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Abstract: Progressive environmental and climatic changes have significantly increased hydrometeo-
rological threats all over the globe. Floods have gained global significance owing to their devastating
impact and their capacity to cause economic and human loss. Accurate flood forecasting and the
identification of high-risk areas are essential for preventing flood impacts and implementing strategic
measures to mitigate flood-related damages. In this study, an assessment of the susceptibility to
riverine flooding in India was conducted utilizing Multicriteria Decision making (MCDM) and an
extensive geospatial database was created through the integration of fourteen geomorphological,
meteorological, hydroclimatic, and anthropogenic factors. The coupled methodology incorporates a
Fuzzy Analytical Hierarchy Process (FAHP) model, which utilizes Triangular Fuzzy Numbers (TFN)
to determine the Importance Weights (IWs) of various parameters and their subclasses based on
the Saaty scale. Based on the determined IWs, this study identifies proximity to rivers, drainage
density, and mean annual rainfall as the key factors that contribute significantly to the occurrence of
riverine floods. Furthermore, as the Geographic Information System (GIS) was employed to create the
Riverine Flood Susceptibility (RFS) map of India by overlaying the weighted factors, it was found that
high, moderate, and low susceptibility zones across the country span of 15.33%, 26.30%, and 31.35%
of the total area of the country, respectively. The regions with the highest susceptibility to flooding
are primarily concentrated in the Brahmaputra, Ganga, and Indus River basins, which happen to
encompass a significant portion of the country’s agricultural land (334,492 km?) potentially posing
a risk to India’s food security. Approximately 28.13% of built-up area in India falls in the highly
susceptible zones, including cities such as Bardhaman, Silchar, Kharagpur, Howrah, Kolkata, Patna,
Munger, Bareilly, Allahabad, Varanasi, Lucknow, and Muzaffarpur, which are particularly susceptible
to flooding. RFS is moderate in the Kutch-Saurashtra-Luni, Western Ghats, and Krishna basins. On
the other hand, areas on the outskirts of the Ganga, Indus, and Brahmaputra basins, as well as the
middle and outer portions of the peninsular basins, show a relatively low likelihood of riverine
flooding. The RFS map created in this research, with an 80.2% validation accuracy assessed through
AUROC analysis, will function as a valuable resource for Indian policymakers, urban planners, and
emergency management agencies. It will aid them in prioritizing and executing efficient strategies to
reduce flood risks effectively.

Keywords: riverine flood susceptibility (RFS); fuzzy analytic hierarchy process (FAHP); geospatial
hazard modelling
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1. Introduction

Natural disasters are considered to be the biggest challenge that needs to be examined
at a global, regional, and local scale. There has been a notable increase in climate-related
disasters in recent years [1,2]. According to [3], a significant proportion of climate change-
induced disasters are impacted by changes in land use, population density, geological
factors, and geographical location. Among climate-induced natural disasters, floods are
the most widespread and the third most calamitous natural hazard globally [4-8]. Between
2010 and 2019, there were nearly 1298 significant flood occurrences worldwide, causing
33.7 billion USD in economic loss [9], impacting people, and damaging existing agricultural
land and infrastructure [10,11]. Floods are a type of natural disaster where typically dry
land areas become temporarily submerged. They occur when the drainage system lacks
the capacity to handle the high volumes of water from upper catchments caused by intense
rainfall. Furthermore, flood risk is compounded by factors such as the erosion of river
banks and the accumulation of sediment, which reduces the water-carrying capacity of the
river [12,13]. According to [14], a flood can be described as an occurrence that arises from the
convergence of meteorological events combined with specific hydrological circumstances.

As a general pattern, India experiences flood events mostly during the monsoon
seasons (June-August) [15]. According to the National Flood Commission, India is highly
susceptible to riverine floods, which can be attributed to the significant sediment load
carried by rivers from catchments and their inadequate carrying capacity [16]. This results
in frequent floods, congestion of drainage systems, and erosion of river banks across the
country. Out of India’s total geographical area of 329 million hectares, more than 40 mha are
susceptible to flooding [17]. These floods have become a recurrent phenomenon, causing
extensive loss of life and significant damage to livelihoods, property, infrastructure, and
public utilities. The rising trend in damages associated with floods is a matter of concern.
Between 1996 and 2005, the average annual flood damage amounted to Rs. 4745 crores in
contrast to the Rs. 1805 crore recorded in the preceding 53 years [18]. On average, each
year witnesses floods affecting 75 lakh hectares of land, leading to the loss of 1600 lives
and causing damage to crops, houses, and public utilities [19]. The highest number of
lives lost in a single year was 11,316, recorded in 1977 [20]. Over the years, there have
been coordinated efforts to reduce flood-related damage and alleviate the hardships faced
by people. Various structural flood control measures have been put in place, such as
the construction of reservoirs, embankments, drainage channels, and more. However,
it has become evident that achieving complete and permanent protection for all flood-
prone areas and against all flood magnitudes solely through structural means is neither
feasible nor economically viable. Consequently, the focus has shifted towards highlighting
non-structural measures to effectively complement structural approaches, thus providing
sustainable protection to vulnerable flood-prone areas. Many countries, including Canada,
France, Hungary, the Netherlands, Poland, and the USA, have increasingly adopted non-
structural strategies for flood-affected regions [21,22]. As a country prone to riverine
flooding, India must also prioritize this method of mitigation. This study focuses on
non-structural flood management features in India, taking into account both macro- and
basin-level perspectives. Flood Plain Zoning (FPZ) and Flood Forecasting and Warning
systems are important components of non-structural flood mitigation in India. The absence
of comprehensive flood data and the continued expansion of settlements within flood-
prone areas have led to an escalation in estimated annual losses due to flooding disasters.
Therefore, it has become crucial to evaluate flood-prone regions through the development
of flood susceptibility maps, which can identify and prioritize the probability of flooding
at different scales. This prioritization is instrumental in directing interventions to the
most urgently affected areas. According to a recent report from the Ministry of Jal Shakti,
Government of India, in 2022, only the states of Manipur, Rajasthan, Uttarakhand, and the
former state of Jammu and Kashmir had implemented the national flood plain policy.

Over the past few decades, floods have received significant attention from researchers
due to their devastating nature and potential to cause substantial economic losses and loss of
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life globally [23,24]. After the implementation of multilevel planning in India, the majority
of research has focused on the regional method of FPZ, while national-level flood zonation
is also essential. In recent times, the utilization of geospatial techniques such as Remote
Sensing (RS) and Geographic Information System (GIS) has provided valuable insights into
the field of flood susceptibility studies integrating Multicriteria Decision Making (MCDM)
and Machine Learning (ML) techniques. The mapping of flood susceptibility involves the
analysis of a multitemporal dataset [25], and GIS tools play a crucial role in generating,
managing, and integrating flood event databases alongside various causative factors.
Numerous GIS-based flood susceptibility models have been employed in the literature,
including the frequency ratio [25-27], weights-of-evidence [28], logistic regression [29],
analytic hierarchy process (AHP) [30], Fuzzy Logic [31], evidential belief function [32],
artificial neural network [33-36], decision tree [37], support vector machine [38,39], and
adaptive neuro-fuzzy inference system [40], which extensively employ geospatial data for
analysis. These models have been widely adopted for the evaluation of susceptibility to
various hazards based on existing literature. While machine learning models are useful for
producing predictions in a variety of fields, they have limitations when used to macrolevel
investigations due to a lack of appropriate training data [41-43]. On the other hand, MCDM
has developed as an effective approach that provides a systematic way for dealing with
problems involving multiple criteria and stakeholders, making it suitable for resolving
macrolevel complex decision-making and policy analysis [44]. The AHP proposed by [45]
is a useful MCDM technique that uses pair-wise comparison matrices to calculate the
weights of influencing factors and their subclasses. However, this approach can lead
to inconsistencies in pair-wise comparisons and fails to precisely capture the decision
maker’s first choice [44,46,47]. To address these limitations, the Fuzzy Analytical Hierarchy
Process (FAHP) was developed by [48]. It integrates AHP with Fuzzy Set Theory to handle
MCDM problems. In this study, the FAHP method is employed, which uses Triangular
Fuzzy Numbers (TEN) instead of precise numerical values, to obtain results. TFN are
particularly useful for subjectivity weighting the various influencing factors affecting flood
susceptibility [47]. Unlike AHP, FAHP considers both fuzziness and uncertainty, making it
a preferred choice for weight determination [49].

