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Abstract: The transition from the linear economy paradigm to the circular economy in industrial
wastewater treatment systems is on the global agenda. The search for new simple, eco-innovative, and
low-cost processes for treating industrial wastewater, which can also be used by small and medium-
sized industries, has been a constant challenge especially when environmental sustainability is
considered. So, a new integrated industrial wastewater treatment system has been developed that in-
cludes the immediate one-step lime precipitation process (IOSLM) and atmospheric carbonation (AC),
followed by constructed wetlands (CWs) or adsorption. The current review provides an overview
of industrial wastewater treatment strategies for high- and low-biodegradable wastewater. A back-
ground on functionality, applicability, advantages and disadvantages, operating variables, removal
mechanisms, main challenges, and recent advances are carried out for each process that makes up the
IOSLM+AC+CW/adsorption integrated system. The prospects of the IOSLM+AC+CW/adsorption
integrated system are also discussed. Not neglecting the improvements that still need to be made in
the integrated treatment system as well as its application to various types of industrial wastewater,
this review highlights that this treatment system is promising in industrial wastewater treatment
and consequent by-product recovery. The IOSLM+AC integrated system showed that it can remove
high amounts of organic matter, total suspended solids, oils and fats, phosphorus, and ammonium
nitrogen from industrial effluents. On the other hand, constructed wetlands/adsorption can be
alternatives for refining effluents still containing organic matter and nitrogen that were not possible
to remove in the previous steps.

Keywords: integrated wastewater treatment; lime precipitation; high-biodegradability wastewaters;
low-biodegradability wastewaters; C/N ratio; organic matter; nitrogen

1. Introduction

Industries are of great importance in society as they meet the daily needs of con-
sumers. However, due to cleaning operations, cooling water, and manufacturing in in-
dustry, wastewater is generated. The produced wastewater volume and the industrial
wastewater characteristics are different from industry to industry as different raw ma-
terials are used. Some industrial wastewaters, such as winery wastewater and brewery
wastewater, have a wide pH range of around 3 to 12 [1,2]. Other effluents, such as rub-
ber processing wastewater (pH 3.7 to 5.5, [3]), distillery industry wastewater (pH 3.8
to 4.4, [4]), and olive mill wastewater (pH 4 to 6, [5]) are acidic. High values of chemical
oxygen demand (COD), biological oxygen demand (BOD), and total suspended solids
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(TSS) have been found in some industrial effluents (Table 1), such as dairy wastewater
(COD at 1900 to 2700 mg O2 L−1, BOD at 1200 to 1800 mg O2 L−1 and TSS at 500 to
740 mg L−1, [6]), brewery wastewater (COD at 2000 to 6000 mg O2 L−1, BOD at 1200
to 3.600 mg O2 L−1 and TSS at 2901 to 3000 mg L−1, [2]), distillery industry wastewater
(COD at 70,000 to 98,000 mg O2 L−1, BOD at 45,600 to 60,000 mg O2 L−1 and TSS at 2000 to
14,000 mg L−1, [4]), winery wastewater (COD at 320 to 296,119 mg O2 L−1, BOD at 125 to
130,000 mg O2 L−1 and TSS at 0 to 30,300 mg L−1, [1]), and among others. Regarding total
nitrogen (TN), rubber processing (200 to 1800 mg N L−1), and distillery industry (1000 to
1200 mg N L−1) wastewaters have higher concentrations (Table 1). For ammonia (Table 1),
higher values were found for seafood processing wastewater (3.2 to 1059 mg N L−1), swine
wastewater (321 to 1129 mg N L−1), and tannery wastewater (100 to 300 mg N L−1). Greater
total phosphorus (TP) concentrations have been found for swine (148 to 1039 mg L−1) and
slaughterhouse (25 to 200 mg L−1) wastewaters (Table 1). On the other hand, higher
concentrations of heavy metals (e.g., Fe3+, Pb2+, and Cu2+) are expected to be found in bat-
tery manufacturing wastewater [7]. Some industrial wastewaters, such as textile industry
wastewater, paper mill wastewater, tannery wastewater, explosives wastewater (e.g., TNT,
RDX, and HMX), petrochemical wastewaters, and others, are poorly biodegradable. The
wide range of contamination levels observed in many industrial effluents is justified by
changes in the industrial process (e.g., production volume, changes in the manufacturing
process, and degree of cleaning performed).

