-wheel tails
without the calibration board (as shown in Figure 11) and 10 images of water-wheel tails
with the calibration board. After applying the 10 data augmentation techniques, the total
dataset size increased to 1210 images. In this study, the dataset was split into 10% for testing
and 90% for training and validation. The number of training epochs was set to 100, the
batch size was set to 8, and the width and height of the image were adjusted to 640 pixels.
A GPU was utilized for training.
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3. Results

To verify the feasibility of the water-wheel tail measurement system, this study con-
ducted experiments on both the effectiveness of projective transformation and the mea-
surement of the water-wheel tail length. Figure 12 presents a side-by-side comparison of
images before and after projective transformation, showcasing the successful correction of
perspective distortion.
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Figure 12. Images before and after projective transformation.

Table 3 and Figure 13 display the results of the projective transformation validation
using calibration boards of different specifications. These experiments, labeled “−1” and
“−2”, represent the first and second experiments, respectively. The data obtained from
different shooting positions were depicted in a graph, with the “No. of the picture”
signifying the different images captured at the same position. Specification A had a
theoretical value of 11.3 m, while specification B had a theoretical value of 11.232 m. The
second experiment illustrated in Figure 13, which involved changing the camera used for
shooting from FUJIFILM FinePix HS10 to Canon EOS R10, demonstrated that the data
in the second experiment were more concentrated compared to the first experiment. The
standard deviation of the data also decreased. Moreover, the average percentage error for
specification A was lower than that for specification B in both experiments, indicating that
the calibration board of specification A had a better projective transformation effect in this
experimental environment. However, it was noted that the measurement accuracy of the
calibration boards met the expected goal of being smaller than 0.5 m in both experiments.

Table 3. Calibration effects using different specifications of calibration boards (specifications A-1, B-1,
A-2 and B-2).

Position No. Calculated Length of
Calibration Board (m)

Theoretical Length of
Calibration Board (m) Error Average

Error

I (A-1)

1 11.5108

11.3

1.87%

1.10%2 11.3683 0.60%

3 11.3927 0.82%

II (A-1)

1 11.5773 2.45%

0.76%2 11.3221 0.20%

3 11.2566 0.38%

III (A-1)

1 11.3814 0.72%

0.38%2 11.2224 0.69%

3 11.4258 1.11%
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Table 3. Cont.

Position No. Calculated Length of
Calibration Board (m)

Theoretical Length of
Calibration Board (m) Error Average

Error

IV (A-1)

1 11.3609

11.3

0.54%

0.27%2 11.288 0.11%

3 11.3427 0.38%

V (A-1)

1 11.3473 0.42%

1.55%2 11.307 0.06%

3 10.7216 5.12%

I (B-1)

1 11.3098

11.232

0.69%

0.50%2 11.2871 0.49%

3 11.2679 0.32%

II (B-1)

1 11.3932 1.44%

0.72%2 11.1791 0.47%

3 11.3677 1.21%

III (B-1)

1 11.4283 1.75%

2.12%2 11.5952 3.23%

3 11.388 1.39%

IV (B-1)
1 11.4596 2.03%

2.05%2 11.4688 2.11%

3 11.46 2.03%

V (B-1)

1 10.9396 2.60%

0.53%2 11.4851 2.25%

3 11.451 1.95%

I (A-2)

1 11.2938

11.3

0.06%

0.24%2 11.2856 0.13%

3 11.2394 0.54%

II (A-2)

1 11.2483 0.46%

0.41%2 11.2323 0.60%

3 11.2794 0.18%

III (A-2)

1 11.2735 0.23%

0.21%2 11.2746 0.22%

3 11.2794 0.18%

IV (A-2)

1 11.2918 0.07%

0.14%2 11.2982 0.02%

3 11.2615 0.34%

V (A-2)

1 11.2499 0.44%

0.24%2 11.2778 0.20%

3 11.2902 0.09%
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Table 3. Cont.

Position No. Calculated Length of
Calibration Board (m)

Theoretical Length of
Calibration Board (m) Error Average

Error

I (B-2)

1 11.0882

11.232

1.28%

1.27%2 11.092 1.25%

3 11.0863 1.30%

II (B-2)

1 11.1129 1.06%

1.07%2 11.1036 1.14%

3 11.1198 1.00%

III (B-2)

1 11.108 1.10%

1.10%2 11.107 1.11%

3 11.1093 1.09%

IV (B-2)

1 11.1305 0.90%

0.81%2 11.1219 0.98%

3 11.1708 0.54%

V (B-2)

1 11.087 1.29%

1.32%2 11.0963 1.21%

3 11.0673 1.47%

Water 2023, 15, x FOR PEER REVIEW 13 of 18 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 13. Verification of calibration effects using different specifications of calibration boards (spec-
ifications A and B): (a) A-1 (b) B-1 (c) A-2 (d) B-2. 

Figure 14 presents the outcomes of the water-wheel tail length measurement. It can 
be observed that most of the measured values fall within the 7 to 10 m range. For specifi-
cation A in the first experiment, the maximum, minimum, and average values are 9.87 m, 
7.52 m, and 8.72 m, respectively. In the first experiment with specification B, the maxi-
mum, minimum, and average values are 10.04 m, 7.67 m, and 9.04 m, respectively. In the 
second experiment, the values for specification A are 9.94 m, 7.35 m, and 8.62 m, while for 
specification B, they are 9.64 m, 7.21 m, and 8.66 m. The data concentration and the reasons 
behind it are further discussed in the next section.  