The objective of the present research was to delineate Riverine Flood Susceptibility
(RFS) zones in India and conduct a basin-wise analysis. The anticipated outcomes of this
research encompass the recognition of the primary factors that impact riverine floods, as
well as the creation of maps depicting the diverse levels of vulnerability to flooding. This
will be followed by an evaluation of areas at heightened risk and an examination of the po-
tential consequences for both human settlement and agriculture. This study aims to furnish
crucial information and tools necessary for comprehending, evaluating, and mitigating
flood risks. This, in turn, can lead to enhanced decision-making, improved emergency
preparedness, and the development of more resilient communities. Consequently, this
effort can contribute to reducing substantial annual losses in terms of both human lives
and the economy. It would also help in protecting ecologically sensitive areas, preserving
natural drainage systems, and promoting the sustainable use of land resources. By reducing
vulnerability due to floods, communities can enhance their resilience to climate change
impacts and ensure long-term sustainability.

2. Materials and Methods
2.1. Study Area

The mainland of India, located within the Asian continent, offers a captivating and
diversified landscape that extends from 8°4’ N to 37°6’ N latitude and 68°7' E to 97°25' E
longitude, entirely north of the equator. India is the 7th largest country globally, accounting
for 2.4% of the total land surface area on Earth. India’s vast geographical expanse encom-
passes a remarkable array of diverse geology, physiography, climate, and ethnicity. In the
northern reaches, the dominant presence of the majestic Himalayas gives rise to narrow,
energetic streams that carve through the land. It has numerous prominent river systems,
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including the Ganges, Brahmaputra, Yamuna, Godavari, Krishna, and Cauvery, among
others. These rivers have their origins in elevated areas such as the Himalayas, the Western
Ghats, and the undulating terrain of the Deccan Plateau. They gracefully traverse the plains
before ultimately finding their way into the Bay of Bengal or the Arabian Sea, forming
many river basins (Figure 1).
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Figure 1. Study Area: Indian river basins.

Regions such as the Gangetic Plains and the Western Ghats in India are characterized
by the prevalence of sedimentary rocks, including sandstone, limestone, and shale. Mean-
while, the Deccan Plateau is dominated by the extensive basaltic formation known as the
Deccan Traps. In Rajasthan, the Aravalli Range showcases ancient Precambrian rocks.

According to the National Bureau of Soil Survey and Land Use Planning, the soils
across India display a diverse range of characteristics. The floodplains of major rivers are
predominantly composed of alluvial soils, while the Deccan Plateau is known for its black
soils, also referred to as vertisols. In regions with high rainfall, red and laterite soils are
prevalent. The texture of these soils exhibits varying spatial distribution across different
regions of India. Sandy soils dominate in arid and semi-arid areas like Rajasthan, while
clayey soils are frequently encountered in the Gangetic plains. Loamy soils, which comprise
a blend of sand, silt, and clay, can be found in various parts of the country, including regions
of Madhya Pradesh and Maharashtra.

India exhibits an exceptionally varied climate due to its vast geographical extent and
diverse topography. The country encompasses six primary climate types, which include
tropical monsoon, tropical wet and dry, arid and semiarid, subtropical humid, mountain,
and highland [50]. Each of these climate types has distinct characteristics that exert a
significant influence on the weather patterns observed across different regions of India.
The tropical monsoon climate, in particular, is the most prominent and covers a substantial
portion of the country. It is characterized by well-defined wet and dry seasons, with the
southwest monsoon, typically occurring between June and September, being responsible for
the majority of India’s annual rainfall. Unfortunately, during this season, the combination
of heavy silt loads carried by rivers from catchments and the insufficient carrying capacity
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of the rivers results in backed-up drainage systems, riverbank erosion, and floods in
drainage basins. As a consequence, there is a substantial toll on human lives and damage
to property, infrastructure, and public services in the most densely populated basins of the
most populated country [51]. The escalating flood-related damages are a matter of concern,
as floods have occurred in places previously considered not prone to such disasters.

2.2. Database and Methodology

Extensive data on flood conditioning factors and flood validation points were col-
lected at a pan-India level, including geomorphological, hydrological, meteorological, and
anthropogenic factors from various sources. Specifications of all the factors, their relation
to riverine floods, and factor map preparation methods have been discussed in Table 1. The
SRTM DEM was utilized to derive the geomorphological factors, which include elevation,
slope, aspect, plan curvature, profile curvature, SPI, STI, and TWI. By employing drainage
delineation techniques in ArcGIS 10.8 software using the DEM, layers for the hydrological
factors, such as proximity to drainage and drainage density, were generated. Further, vector
data pertaining to soil texture, mean annual rainfall, lithology, and land use/land cover
(LULC) were extracted from relevant global data sources. These extracted layers were
then clipped to the study area to ensure their applicability. To promote consistency and
facilitate analysis, all the conditioning layers were resampled into the required format,
with a spatial resolution of 2000 m x 2000 m. This resampling process aimed to create a
standardized and homogeneous database for further analysis and evaluation. The rela-
tive hierarchy of the factors and their classes was then determined to find AHP weights,
normalized fuzzy weights, and integrated FAHP weights. A Group of Decision Makers
(GDM) panel was formed to select and rank influencing factors. The GDM panel was
comprised of five experts, encompassing scientists and professors specializing in disaster
studies, hydrology, and climate research. In instances where inconsistencies arose, the
responsibility of assigning weights was reallocated to the respective decision-makers to
establish coherence. Further, the RES map was generated by a weighted overlay of the
FAHP weights. To assess the accuracy of the RFS map, spatially balanced validation points
were created using the United Nations Development Programme’s (UNDP) flood zone map
in ArcGIS. These validation points served as reference points for evaluating the precision
and reliability of the flood susceptibility assessment. The complete methodology is briefly
outlined in Figure 2.

2.2.1. Hydrological Factors

Distance from Rivers is often used as a proxy for flood susceptibility, with areas closer
to streams considered to have a higher flood risk [52]. Proximity to drainage is typically
measured as the Euclidean distance between a specific location and the nearest stream
or river channel [53]. A proximity map can be created using the Euclidean distance or
the multiple ring buffer tool. After that, proximity and analysis tools were used to create
multiple buffers around river shapefiles in India. The Geometric Interval method under the
reclassify tool is then used to divide the proximity to drainage data of India into eight classes
because it accounts for the exponential decay of influence as the distance from a drainage
feature increases. This method assigns larger intervals to smaller distances, emphasizing
the proximity effect, while assigning smaller intervals to larger distances, highlighting the
diminishing influence of the drainage feature. Figure 3a depicts the distance from rivers
in India.