Generally, the contaminant levels in industrial effluents are quite high compared with
contaminant levels in domestic wastewater [8]. According to Metcalf and Eddy [8], a
typical untreated domestic wastewater can have a COD of 250 to 800 mg O2 L−1, a BOD of
110 to 350 mg O2 L−1, a TSS of 120 to 400 mg L−1, a TN of 20 to 70 mg N L−1, the absence
of nitrates, trace concentrations of heavy metals, ammonia of 12 to 45 mg N L−1, and a TP
of 4 to 12 mg L−1, depending on the wastewater flowrate. These values are much lower
than those found in many industrial wastewaters, as mentioned above and found in Table 1.
Thus, compared to domestic wastewater, industrial wastewater presents a greater challenge
in its treatment, given the high concentration of pollutants present, the high variability of
its composition, and consequently the high damage that it can cause to the environment if
there is no treatment or if the treatment is inappropriate.

Unfortunately, the lack of treatment or inappropriate treatment of industrial wastew-
ater has been a source of pollution of groundwater, lakes, and rivers [9,10]. For example,
eutrophication is one of the problems associated with the discharge of nutrients (especially
nitrogen and phosphorus) and organic matter into the receiving watercourse, which leads
to a marked oxygen depletion due to bacterial decomposition of organic matter and high
turbidity, with severe consequences for the natural fauna and flora [11,12]. On the other
hand, the presence of toxic products in industrial effluents is another factor that, in ad-
dition to being lethal for many organisms, can, in some cases, lead to the accumulation
of these compounds in the food chain, making them unfit for consumption [13]. In ad-
dition, industrial effluents (rich in organic matter) are often released into public sewage
networks without prior treatment, which causes problems in urban wastewater treatment
systems since these systems have a limited treatment capacity. Therefore, the installation
of industrial wastewater treatment plants in industries is essential to producing effluents
with characteristics that can be discharged into water or the domestic sewage system.

This review article discusses industrial wastewater treatment strategies, with a special
focus on the immediate one-step lime precipitation process (IOSLM), atmospheric car-
bonation (AC), constructed wetlands (CWs), and adsorption. The applicability, operating
variables, removal mechanisms, advantages and disadvantages, main challenges, and
recent advances are discussed for the referred technologies.
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Table 1. Typical characteristics of different industrial wastewaters.

Types of Industrial Effluent pH COD
(mg O2 L−1)

BOD
(mg O2 L−1)

TSS
(mg L−1)

TN
(mg N L−1)

NH3
(mg N L−1)

TKN
(mg N L−1)

TP
(mg P L−1) Reference

Winery wastewater 3–12 320–296,119 125–130,000 0–30,300 NR NR NR NR [1]

Brewery wastewater 3–12 2000–6000 1200–3600 2901–3000 NR NR 25–80 NR [2]

Rubber processing wastewater 3.7–5.5 3500–14,000 1500–7000 200–700 200–1800 NR NR NR [3]

Distillery industry wastewater 3.8–4.4 70,000–98,000 45,000–60,000 2000–14,000 1000–1200 NR NR NR [4]

Olive mill wastewater 4–6 40,000–220,000 35,000–110,000 NR NR NR NR NR [5]

Dairy wastewater 7.2–8.8 1900–2700 1200–1800 500–740 NR NR NR NR [6]

Textile industry wastewater 5.5–10.5 350–700 150–350 200–1100 NR NR NR NR [14]

Seafood processing wastewater 6.1–7.1 1147–8313 463–4569 324–3150 21–471 3.2–1059 NR 13–47 [15]

Swine wastewater 7.4–7.9 2050–33,860 287–5820 1000–27,800 NR 321–1129 483–2502 148–1039 [16]

Pulp and paper mill wastewater 3.9–8.2 1314–4100 480–1353 83–605 NR NR NR NR [17]

Slaughterhouse wastewater 4.9–8.1 1250–15,900 610–4635 300–2800 50–841 NR NR 25–200 [18]

Tannery wastewater 7–8.5 3000–6000 1200–2700 2000–3000 NR 100–300 250–400 NR [19]