Figure 13. Verification of calibration effects using different specifications of calibration boards
(specifications A and B): (a) A-1 (b) B-1 (c) A-2 (d) B-2.



Water 2023, 15, 3889 13 of 16

Figure 14 presents the outcomes of the water-wheel tail length measurement. It
can be observed that most of the measured values fall within the 7 to 10 m range. For
specification A in the first experiment, the maximum, minimum, and average values are
9.87 m, 7.52 m, and 8.72 m, respectively. In the first experiment with specification B, the
maximum, minimum, and average values are 10.04 m, 7.67 m, and 9.04 m, respectively. In
the second experiment, the values for specification A are 9.94 m, 7.35 m, and 8.62 m, while
for specification B, they are 9.64 m, 7.21 m, and 8.66 m. The data concentration and the
reasons behind it are further discussed in the next section.
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Further, a model was trained to enable the recognition of the water-wheel tail feature.
Figure 15 depicts the training outcomes of the model, including the F1-epoch curve and
the F1-Confidence curve. It is evident from Figure 15a that the initial F1-score was around
0.6. After less than 10 training epochs, the F1-score surpassed 0.8, and it continued to rise
gradually, converging to around 0.97. The highest F1-score achieved was 0.98098, occurring
at the 86th training epoch. The average F1-score from the 51st to the 100th training epochs
was 0.96713. Figure 15b shows “all classes 0.97 at 0.589”, signifying that for all classes, when
the model’s confidence was 0.589, the F1-score of the model reached 0.97. This implies
that at a specific confidence threshold, the model performed very well in terms of positive
predictions and correct detections.

Finally, when passing untrained images through the model for prediction, it can be
observed that although the scenes are not identical, the model’s predicted bounding boxes
still have a confidence level exceeding 0.8, and their boundaries closely align with the
water-wheel tail as defined in this study, as shown in Figure 16.
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4. Discussion

The study reveals several important results related to the water-wheel tail measure-
ment system. In the experiments involving projective transformation and calibration
boards, the proposed system effectively corrected perspective distortion, with calibration
board specification A demonstrating superior performance. The measurement accuracy of
the calibration boards met the set expectations, confirming the system’s reliability.

The measurement of the water-wheel tail length showed that most values fell within
the range of 7 to 10 m. However, some variations were observed, particularly as the water-
wheel tail neared its endpoint. These variations were attributed to the dynamic nature of
the water-wheel tail, where splashes and foam at the starting point led to challenges in
maintaining a consistent length within a short time. Additionally, the calmer water flow at
the tail’s endpoint made it susceptible to dispersion in different directions due to varying
water currents and wind forces. As a result, fluctuations in the water-wheel tail’s length
occurred over short periods, not solely due to water quality variations.

To improve the understanding of the correlation between the water-wheel tail length
and water quality parameters, future efforts should involve multiple measurements at
the same location. Applying averaging and other statistical methods can provide a
more representative water-wheel tail length that accurately reflects the water quality at a
given moment, while also minimizing potential biases stemming from a limited number
of measurements.

The experimental results demonstrate the precise measurement capability of our
system for the water-wheel tail in various scenarios. These initial findings have established
a robust scientific foundation for our research. Our future work is to develop a real-time
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application tool that adheres to commercial standards, enabling continuous monitoring of
water-wheel tails. This tool will encompass functionalities such as real-time data collection,
analysis, and visualization, empowering users to monitor dynamic changes in the water-
wheel tail promptly. We intend to dedicate the upcoming period toward developing and
testing the system extensively to ensure its stability and usability.

5. Conclusions

This study developed a water-wheel tail length measurement system that uses projec-
tion transformation to correct input images and calculate coordinates in the transformed
images. Through known conditions (such as the length of the water-wheel base) and
proportional relationships, the actual length of the target object (such as the water-wheel
tail) can be estimated. Two different-sized calibration boards were used for measuring
the length of the chessboard edge and the water-wheel tail length, respectively, with the
following results obtained. In the chessboard-edge length-measurement verification, it
was found that the projection transformation effect using specification A was better, with
an average error percentage of less than 0.25%. It was also confirmed that this system
can be used with different camera modules, not being limited to specific cameras. In the
water-wheel tail measurement experiment, it was found that the system could eliminate
perspective distortion through projection transformation, and the transformed images
could be used to measure water-wheel tail lengths in fish ponds, while the system could
also capture the dynamic changes in water-wheel tail lengths.

By increasing the quantity and diversity of the dataset through data augmentation
methods and training it with the YOLO v8 deep learning model, the model was able to
recognize features of the water-wheel tail. In the final testing, the maximum mAP50 reached
0.99013, while the maximum mAP50-95 was 0.885. When predicting data that were already
used for training purpose, except for the data augmentation method of a rotation by 90◦,
the confidence levels of other augmentation types exceeded 0.9. For the deployment results
with untrained data, the confidence levels were also greater than 0.8, and the predicted
bounding boxes were close to the water-wheel tail as defined in this study.
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