Drainage density is a measure of the total length of streams and rivers per unit area
in a watershed. It indicates the degree of channel development and can provide insights
into flood-prone areas [54]. Higher drainage density represents a denser river network,
which suggests a higher potential for water accumulation and increased flood risk, and
vice-versa [54]. The drainage density map of India has been prepared using the Line
Density tool in ArcGIS. The quantile method was used to divide the drainage density data
of India into eight classes because it makes equal-sized groups by distributing an equal
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number of observations in every class [55]. Figure 3b represents the drainage density map
of the country.

Table 1. Specifications, relation, and method of data used in the study.

Relation with

Factors Map Layer Resolution/Scale Preparation Method Flood Susceptibility Data Source Period
= Proximity . . .
<
g 2 to Rivers Multiple ring buffering
% g Spatial analysis Positive Relation
=8 Drainage P 4
e Densi using the line
T ty density tool

Elg;zation Negative Relation

o DEM Classification SRTM Plus V3
. R . North Facing More (https:/ /earthexplorer.usgs.gov/);
Aspect 30m > 30m Spatial analysis using Suscepﬁgble accessed on 30 October 2022. 2013

Plan Curvature
Profile Curvature

TWI
SPI

STI

slope, aspect and
curvature tools

respectively Negative Relation

and vice-versa

Calculating map algebra Positive Relation
using raster calculator
and Equations (1) and (2)

Geomorphological Factors

FAO (https:/ /data.apps.fao.org/

accessed on 30 October 2022.

Clipped from World Soil map/catalog/srv/eng/catalog.
Soil Texture Database. Sequence No. search#/metadata/cc45a270-88fd- 1972
matched in attribute table 11da-a88f-000d939bc5d8); accessed
Negative Relati on 4 December 2022.
1:5,000,000 egative Relation
USGS WEP (https://pubs.er.usgs.
; Clipped from World gov/publication/ofr97470C);
Lithology Geology Database accessed on 7 1997
November 2022.
g CRU TS v. 4.07
§° 5 30 years gridded (https://crudata.uea.ac.uk/cru/
29 Mean Annual Rainfall 0.5° x 0.5° data interpolation using data/hrg/cru_ts_4.07/cruts.230414 1992-2022
§ = IDW 1047.v4.07 /pre/); accessed on 22
§ March 2023.
Positive Relation
o
5 SENTINEL 2A
0= . (https:/ /www.arcgis.com /home/
o8 P &
&3 LULC 10m x 10m Clipped from World item htm1?id=d3da5dd386d140cf9 2020
.g e atabase 3fc9ecbf8da5e31); accessed on 10
é November 2022.
8
8 SOI (https:
2 . . i Downloaded and merged / /onlinemaps.surveyofindia.gov.
é’ India Outline 1:1,000,000 internal polygons in/Digital_Product_Show.aspx);
2
<

2.2.2. Geomorphological Factors

Elevation plays a crucial role in RFS as it determines the height and position of the
land in relation to the water level. Low-lying areas with lower elevations are more prone
to flooding compared to higher elevations [56]. SRTM DEM was used to extract the
elevation map of India, which was further classified in ArcGIS using the reclassify tool
(Figure 3c). The natural breaks method was employed for this classification because it is
highly efficient in identifying significant and distinguishable classes within the data by
minimizing variation within groups and maximizing variation between groups [57].

Slope is the degree of inclination or steepness of the land’s surface, which is defined by
the ratio of vertical change (rise) to horizontal distance (run) [58]. Steeper slopes tend to
generate greater velocity, allowing runoff to be quickly carried away. In contrast, runoff
on gentle slopes or flat terrain tends to be retained and released gradually over time [59].
The slope map for India was generated using the slope in ArcGIS (Figure 3d). The planar
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method was applied, using the SRTM DEM dataset as the input. After generating the slope
map of India, it was further divided into eight classes using the quantile method.
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Aspect refers to the orientation of a slope or the inclination of a land surface in relation
to the cardinal directions, such as north, northeast, and the remaining six directions [60]. It
plays a significant role in determining the exposure of the land to solar radiation, which in
turn affects soil moisture and vegetation patterns, which influence the susceptibility of an
area to flooding [61]. To generate the aspect map of India, the planar method in the aspect
tool was used in ArcGIS (Figure 3e). Furthermore, it was reclassified into eight classes
using defined the interval method.

Plan Curvature is the rate of change in slope along a contour line, which denotes the
horizontal curvature of the slope of the land surface [62]. It can affect the flow of water
across the landscape, influencing the direction and accumulation of runoff, which can
contribute to increased flood risk [59]. Areas with concave shapes tend to accumulate water,
increasing the likelihood of flood occurrence [63]. SRTM DEM was used in ArcGIS to build
the plan curvature map for India (Figure 3f). The plan curvature of India was reclassified
into three classes using a defined interval.

Profile Curvature is the vertical curvature of a land surface, indicating the degree of
change in slope along the direction of the steepest slope [62]. It is a key factor in determining
RFS zones as it influences the flow dynamics and the likelihood of channel overbanking.
Positive profile curvature indicates concave slopes, which can lead to flow convergence and
increased flood risk, while negative profile curvature represents convex slopes that facilitate
flow divergence and reduce flood susceptibility [64]. Using the curvature tool, the SRTM
DEM was processed on ArcGIS to produce the profile curvature map of India (Figure 3g).
The profile curvature of India was separated into three classes using a defined interval.

Stream Power Index (SPI) is a quantitative measure that determines the erosive power
of flowing water in a river or stream. It combines the slope and drainage area to estimate
the potential for sediment erosion and transport [65].

Stream Power Index, SPI = As x tanf} D)

where specific catchment area is represented by As and the slope angle is represented by 3.

High SPI values indicate areas with higher energy and potential for erosion, which can
contribute to increased flood susceptibility [66]. Equation (1) was used on a raster calculator
available within the spatial analysis tool to create the SPI map of India (Figure 3h). The
quantile method under the reclassify tool was used to divide the SPI data of India into
eight classes because it creates equal-sized groups by distributing an equal number of
observations in every class.

Sediment Transport Index (STI) is a measure of a river’s ability to transport sediment.
It considers factors such as stream power, slope, and sediment supply to estimate the
potential for erosion and sediment movement [67]. Sediment transport influences channel
capacity, morphology, and sedimentation patterns, which can influence floodplain storage
and flood dynamics [68]. Figure 3i depicts the study region’s STI map.

Topographic Wetness Index (TWI) is a measure of landscape wetness derived from
topographic parameters, such as slope and contributing area. It estimates the potential for
water saturation and indicates areas prone to water accumulation and soil moisture [69].

TWI = Ln (X/tanp) (2)

where the specific contributing area is represented by X and the slope gradient is repre-
sented by 3 [69].

Areas with higher TWI values indicate higher water accumulation potential, which
can contribute to increased flood susceptibility [70]. Equation (2) was used on a raster
calculator to create the TWI map of India (Figure 3j). The quantile method under the
reclassify tool was then used to divide the SPI data of India into eight classes because it
creates equal-sized groups by distributing an equal number of observations in every class.
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Figure 3. Spatial database of conditioning factors; (a) distance from rivers, (b) drainage density,
(c) elevation, (d) slope, (e) aspect, (f) plan curvature, (g) profile curvature, (h) SPI, (i) STL (j) TWL
(k) soil texture, (I) mean annual rainfall, (m) lithology, (n) LULC.

Soil texture refers to the proportionate representation of sand, silt, and clay particles
in the soil, which affects water infiltration rates and soil moisture holding capacity and
could influence flood runoff characteristics [71]. Fine-textured soils (e.g., clay) have a
lower infiltration capacity, leading to increased surface runoff and potential flooding, while
coarse-textured soils (e.g., sand) tend to drain more quickly [56]. The soil texture map of
India was extracted from the FAO World Soil Data (Figure 3k).