Pharmaceutical wastewater 6.7–7.2 616–4750 322–2440 120–354 NR NR 24.6–82.7 1.2–3.4 [20]

Petroleum refinery wastewater 7.5–9.4 744–1673 205–448 280–340 NR 40–45 82–95 1.67–1.73 [21]

Note: NR—not reported.
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2. Industrial Wastewater Treatment Strategies

Different physical, chemical, and biological methods have been combined to re-
move/reduce nutrients (e.g., ammonium, nitrate, and phosphorus), organic matter, total
suspended solids, and other compounds from industrial wastewater. Since each industrial
effluent has its own characteristics, the combined treatments will have to be specific to that
wastewater. The option of physicochemical treatments or biological treatments to remove a
given contaminant from the effluent has been questioned [22,23]. Although biological treat-
ments seem to be more interesting processes in ecological terms than physicochemical treat-
ments, some characteristics of industrial wastewater, such as the low biodegradability of
the effluent, may condition their use [24–26]. For example, activated sludge is not viable for
treating poorly biodegradable wastewater [27]. Mixing low-biodegradability effluents with
highly biodegradable effluents or adding biodegradable organic matter to the effluent could
be examples of solutions to improve the biodegradability of wastewater for use in biological
treatment; however, the latter solution entails costs [28]. Recently, several pretreatment
technologies have been evaluated to treat and improve the biodegradability of industrial
wastewater for suitable biological treatment. Some examples of wastewater treatment
technologies that improve the biodegradability of wastewater include advanced oxidation
processes (AOP) and electrochemical treatments [29–32], and constructed wetlands [28].
AOP (e.g., ozonation, UV/O3, ozonation coupled with H2O2, O3/UV/H2O2, sonification,
photocatalytic oxidation, Fenton, and other processes) are effective in the treatment of
various wastewaters. However, they have the disadvantages of generating sludge, are a
complex technology, and some reagents (e.g., hydrogen peroxide) are costly [33]. Electro-
chemical treatments (e.g., electrocoagulation, electrodialysis, electrochemical oxidation,
among others) are fast and effective processes for certain metals, do not need chemicals,
and have low sludge production. However, these processes have high energy consumption
costs [34,35]. Compared to these processes, the adsorption process and constructed wet-
lands are recognized for their low-cost wastewater treatment [36], eco-friendly treatment,
and treatment of various types of industrial wastewaters, including low biodegradable
wastewater (e.g., pulp and paper wastewater, petrochemical wastewater, pharmaceutical
wastewater, and others) [37–40]. However, the adsorption process can be less efficient
than in constructed wetlands [41]. Constructed wetlands can also improve the biodegrad-
ability of effluents, since in these systems, the exudates produced by plants are highly
biodegradable and can stimulate the cometabolism of contaminants in the rhizosphere [28].
Mangkoedihardjo [28] investigated the performance of low-biodegradable wastewater
using phytotreatment before the biological oxidation process. The author observed that
hyacinth plants were able to increase the BOD/COD ratio of industrial wastewater from
0.05–0.11 to 0.30–0.52, with simultaneous high-significant COD removals. However, for bet-
ter efficiency of constructed wetlands, pretreatment of wastewater is necessary to remove
various contaminants (e.g., TSS) and thus reduce the potential risk of system clogging [42].
The precipitation of nondegradable pollutants on the substrate surface is also one of the
reasons for clogging [43]. According to Karungamye [44], the effluents to be treated in
constructed wetlands should not exceed a suspended solids concentration of 100 mg L−1.
Thus, the effluent must undergo a primary treatment to reduce the solid load. Primary
decanters and coagulation-flocculation processes have been used as pretreatment methods
to reduce the contaminant load of constructed wetlands [45]. Recently, a combined treat-
ment consisting of an immediate one-step lime precipitation process (or lime precipitation)
followed by atmospheric carbonation has been considered an efficient pretreatment of
industrial wastewaters [46], leachate [47], and urban wastewaters [48] in the removal of
COD, TSS, oils and fats, phosphorus, and ammonium nitrogen. However, despite the high
removals obtained by the combined treatment, the final effluent still needs to be refined.
Although there are few reported cases, recent research has shown that constructed wetlands
or adsorption processes can act as low-cost refining processes for industrial wastewater
treated by the IOSLM and AC integrated processes, regardless of the biodegradability
index of the effluent to be treated [49,50]. In fact, IOSLM contributes to reducing the C/N
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ratio and removing organic matter and TSS from biodegradable or poorly biodegradable
effluents [51,52]. However, a decrease in the biodegradability index has also been observed
with the application of IOSLM, making the wastewater non-biodegradable, as observed
by Luz et al. [46] and Ramalho et al. [47]. On the other hand, atmospheric carbonation
contributes to lowering the pH of highly alkaline wastewater as well as increasing the C/N
ratio by removing ammonia [51,52]. In this way, the removal of organic matter and ammo-
nia during pre-treatment will contribute to better efficiency of the CW and the adsorption
process, which would not be possible with the coagulation-flocculation process as it does
not favor the removal of ammonia from the effluent. Thus, IOSLM+AC+CW/adsorption
could be a low-cost and ecological treatment solution for low and high C/N ratio effluents
and poorly biodegradable wastewater. Although the adsorption process is interesting
to apply when the areas on the ground are limited for the implementation of CWs, this
process is limited in the removal of nitrates, in which case the solution would be to obtain a
nutrient solution of nitrates to reuse.