Lithology is the physical characteristics and composition of rocks or sediments in a
particular area. Different permeabilities of rocks affect the infiltration and groundwater
storage capacity, which can affect surface runoff and flood susceptibility [72]. The lithology
of India was clipped from the world lithology data provided by USGS (Figure 3m).

2.2.3. Meteorological Factor

Mean Annual Rainfall is an essential parameter for understanding flood frequency and
hydrological processes [73]. Higher mean annual rainfall can contribute to increased flood
susceptibility due to greater water input and runoff potential [74]. The precipitation data
for the past 30 years (1991-2021) was obtained from CRU in NetCDF file format. It was
initially transformed into a raster format and subsequently converted into a point format
using the conversion tool within ArcGIS. The data underwent further processing, including
the conversion of the point data into mean annual rainfall data using the cell statistics tool.
Afterward, the point data for the entire world was subjected to interpolation. Subsequently,
the dataset was narrowed down to India through a clipping process. The mean annual
rainfall data specific to India were then categorized into eight classes using the quantile
method. Figure 31 visually represents the resulting map of mean annual rainfall.

2.2.4. Anthropogenic Factor

LULC delineates the physical and functional features of the Earth’s terrain, including
vegetation, urban areas, water bodies, and other land types. LULC patterns influence
surface runoff, infiltration, and flood dynamics [75]. Urban areas, for example, on imper-
vious surfaces tend to have higher flood susceptibility compared to naturally vegetated
areas [76]. The LULC map of India was clipped from the world LULC data provided by
Sentinel 2A (Figure 3n).
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2.3. Validation Points

A flood inventory map is a geographical depiction that documents and captures the
scope, attributes, and consequences of past flood incidents within a defined region [77].
As stated by [78], flood inventory data are vital for training datasets and assessing the
precision of flood susceptibility models. The flood inventory map was created using
the create spatially balanced points tool in ArcGIS, utilizing the UNDP flood zone map.
Through this tool, a total of 364 flood locations were identified.

2.4. Fuzzy Analytical Hierarchy Process (FAHP)

The AHP, originally developed by [45], offers a structured approach to address mul-
ticriteria decision problems [79]. It relies on paired comparisons that use hierarchical
structures to depict a problem and subsequently establish relative priorities for a huge
number of criteria and alternatives through the subjective judgments of a user [45]. AHP
is recognized as a potent tool in the field of hazard management [80]. Ref. [81] stated that
a fundamental benefit of AHP is its capacity to reconcile discrepancies (inconsistencies)
in a marginal percentage, its reliance on judgment data, and the availability of several
commercial software that aid in simpler computations.

Fuzzy numbers set Xin A CR, where R represents real numbers’ set, and can be
explained in the form of ordered pairs Xm {a, uX(a)} where ‘a belongs to A and uX (a):

A — [0, 1]. The function pX(a) denotes the membership function (MF) of X which assigns
a degree of membership ranging from 0 to 1 to each object ‘a’ [82,83]. A special type of nor-
malized fuzzy set is referred to as a fuzzy number. Fuzzy numbers come in various forms,
with triangular and trapezoidal shapes being the most common and useful. Trapezoidal
fuzzy numbers are particularly useful when dealing with more complex situations involv-
ing ambiguity in decision-making analysis, while TEN are favoured in MCDM techniques
due to their simplicity, ease of interpretation, and applicability in handling uncertainty.
They effectively capture imprecision in decision-making processes by representing a range
of possible values using a triangular distribution. This enhances decision models’ ability to
handle real-world uncertainty [84]. In this study, Buckley’s TFN was employed to assign
the fuzzy weights to the factors using analytical conversion operations (Table 2). The TFN
is graphically depicted in Figure 4, which is also the membership function given by [85]
used for the representation of fuzzy linguistic concepts in this study.

Table 2. Triangular fuzzy numbers analytical conversion operations [85].

Triangular Fuzzy

Saaty Scale Linguistic Terms Numbers Scale Reversed Values TFN Conversion
1 Equal (EQ) (1,1,1) 1/1 (1/1,1/1,1/1)
3 Moderate (MD) (2,34) 1/3 (1/4,1/3,1/2)
5 Strong (ST) (4,5,6) 1/5 (1/6,1/5,1/4)
7 Very Strong (VS) (6,7,8) 1/7 (1/8,1/7,1/6)
9 Extremely Strong (ES) 9,9,9) 1/9 (1/9,1/9,1/9)
2 (1,2,3) 1/2 (1/3,1/2,1/1)
4 Intermediate Values (34,5) 1/4 (1/5,1/4,1/3)
6 (5,6,7) 1/6 (1/7,1/6,1/5)
8 (7,8,9) 1/8 (1/9,1/8,1/7)

The FAHP is an integrated approach that combines qualitative and quantitative meth-
ods. Interestingly, the concepts of fuzzy sets have found application in various MCDM
techniques, including fuzzy TOPSIS (Technique for Order of Preference by Similarity to
Ideal Solution) as demonstrated by [86], and fuzzy PROMETHEE (Preference Ranking
Organisation Method for Enrichment of Evaluations) as discussed by [87]. In the context
of FAHP, the linguistic terms employed for comparing pairs of factors can be translated
into numerical values using Saaty’s 1-9 scale. Table 2 depicts the comparative values
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of the influence of factors on Saaty’s and TFN scales. This process is complemented by
a corresponding conversion scale for fuzzy numbers indicating relative importance, as
outlined by [85,88].

F

M(a)

Y

i ﬁ:z u
Figure 4. Triangular fuzzy number.

The FAHP approach is used in this work to investigate RFS. The FAHP approach was
designed and structured in the following steps:

Step-1: Establishing the purpose, hierarchy, and identity of each susceptibility compo-
nent and its subcomponent;

Step-2: Preparation of the pair-wise comparison matrix based on Saaty’s scale (Table 2),
[xk], the elements of which [;ij]k depict the preference of the kth expert for the risk factor i
over the risk factor j; i, j € N. The basic relationship between the elements of the reciprocal
matrix is (x;) - (Xj) = 1 [89].

Step-3: Using Equation (3), create the mean pair-wise comparison matrix, [x], with
components representing the average values of experts” opinion:

z(xij1 Fxi? L+ xijk)
ij — K

(k : number of experts involved ) 3)

Step-4: AHP weight was calculated and validated on the basis of the Consistency Ratio
(CR). In this case, CR is greater than 0.10; the matrix was revised, and further weights were
calculated to make sure that CR is less than 0.10. CR is calculated using Equation (4).

CI

R = Ry

4)

where CI = (A(';ajz)n)

vulnerability factors; RI = Random Index (Table 3).

; A = eigenvalue of the pairwise comparison matrix; n = number of

Table 3. Random index values [45].

n 3 4 5 6 7 8 9 10 11 12 13 14 15
RI 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.51 1.52 1.54 1.56 1.58 1.59

Step-5: Construction of the fuzzy pairwise comparison matrix [)N(] with fuzzy values, )N(ij
utilizing the linguistic scale of the membership function and TFN numerical conversion
procedures (Table 2, Figure 5).
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Figure 5. Fuzzy linguistic terms [85].

Step-6: Estimation of the fuzzy geometric mean value for each risk factor G;, as per
Buckley’s methodology (Equation (5)):

n .. )n ~ ~ ~ ~ 1/n
Gi:{HXij} = (Xil®@Xi2®Xi3 ®...Xin) &)
=1

After the calculation of the fuzzy geometric means, the fuzzy geometric susceptibility
vector factors are estimated (Equation (6)):

~

o~~~ o 1T
G= [Gl, G2,G3, ..., Gn] (6)
Step-7: Definition of the fuzzy susceptibility factors (i.e., the fuzzy relative weights, FRW)
Wrj, according to Equation (7):
~ -1

~ ~ -1 ~ ~ ~ ~ ~
Wri = G; ® [2;;16]} =G® <G1® G2® G3® ... Gn> 7)

Step-8: Defuzzification of the FRW, Wg;, for evaluating the crisp values Wj, by adopting
the centroid of the area (CoA) approach using Equation (8):

_ I-VNVi + m-VNVi + u-VN\fi

Wi 8
1 . ®)
Step-9: Normalisation of the de-fuzzified relative weights W; using Equation (9):

Wi = Wi/ (1 Wi) Wi = 1AW; >0 ©)

2.5. Flood Susceptibility Mapping

Upon establishing the relative weight of each criterion and its sub criterion, it was
multiplied by 100 prior to the calculation of the flood susceptibility index (FSI) within the
GIS. The FSI values were estimated using ArcGIS. Equation (10) was used to complete

this procedure:
n

FSI =Y Wf x Gf (10)
i=1
where W is the weight of each component, G/ denotes the rank value of subcategories,
and n represents the number of factors.
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2.6. Validation Using AUROC Analysis

Assessing the accuracy of output models derived from any MCDM approach is a
crucial aspect. The evaluation of these models can be effectively accomplished using
the AUROC analysis, which relies on incidence data (specifically historical floods in this
study) [90]. The AUROC analysis is widely recognized for its simplicity, comprehensive-
ness, and reasonable alignment with predictions [91]. The AUROC is generated by finding
the ratio of sensitivity (true positive rate) and specificity (false positive rate) using the
ArcSDM toolset in ArcGIS. The value of the curve ranges from 0.5 to 1, which is classified
into five categories: poor (0.5-0.6), moderate (0.6-0.7), good (0.7-0.8), very good (0.8-0.9),
and excellent (0.9-1) performance [92]. Based on the data, the area below the curve was
calculated numerically using the following Equations (11) and (12):

TP

Sensitivity = TP+ EN (11)
e .. IN
Specificity = P+ TN (12)
where, TP: True Positive; TN: True Negative; FP: False Positive; and FN: False Negative
ROC — ensitivity (13)
Specificity

3. Results
3.1. Influence of Factors on Riverine Floods

The significance of each factor in relation to riverine floods was determined through
the computation of mean weights for factors affecting riverine floods, drawing from GDM
weights as presented in Table 4.

Table 4. Rank of Factors.

Factors Rank Influence
Distance from Rivers 14 1.00
Drainage Density 13 0.88
M. A. Rainfall 1992-2022 12 0.75
Elevation 11 0.63
Slope 10 0.50
SPI 9 0.38
STI 9 0.38
Plan Curvature 8 0.25
Profile Curvature 8 0.25
Lithology 7 0.13
LULC 2022 7 0.13
Soil Texture 7 0.13
TWI 7 0.13
Aspect 6 0.00

It is found that the distance from rivers emerged as the most influential criterion,
exerting a 100% impact, followed by drainage density at 87.5%, mean annual rainfall at
75%, elevation at 62.5%, slope at 50%, SPI and STI at 37.5%, and plan and profile curvature
at 25%. Further down the list was lithology, LULC, soil texture, and topographic wetness
index (TWI) at 12.5% and the factor with the least influence was aspect (Table 4, Figure 6).
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Figure 6. Influence of factors on riverine floods.

In cases of major flood conditioning factors, it is found that the parts of the study area
within 7.5 km of rivers, having a drainage density greater than 1.5 km/km?, and having
mean annual rainfall of more than 167 cm are highly susceptible to riverine flooding. This
scenario is further influenced by elevation being less than 260 m, slope less than 0.14°, SPI
greater than 0.10, STL in the range of 3.50-0.31 and TWI in the range of 15.18-19.22. Areas
with clayey soil texture, Mesozoic igneous rock lithology, and LULC types associated with
water bodies and their adjacent areas are identified as being more susceptible to flooding
in this scenario. Aspect holds the least sway in influencing riverine floods, with the west-
facing flanks exhibiting more susceptibility. Ranks for the classes of each conditioning
factor are given in Table S1.

3.2. Flood Susceptibility Zonation

In this study, to synthesize the RFS zonation map of India using the FAHP, the AHP
pair-wise comparison matrix (Table S2) was fuzzified using TFN analytical conversion
operations, detailed in Table 2. Subsequently, FAHP geometric means, fuzzy weights, and
normalized weights for the conditioning factors were derived using Equations (5)-(9), as
presented in Table 5. The normalized weights were integrated with the raster layers and
combined in accordance with Equation (10) to produce the RFS map of India. To enhance
the map’s clarity, the RFS was classified into four distinct categories using the natural break
method. This classification approach was chosen due to the region’s varied topography
and expansive geographical coverage, resulting in the production of the RFS map, vividly
illustrated in Figure 7.

The RFS map classification yielded four zones of flood susceptibility, i.e., high, mod-
erate, low, and no flood susceptibility. Notably, the distribution of these zones across the
country is such that 466,300 km? (15.33%) area falls in the high flood zone, 799,996 km?
(26.30%) area in the moderate flood zone, 953,704 km? (31.35%) area in the low flood zone,
and 821,708 km? (27.01%) area in the no flood susceptibility zone (Figure 8). To ascertain
the accuracy of these zones, rigorous validation was performed through the area under the
receiver operating characteristic curve (AUROC) analysis, leveraging true positive points
as benchmarks.
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Table 5. FAHP normalized weights.

. . Normalized
Factors Geometric Mean Fuzzy Weights Weights
Distance from Rivers 4.08 493 5.74 0.2359 0.2284 0.2170 0.2271
Drainage Density 3.41 4.14 491 0.1975 0.1918 0.1855 0.1916
Rainfall 1992-2022 2.81 3.41 4.10 0.1628 0.1580 0.1549 0.1586
Elevation 117 1.59 1.99 0.0677 0.0738 0.0753 0.0722
Slope 1.18 1.57 1.95 0.0682 0.0728 0.0739 0.0716
SPI 1.01 1.29 1.67 0.0583 0.0597 0.0631 0.0604
STI 1.01 1.29 1.67 0.0583 0.0597 0.0631 0.0604
Plan Curvature 0.53 0.73 0.99 0.0307 0.0339 0.0372 0.0339
Profile Curvature 0.52 0.72 0.97 0.0301 0.0333 0.0368 0.0334
Lithology 0.39 0.48 0.61 0.0227 0.0221 0.0231 0.0226
LULC 2022 0.38 0.46 0.59 0.0218 0.0214 0.0225 0.0219
Soil Texture 0.38 0.46 0.59 0.0218 0.0214 0.0225 0.0219
TWI 0.23 0.29 0.38 0.0133 0.0134 0.0142 0.0136
Aspect 0.19 0.22 0.29 0.0108 0.0104 0.0108 0.0107

3.3. Flood Susceptibility Validation Using AUROC Analysis

The validation process for the RFS map generated using the GIS-based FAHP tech-
nique encompassed the application of AUROC analysis. The validation data points were
extracted from the UNDP flood zone map of India (Figure 9). The RFS Map, generated as
a result of this investigation, demonstrates a noteworthy level of predictive accuracy at
80.2% (Figure 10). Based on the considerable level of precision attained, it is reasonable
to deduce that the outcomes of the RFS Map, which was produced using the GIS-based
FAHP methodology, possess a strong degree of reliability and are capable of providing
credible forecasts. This highlights the efficacy of our technique in assigning weights to dif-
ferent contributing elements and doing subsequent computations, which have successfully
delineated the actual levels of susceptibility throughout the research region.