IOSLM+AC+CW/adsorption can be considered an eco-innovative wastewater treat-
ment system. In fact, eco-innovative wastewater treatment technologies refer to the appli-
cation of environmentally sustainable technologies and approaches in treating wastewater
to minimize their negative impacts (e.g., minimizing greenhouse gas emissions) on the
environment while also maximizing their potential benefits. Typically, these technologies
are energy-efficient and resource-efficient processes that minimize the use of chemicals
and other inputs and may incorporate renewable energy sources and closed-loop systems
to reduce the overall environmental footprint [53]. So, some eco-innovative aspects have
been found in this integrated process, namely [47,48,54]: (i) The IOSLM process (or lime
precipitation) uses a single reagent (hydrated lime) of low cost and high availability; the
sludge produced is stabilized, is rich in nutrients, has the potential to be used in acid
soils, and is less harmful than iron/alum sludge obtained by conventional coagulation-
flocculation processes (the iron/alum sludges can contaminate groundwater by leaching
iron and aluminum salts in acidic soils [55] and limit plant growth due to lower nutrient
availability [56,57]; the destination of iron/alum sludges is landfilling disposal); (ii) The
atmospheric carbonation process contributes to atmospheric CO2 mitigation since in this
process atmospheric CO2 is used to neutralize alkaline effluent to values around neutral-
ity, therefore, no consumption of acids and the problems associated with them occurs;
(iii) Constructed wetlands are eco-friendly, and mimic natural processes that already occur
in nature; and (iv) Many wastes that could end up in landfills can be used as adsorbents in
industrial wastewater treatment through the adsorption process.

To the best of our knowledge, no review article was found that included a detailed
and joint review of the potential of each of these processes. More information regarding the
operation, potentialities, and limitations of each of these treatment processes in industrial
wastewater treatment are described in the following sections.

3. Immediate One-Step Lime Precipitation Process
3.1. Theory and Applications

The immediate one-step lime precipitation process (or lime precipitation) aims to
change the solubility of the substances, converting the soluble substances into insoluble
substances, by adding lime to the wastewater. A scheme of the lime precipitation process is
presented in Figure 1. Lime precipitation is a process where rapid and slow mixing takes
place. Rapid mixing for a good mixture between the precipitating agent and the wastewater
to form precipitates. Slow mixing is necessary for the agglomeration of particles to increase
their sedimentation (Figure 1). In immediate one-step lime precipitation, the flocculation
step does not exist since it uses high lime dosages to immediately produce large amounts
of precipitates that settle in the mantle, dragging many particles with them [51,54].
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Figure 1. Lime precipitation process.

Quicklime (CaO) and hydrated lime (Ca(OH)2) are the two forms of lime mostly used
in wastewater treatment. CaO is the result of the calcination of CaCO3 at high temperatures
(Equation (1)). Hydrated lime results from the hydration of CaO with water (Equation (2)).
The solubility of Ca(OH)2 decreases with increasing temperature [58].

CaCO3 (s)→ CaO + CO2 (g) (1)

CaO + H2O→ Ca(OH)2 (2)

Lime is cheaper than other chemicals and can easily be purchased anywhere [59,60]. Lime
has been used for pH control [61,62], urban wastewater treatment [48], stabilized leachates [63],
and treatment of industrial wastewaters such as plywood industry wastewater [64], cotton
textile wastewater [65], tannery wastewater [66,67], olive mill wastewater [68], explosive
wastewaters [51], slaughterhouse wastewater [52], and others.

3.2. Operating Variables and Removal Mechanisms

High removals of COD, BOD, color, total phosphorus, total coliforms, heavy metals,
turbidity, and organic nitrogen have been observed in the IOSLM process/lime treatment of
various types of wastewaters (Table 2). The amount of hydrated lime required for optimal
effluent clarification varies with the type of wastewater to be treated, more specifically with
the composition of the water, for example, alkalinity, total hardness, and ammonium con-
centration [69]. Sometimes the dosages used are higher than theoretically foreseeable since
hydrated lime partially dissolves [60]. Boukhoubza et al. [68] tested different concentrations
of hydrated lime (10 to 150 g L−1) to treat 1 L of olive mill wastewater at pH 12. The au-
thors observed that small concentrations of hydrated lime contributed to a greater effluent
dilution effect than the effect of coagulation. Increasing concentrations of lime decreased
the volume of solution added, and, in this case, the recorded reductions could be related to
the coagulation effect rather than dilution. High concentrations of hydrated lime or CaO
solution (e.g., 200 g L−1) have been used in the literature [46,47,63,70]. Ramalho et al. [47]
observed that stirring time in the immediate one-step lime precipitation process has a small
influence on organic load and NH4

+ removal.
The effect of effluent composition buoyancy on the effectiveness of the lime precipita-

tion process has been scarcely documented in the literature [71]. Prazeres et al. [54] applied
IOSLM to treat different high-strength cheese whey wastewaters (without cheese whey
recovery, 60% cheese whey recovery, and 80% cheese whey recovery). The authors observed
that cheese whey recovery significantly influenced the characteristics of the wastewater to
be treated and, consequently, the removal of various parameters.
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Some reaction mechanisms of the IOSLM process/lime treatment in wastewater treat-
ment have been observed, namely:

Effluent pH increases since the dissolution of hydrated lime in wastewater provides
hydroxyl ions (OH−) (Equation (3)) [63,65].

Ca(OH)2 → Ca2+ + 2OH− (3)

Carbonate and hydroxide anions can react with a wide range of cations, leading to the
formation of highly insoluble precipitates [72]. For example, the instantaneous conversion
of calcium bicarbonates and magnesium bicarbonates into precipitated calcium carbonates
(Equation (4)) and magnesium carbonates (Equation (5)), as well as the transformation of
magnesium carbonates into precipitated magnesium hydroxides (Equation (6)) [60,63]. In
fact, these compounds have low solubility product values (i.e., 4.7 × 10−9 for CaCO3 and
8.9 × 10−12 for Mg(OH)2, respectively), and the minimum solubility of calcium carbonate
and magnesium hydroxide occurs at pH 9.1–9.5 and around 11, respectively [73].

Ca(OH)2 + Ca(HCO3)2 � 2CaCO3 (s) + 2H2O (4)

Ca(OH)2 + Mg(HCO3)2 � MgCO3 + CaCO3 (s) + 2H2O (5)

Ca(OH)2 + MgCO3 � Mg(OH)2 (s) + CaCO3 (s) (6)

Neutralization of suspended impurities results in the destabilization of charged parti-
cles and their aggregation [64]. The formed calcium carbonate and magnesium hydroxide
can act as coagulants [74]. Furthermore, colloidal particles can be trapped during the
formation of calcium carbonate precipitates [75].

Total phosphorus removal (Equations (7) and (8)) occurs in the pH range of 8–12 [75].
The degree of phosphorus removal by the IOSLM process/lime treatment is a function of the
following factors: initial phosphorus concentration, lime concentration, the concentration of
other anions competing with phosphorus for precipitating cations, and wastewater pH [76].
The phosphate precipitation rate is influenced by the presence of carbonates, as the latter
compete with the phosphate ions for calcium ions [77,78].