The AUROC validation has yielded an accurate score in terms of relating the product
of this study to the UNDP flood zone map of India, thereby reinforcing the credibility of
our research findings. Notably, this study took a more holistic approach, incorporating a
broader spectrum of factors, including geomorphological, hydrological, meteorological, and
anthropogenic aspects, to determine flood-susceptible zones, unlike the UNDP flood zone
map and the National Remote Sensing Centre’s (NRSC) flood susceptibility assessments,
which are primarily focused on historical flood events. This comprehensive analysis
provides invaluable insights into flood-prone regions across various parts of India, offering
a detailed understanding of the intricate dynamics that govern riverine floods in India.

3.4. Riverine Flood Susceptibility (RFS) Assessment of Indian River Basins

The vast country of India is divided into 24 river basins, of which Ganga, Brahmaputra,
Indus, Godavari, Krishna, Mahanadi, Cauvery, Narmada, and Tapi are delineated as the
major river basins of the study area. The area of zones of susceptibility of all the basins
separately was found using the “Tabulate Area’ tool. The susceptibility of Indian river
basins to riverine floods is summarized in Table 6, complemented by visual representations
in Figures 11, 12 and S1.

The Ganga Basin is the largest basin in India, covering 777,308 km?2, and is ranked
among the world’s most densely populated basins; it faces significant susceptibility to
riverine floods. In this basin, the distribution of RFS zones is as follows: 254,296 km?2
(32.71%) high, 256,740 km? (33.03%) moderate, 179,304 km? (23.07%) low, and 86,968 km?
(11.19%) no susceptible zone (Table 6, Figure 11a). This basin features the highest proportion
of its expanse across the high susceptibility zone, resulting in substantial annual losses
in terms of human lives, property, and agricultural output. Highly dense settlements
in proximity to many rivers, high drainage density, substantially high rainfall, and the
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majority of the basin in a very low elevation zone have rendered a considerable portion of

the basin at high risk.
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Table 6. Basin-wise area of varied degrees of riverine flood-susceptible zones.

Susceptible Zones (in km?) Susceptible Safe Area Total Area High
BASINS Area . 2 . 2 Susceptible
High Moderate Low (in km?) (in km?) (in km®) Area %

Ganga Basin 25,4296 256,740 179,304 690,340 86,968 777,308 32.71
g:s‘iii"a“ 61,368 106,192 97,676 265,236 26,808 292,044 21.01
Ig;gﬁna 10,316 72,428 119,496 202,240 41,728 243,968 423
Indus Basin 16,132 62,488 93,304 168,996 263,280 432,276 373
lg/;‘fi‘;“adl 28,124 46,484 45,348 119,956 18,868 138,824 20.26
g;z?;“aputra 37,184 37,344 43,112 117,640 57,740 175,380 21.20
Kutch-
ii‘;rias}‘tra' 6100 31,472 50,424 87,996 86,352 174,348 3.50
Basin
I];I:Srifl‘ada 8536 26,912 45,596 81,044 10,880 91,924 9.29
WER South 656 10,800 58,252 69,708 42,432 112,140 0.58
of Tapi Basin
g;;;/lery 1980 19,676 39,796 61,452 16,776 78,228 2.53
Tapi Basin 3512 15,340 28,252 47,104 15,496 62,600 5.61
EFR bw
Pennar and 3228 19,900 23,424 46,552 16,500 63,052 5.12
Cauvery
Basin
Brahmani
and Baitarni 8572 20,572 15,244 44,388 4416 48,804 17.56
Basin
Pennar Basin 2968 13,720 20,124 36,812 17,760 54,572 5.44
Mahi Basin 6500 12,128 13,232 31,860 5060 36,920 17.61
EFR South of
Cauvery 112 6712 23,876 30,700 7148 37,848 0.30
Basin
Barak Basin 4556 7552 13,008 25,116 19,596 44,712 10.19
Subarnarekha 5504 9920 8724 24,148 900 25,048 21.97
Basin
Sabarmati 4180 12,252 6000 22,432 7092 29,524 14.16
Basin
EFR bw
Krishna and 348 6928 13,044 20,320 4212 24,532 1.42
Pennar Basin
EFR bw
Mahanadi
and 20 3632 14,400 18,052 25,340 43,392 0.05
Godavari
Basins
EFR bw
Godavari 3436 4044 128 7608 0 7608 45.16
and Krishna
Basin
Myanmar 0 12 988 1000 8148 9148 0.00
Basin
Bangladesh 0 0 652 652 10,476 11,128 0.00
Basin
North 0 0 296 296 26,080 26,376 0.00

Ladakh Basin
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Figure 12. Riverine flood-susceptible zones of Indian river basins (in km?).

Indus Basin spanning an area of 432,276 km?, has 16,132 km? (3.73%), 62,488 km?
(14.46%), 93,304 km? (21.58%), and 263,280 km? (60.91%) of this basin fall into high, moder-
ate, low, and no susceptible zones, respectively (Table 6, Figure 11b). This basin boasts the
most extensive region protected from riverine flooding due to its location in an area charac-
terized by scanty rainfall. A substantial 86% of its expanse is situated in low susceptibility
and no susceptible zones, rendering it safe against riverine flooding.

Brahmaputra Basin stands as one of the most significant basins on a global scale, yet
merely 175,380 km? of its area lies within India’s borders (Table 6). This central part of
the basin has a low elevation, which exhibits a moderate to high drainage density. Its
susceptibility to riverine floods is amplified due to the interplay of high sedimentation
and substantial precipitation. Within the basin, approximately 67% of the area is prone to
flooding, in which 37,184 km? (21.20%), 37,344 km? (21.29%), and 43,112 km? (24.73%) are
in the high, moderate, and low susceptibility zones, respectively, while 57,740 km? (32.92%)
area of the basin falls in no susceptible zone (Table 6, Figure 11c).

Godavari Basin is the largest basin (292,044 km?) of peninsular India and the third
largest basin of India (Table 6). The distribution of RFS zones in this basin is as followed:
61,368 km? (21.01%) high, 106,192 km? (36.36%) moderate, 97,676 km? (33.45%) low, and
26,808 km? (9.18%) no susceptible zone (Table 6, Figure 11d). Low proximity to rivers,
moderate to high drainage density, high mean annual rainfall, and the presence of clayey
and clay-loam soil in the central and southeastern part of the basin make the aforesaid
parts of the basin highly susceptible to riverine floods.

Krishna Basin, the second largest basin in peninsular India, spans an extensive 243,968 km?
(Table 6). Of this area, 10,316 km? (4.23%), 72,428 km? (29.69%), 119,496 km? (49.98%), and
41,728 km? (17.1%) are distributed across high, low, moderate, and no susceptible zones, re-
spectively. Despite its considerable proximity to rivers and a relatively high drainage density,
the basin’s unique characteristics result in half of its total area falling into the category of low
susceptibility. This can be attributed to the region’s limited rainfall (440-850 mm) and higher
elevation range (250-1000 m). Only a small section in the eastern part of the Krishna Basin is
classified as a high susceptibility zone (Figure 11e).