3Ca(OH)2 + 2PO4
3− → Ca3(PO4)2↓ + 6 OH− (7)

4Ca(OH)2 + 3PO4
3− + H2O→ Ca4H(PO4)3↓ + 9 OH− (8)

Disinfection of the effluent is due to the exposure of microorganisms/viruses to
high pH under a certain contact time, as well as the occurrence of the adsorption of
microorganisms to the formed precipitates [46,60].

Organic matter removal by surface adsorption, co-precipitation, precipitation, coagulation-
flocculation, or chemical reaction [63].

Removal of heavy metals (e.g., Ni, Zn, Fe, Cr, and others) in the form of precipitated
hydroxides (Equations (9) to (12)) or carbonates, as well as their adsorption on calcium
carbonate. Metal hydroxide precipitation is highly dependent on pH [67,71,72,79].

Cr(SO4)3 + 3Ca(OH)2 → 2Cr(OH)3↓ + 3CaSO4↓ (9)

NiSO4 + Ca(OH)2 → Ni(OH)2↓ + CaSO4↓ (10)

ZnSO4 + Ca(OH)2 → Zn(OH)2↓ + CaSO4↓ (11)

FeSO4 + Ca(OH)2 → Fe(OH)2↓ + CaSO4↓ (12)
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Table 2. Application of lime precipitation/IOSLM in the treatment of industrial wastewater, landfill leachate, and urban wastewater.

Type of Wastewater Reagent and Applied
Dose/pH Operation Mode Optimum Removal Efficiency Reference

Landfill leachates

Lime (4 g L−1),
pH 11.85

Rapid mixing (300 rpm) for 5 min, slow mixing
(30 rpm) for 30 min, followed by

settling for 30 min.

COD (25.5%), Ca2+ (93.5%), Mg2+ (98.5%), NH4
+

(56.2%), total alkalinity (87.7%), and Fe (75.4%).

[63]
Lime (2.0 g L−1),

pH = 11.20
COD (18.0%), Ca2+ (65.0%), Mg2+ (65.0%), NH4

+

(29.7%), and total alkalinity (80.0%).

Lime (6.0 g L−1),
pH 10, 40

COD (0.4%), Ca2+ (91.5%), Mg2+ (95.5%), NH4
+

(24.7%), and total alkalinity (90.9%).

CaO (27.6 g L−1)
300 rpm stirring speed for

2–60 min, followed by settling for 2 h.
Stirring time has a small influence on organic load and

NH4
+ removal.

[47]
CaO (18.2–33.3 g L−1)

300 rpm stirring speed for 40 min, followed by
settling for 2 h. COD (64%) at 27.6 g L−1 of CaO.

Plywood industry wastewater Lime (1.5 g L−1) Rapid mixing and settling for 2 h. COD (40%), TSS (36.8%), phenol (41%), and
TKN (48.1%). [64]

Olive mill wastewater Lime (10 g L−1), pH 12
Rapid mixing (200 rpm) for 5 min, slow mixing

(60 rpm) for 10 min, and filtration (11 µm) after a
resting period.

COD (72%), TSS (73%), and Phenol (60%). [68]

Textile wastewater Lime (0.8 g L−1), pH 13–13.5
Rapid mixing for 1–2 min, slow mixing for
15–20 min, followed by settling for 45 min. COD (50–60%) and color (70–90%). [65]

Tannery wastewater CaO and Ca(OH)2 (0.3 to
3.2 g alkali/g Cr3+)

10 min of vigorous stirring, 200 rpm, and a
settling time of 24 h.

Cr (99.8%), SO4
2− (66.9%), ZnSO4 (99.6%), FeSO4

(21.4%), CN−1 (70.9%), NiSO4 (52.8%), and
Fe2[Fe(CN)6] (76.4%) for CaO,

Cr (99.8%), SO4
2− (61.6%), ZnSO4 (99.9%), FeSO4

(7.1%), CN−1 (84.0%), NiSO4 (54.4%), and
Fe2[Fe(CN)6] (90.5%) for Ca(OH)2

[67]

Cheese whey wastewater Lime, pH 6 to 13 700–800 rpm for 1 min, 300–400 rpm for 1 min,
followed by settling for 24 h.