Mahanadi Basin covers an area of 138,824 km?2, which is positioned to the south of
the eastern Ganga basin (Table 6). The spatial distribution of RFS zones within this
basin is outlined as follows: 28,124 km? (20.26%) are designated as high susceptibility,
46,484 km? (33.48%) as moderate susceptibility, 45,348 km? (32.67%) as low susceptibility,
and 18,868 km? (13.59%) as non-susceptible zones (Table 6, Figure 11i). Despite having
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moderately low proximity to rivers and drainage density, more than half of the area of
the basin, specifically its central and eastern segments, exhibits significant susceptibility
to riverine floods. This susceptibility can be attributed to the combination of high mean
annual rainfall (1000-2000 mm) and low elevation (<500 m) prevalent in the central and
eastern parts of the basin.

Narmada Basin is centrally located in the western region of India, encompassing an
area of 91,924 km? (Table 6). Within this basin, the distribution of RFS zones is as fol-
lows: 8536 km? (9.29%) high, 26,912 km? (29.28%) moderate, 45,596 km? (49.6%) low, and
10,880 km? (11.83%) no susceptible zone (Table 6, Figure 11g). Predominantly, vast areas
of the basin occupy low susceptibility zones due to factors such as a low drainage density
(<0.7 km/ kmz), moderate distance from rivers, and relatively elevated terrain ranging
from 260 m to 1200 m. The Narmada River, except for its central portion, has varying
susceptibility to riverine floods. The eastern and western areas within 15 km from the
banks are highly susceptible, while the central part has a moderate susceptibility due to
lower rainfall.

Cauvery Basin is situated to the south of the Krishna basin in the leeward side of the
Western Ghats, covering an impressive 78,228 km?2. Within this basin, the RFS zones
are distributed as follows: 1980 km? (2.53%) were categorized as high susceptibility,
19,676 km? (25.15%) as moderate susceptibility, 39,796 km? (50.87%) as low susceptibility,
and 16,776 km? (21.45%) as non-susceptible zones (Table 6). A significant portion of the
basin, accounting for more than half its total area, falls within the low susceptibility zone
because of factors, including a moderate to very high distance from rivers, moderately low
drainage density, a notably low mean annual rainfall range (436-856 mm), and relatively
elevated terrain spanning from 550 to 2000 m. The RFS for this basin is visually represented
in Figure 11f.

Kutch-Saurashtra-Luni Basin, located to the south of the Indus and west of the Ganga
basins, encompasses an area of 174,348 km?2. Within this basin, the distribution of RFS zones
is as follows: 6100 km? (3.5%) high, 31,472 km? (18.05%) moderate, 50,424 km? (28.92%)
low, and 86,352 km? (49.53%) no susceptible zones (Table 6). Notably, a substantial 78%
of the basin’s total area is situated within safe and low RFS zones, primarily due to the
exceedingly low mean annual rainfall and the extensive presence of loamy sand.

Other Himalayan Basins consist of the Barak basin, the North Ladakh basin, and parts
of the Myanmar and Bangladesh basins. These basins predominantly drain through the
Himalayan rivers. The spatial distribution of the RFS zones across these basins is presented
in Table 6. These basins are characterized by their notably safe conditions, as none of them
encompass substantial areas falling within the high and moderate susceptibility zones. The
exceptions to this trend are the Barak Basin, which contains 4556 km? (10.19%) in the high
susceptibility zone and 7552 km? (16.89%) in the moderate susceptibility zone, and the
Myanmar basin, with a mere 12 km? (0.13%) in the latter category. The majority of the area
in these basins is designated as no susceptible zone. This is attributed to their considerable
distance from rivers, low drainage density, and high to very high elevations. However, it
is worth noting that the eastern portion of the Barak Basin exhibits a significant presence
in the high and moderate susceptibility zones. This anomaly is a result of relatively high
drainage density and increased rainfall in this particular region.

Other Peninsular River Basins comprise 12 basins, which are drained by seasonal
rivers. Among these, eight basins are drained by east-flowing rivers (EFR), while four are
drained by west-flowing rivers (WFR). The EFR basins encompass the Brahmani-Baitarini,
Subarnarekha, Pennar, as well as five smaller basins situated between the southern end
of Western Ghats, Cauvery, Pennar, Krishna, Godavari, and Mahanadi basins. On the
other hand, the WFR basins include Tapi, the WFR basin to the south of Tapi (within the
Western Ghats), Mahi, and the Sabarmati basins. The majority of these basins display
characteristics of low and no susceptibility, mainly due to their very low drainage density
(Table 6). However, in the basins located north of the Narmada and Mahanadi basins,
certain areas exhibit a higher susceptibility, primarily due to the relatively high drainage



Water 2023, 15, 3918

23 of 31

density. An exception to this pattern is the EFR area located between the Godavari and
Krishna basins. Here, a substantial portion falls within high susceptibility zones, covering
3436 km? (45.16%), while another large portion falls within moderate susceptibility zones,
covering 4044 km? (53.15%, Table 6).

3.5. RFS Assessment of Indian Cities

The study reveals that a total of 54 cities (26.87%) fell into the high susceptibility zone,
while 61 cities (30.35%) were categorized as moderate susceptibility areas. Additionally,
57 cities (28.36%) were in low susceptibility zones, with 29 cities (14.43%) falling outside
susceptibility zones (Figures 13-15). Notably, many cities within the high susceptibility
zone were located in the Ganga and Brahmaputra basins. The top 10 most suscepti-
ble cities included Bardhaman, Silchar, Kharagpur, Howrah, Kolkata, Patna, Munger,
Bareilly, Allahabad, and Varanasi Varanasi, each assigned RFS Indices ranging from

0.84 to 0.91(Table S3). Furthermore, an analysis of Table S3 aided in identifying the cities
that experienced the highest influence of each factor related to riverine floods. This analysis
identified cities like Guwahati, Sri Ganganagar, Jagdalpur, Madurai, Burhanpur, Mathura,
Bhiwani, Nellore, Panjim, and 43 others with a very high proximity to rivers. Additionally,
29 cities were found to be situated in areas characterized by very high drainage density. For
cities with the highest drainage density, the list included Patna, Ellenabad, Sirsha, Agra,
Bihar Sharif, Arrah, Bharatpur, Mathura, Kanpur, Aligarh, Bardhaman, Johrat, Unnao,
and Begusarai, arranged in decreasing order. Regarding rainfall, Shillong, with 4185 mm,
Udupi with 4163 mm, and Mangalore with 4051 mm, were the top three cities in India with
the highest precipitation levels. Furthermore, cities situated in the Ganga, Brahmaputra,
parts of the Indus basins, and the eastern coastline were found to have very low slope
characteristics (<0.14°) (Table 6). Additionally, cities such as Gangtok, Shillong, Junagarh,
and Tirupati exhibited high SPI, while Udhampur, Nakyal, Shillong, Shimla, Wanparti, and
five other cities had high STI.
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Figure 13. RFS Map of the Indian cities.
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3.6. Land Cover Susceptibility Assessment of India

Conducting an RFS assessment of India’s land cover is essential for comprehen-
sive land use planning. This assessment involved tabulating the areas of various land
cover types within different susceptibility zones, utilizing RFS and LULC maps of India
within ArcGIS.

The land cover categories include built area, crops, tree cover, rangeland, and bare ground,
spanning 134,728 km?, 1,529,420 km?, 497,496 km?, 657,368 km?, and 141,268 km?, respectively.
Within the total built area of India, 37,896 km? (28.13%), 39,868 km? (29.59%), 39,080 km?
(29.01%), and 17,884 km? (13.27%) fell into high, moderate, low, and non-susceptible zones,
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respectively. Similarly, for the crop cover, 334,492 km? (21.87%), 522,928 km? (34.19%),
492,880 km? (32.23%), and 179,120 km? (11.71%) were categorized as high, moderate, low, and
non-susceptible zones, respectively. In the case of tree cover, 34,424 km? (6.92%), 93,232 km?
(18.74%), 173,556 km? (34.89%), and 196,284 km? (39.45%) were distributed among high,
moderate, low, and non-susceptible zones, respectively. For rangeland, 42,304 km? (6.44%),
128,552 km? (19.56%), 227,416 km? (34.59%), and 259,096 km? (39.41%) were found in high,
moderate, low, and non-susceptible zones, respectively. As for bare ground, 5916 km? (4.19%),
4936 km? (3.49%), 13,304 km? (9.42%), and 117,108 km? (82.90%) were allocated to high,
moderate, low, and non-susceptible zones, respectively. Table 7 and Figure S2 depict the area
of each land cover category in different RFS zones, while Table 54 and Figure 16 represent
the same in percent. Agriculture has historically played a vital role in the Indian economy,
but its performance has often been criticized for yielding low output. This study reveals that
agricultural fields cover the largest portion of the total flood-susceptible area, followed by
rangeland and tree cover. Focusing on production in low- and non-susceptible areas could
significantly boost India’s economy. Furthermore, the study highlights that over 40% of the
built-up area in India lies within flood-susceptible zones, with approximately 18,000 km?
falling into highly or moderately susceptible categories.

Table 7. Land cover area (in km?) in RFS zones.

Land Susceptible Zones (in km?) Suscept.ible Safe Area Total Area
Cover . Area {in (in km?) (in km?)
High Moderate Low km?)
Bare Ground 5916 4936 13,304 130,412 117,108 141,264
Built Area 37,896 39,868 39,080 56,964 17,884 134,728
Crops 334,492 522,928 492,880 672,000 179,120 1,529,420
Rangeland 42,304 128,552 227,416 486,512 259,096 657,368
Tree Cover 34,424 93,232 173,556 369,840 196,284 497,496
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Figure 16. Land cover area (in %) in RFS zones.

4. Discussion

The evaluation of susceptibility to riverine flooding at the national level and at the
level of basins, cities, and across the land cover categories is a critical tool for making
well-informed decisions, mitigating risks, enhancing emergency preparedness, strategizing
infrastructure development, managing land usage, adapting to climate change, facilitating
insurance protocols, and promoting ecological preservation.

This research conducted an analysis to examine the impact of several factors associated
with RFS in India. Understanding the impact of numerous factors on riverine floods is of
utmost significance, as it serves to mitigate the deleterious consequences of floods on both
populations and the environment [93]. The FAHP was used to evaluate these parameters,
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resulting in an accuracy rate of 80.2% on the AUROC curve. The assessments provide
a comprehensive understanding of flood susceptibility, enabling the implementation of
effective strategies to protect human lives, assets, and ecosystems in flood-prone regions.
Similar to previous studies by [94,95], the selection, assessment, and ranking of RFS in-
fluencing factors and their classes were conducted with the contribution of GDM. The
study focused on macro- and meso-level RFS, RFS in cities, and land cover RFS. According
to [52], the Ganga and Brahmaputra basins face the highest flood risk in the Indian subcon-
tinent due to their high population density. However, the current study reveals that the
Ganga, Godavari, and Brahmaputra basins cover the largest area under high RFS zones.
Specifically, the area between the Godavari and Krishna basins, the Ganga basin, and the
Subarnarekha basin has the highest percentage of their basin area categorized as high RFS
zones. Additionally, our study assessed RFS in 201 cities and analyzed land cover in India
using GIS techniques, which are essential for improved urban planning, flood management,
and land use planning across the country.

The NRSC of ISRO recently published the Flood Affected Area Atlas of India in March
2023. It created a flood map of India and its states by processing historical satellite images
from 1998 to 2022, identifying areas affected by past flood events and potential riverine
flood zones where floods have not occurred in the past. However, the present study goes
further by identifying high, moderate, low, and no riverine flood potential zones within
India at the macroscale and in the Indian river basins at the mesoscale. The implementation
of state-level planning, which is informed by individual state research, has resulted in
interstate conflicts over river water resources in India, hence impeding the progress of
holistic development. Hence, it is essential to implement basin-level planning that is
centrally undertaken and informed by comprehensive basin-level investigations in order to
mitigate the impact of floods and effectively manage water resources [96]. Consequently,
our study focuses on Indian basins rather than Indian states.

The results of this study will provide significant insights for flood hazard managers
and researchers in their selection of the GIS-based F-AHP approach for modeling RFS,
conducting multilevel planning, urban planning, and land use planning. However, like
any scientific endeavour, it has its limitations. Firstly, data availability and quality can be a
challenge, as accurate and up-to-date information on basin morphology, rainfall patterns,
and land-use changes may be lacking and distorted, especially on a large scale and in
remote or poorly monitored areas. Secondly, the model’s effectiveness heavily depends on
the accuracy of the input parameters and the choice of criteria, which can be subjective and
influenced by the GDM'’s judgment. Moreover, these models often assume static conditions,
not accounting for evolving climate change impacts and socioeconomic dynamics. Thirdly,
the spatial resolution of geospatial data can limit the precision of flood susceptibility assess-
ments, especially in areas with complex topographies. Additionally, the model’s complexity
may hinder its accessibility and usability for policymakers and local communities. Lastly,
there is a need for validation and calibration against real-world flood events to assess the
model’s accuracy and reliability, which entirely depend on the availability of accurate and
well spatially distributed historical data. Addressing these limitations is crucial for enhanc-
ing the applicability and robustness of such flood susceptibility assessments. Moreover,
it is important to acknowledge a notable constraint of the used methodology, as well as
the broader practice of flood susceptibility mapping, which is the lack of capability to
provide insights into flood depth or velocity. In order to enhance the comprehensiveness
of future studies, it is recommended to integrate hydraulic modeling techniques, such as
the advanced Hydrologic Engineering Center’s River Analysis System (HEC-RAS 5 and
subsequent iterations). This software has the capability to produce two-dimensional maps
depicting both depth and velocity.

5. Conclusions

The use of the integrated geographic MCDM model in this study facilitates the gen-
eration of precise RFS maps, hence enhancing the understanding of floods among many
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stakeholders, particularly decision-makers and the general public. This has the potential
to enhance both mitigation and adaptation efforts. The objective of this research was to
investigate the factors contributing to flooding in river basins, land cover, and urban areas
in India. Additionally, a spatial model was constructed to assess the susceptibility to floods
using MCDM and GIS. The investigation meticulously evaluated 14 factors, taking into
consideration their association with floods. The FAHP model demonstrated that floods
were primarily influenced by rainfall, drainage density, and proximity to streams. The river
basins of the Ganga, Brahmaputra, and Godavari exhibited a high degree of vulnerability
to flood risks. Conversely, some regions within the northern Indus basin, Luni basin, and
western areas on the leeward side of the Western Ghats had lower susceptibility, with fewer
occurrences of flood hazards. The geographical positioning of a majority of cities indicated
a high susceptibility to flood hazards. Furthermore, the most flood-prone land use category
was occupied by built-up and agricultural areas. Riverine floods have been shown to have
significant impacts on both the structural and financial aspects of a country; however, it is
worth noting that there may be some positive effects on farmers” economies.

It is imperative that more investment be made by the government and relevant stake-
holders in the domains of agriculture, land use, and urban planning. In order to facil-
itate the smooth flow of rainfall, it is recommended that new projects be situated at a
considerable distance from streams and equipped with well-maintained drainage sys-
tems. It is important for residents to acquire knowledge of the causes and strategies for
mitigating floods. Additionally, in order to improve on the findings of this study;, it is
recommended that future research endeavors include GIS in conjunction with emerging
machine learning methodologies.
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