The highest COD removal (29.7%) was obtained at
pH 11.0.

Total phosphorus (61.9–95.6%) only occurred at
pH ≥ 8.0.

Highest total phenols removals (63.2–65.5%) at
pH 12.0 and 13.0.

[78]
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Table 2. Cont.

Type of Wastewater Reagent and Applied
Dose/pH Operation Mode Optimum Removal Efficiency Reference

Ca(OH)2, pH 8.57 to 12.37 Vigorous agitation. Then the agitation system was
switched off.

Under optimum conditions: COD (90%), turbidity
(99.8%), TSS (98–99%), oils and fats (82–96%),

phosphorus (98–99%), potassium (96–97%), and total
coliforms (100%) for 80% cheese whey recovery and

lime application.

[54]

Vinasse wastewater
Ca(OH)2

(12–100 g L−1),
pH 10.14–12.49.

Rapid agitation.
COD (51%), absorbances, magnesium, nitrogen, and

phosphorus had depletions (≥70%) at pH
12.13 and 12.49.

[70]

Olive oil mill wastewater Ca(OH)2,
pH 11.0 to 12.75. Rapid agitation followed a settling time of 24 h.

COD (11.4–17.8%), total phosphorus (23.6–42.2%),
turbidity (60.9–100%), total phenols (25.9–48.0%), and

absorbances at 220 nm (10.3–33.5%), 254 nm
(18.5–45.9%), 410 nm (34.2–81.6%), and 600 nm

(22.1–77.3%).

[80]

Winery wastewater

Quicklime, slaked lime,
Calcium hydroxide, using

1–50 mL L−1 for slaked lime
and calcium hydroxide, and

5–40 mL L−1 for
the quicklime.

Vigorous stirring for
2 min followed by a settling time of 1 h.

High removal levels of BOD5 (77.9%), turbidity
(98.7%), total phosphorus (87.1%), total phenols

(99.9%), fecal coliforms, and Enterococcus (100%) at
25 mL L−1 of slaked lime.

[46]

Urban wastewater
Hydrated lime, reagent-grade

Ca(OH)2 and quick lime,
pH 9.5 to 12.5.

Vigorous mechanical stirring (magnetically
agitated, rotation speed of 300 rpm) followed by a

settling time of 120 min.

COD (88%), BOD5 (86%), TP (89%), N-organic (75%),
and total coliform count (100%) at 0.7 g L−1 (reaction

pH of 11.5) of hydrated lime.
[48]

Explosives wastewater
Ca(OH)2

(2–19 g L−1),
pH 9–12.

Rapid mixing (3 s−1) for 1 min, followed by
settling for 46 min.

COD (92.1%), oils and fats (98.2%), organic
nitrogen (100%)

at 7.76 g L−1 (reaction pH of 10) of hydrated lime.
[51]

Slaughterhouse wastewater

Ca(OH)2,
pH 9.5–12.

Rapid mixing (3 s−1) for 1 min, followed by
settling for 60 min.

COD (7–91%), BOD5 (80–86%), TP (98–99%), TSS
(52–99%), 254 nm (87–96%), 410 nm (83–96%), oils and
fats (47–92%), turbidity (62–97%) at reaction pH of 12.

[52]

Lime (100–600 mg L−1)
Stirring at 100 rpm for 1 min, slow mixing at

40 rpm for 30 min, followed by a settling time
of 30 min.

TSS (41.9%), BOD (38.9%), and COD (36.1%) at
400 mg L−1 of lime. [81]
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3.3. Main Challenges and Recent Advances

Although IOSLM is a simple operation, fast (i.e., high precipitation speed), low-cost
(chemical cost and energy requirements) [82,83], and does not contribute to an increase
in salinity (unlike some salts used, such as iron and alum [60]) or the formation of toxic
secondary pollutants [72], this process leaves the effluent with a high pH [79], the NH4

+

removal is limited [84], and it produces large amounts of sludge [60]. Effluent with a high
pH is unsuitable for some sequence treatment processes within a wastewater treatment
plant, and calcium carbonate precipitation may occur in the distribution pipelines [79]. The
first two disadvantages mentioned above can be minimized by the atmospheric carbonation
process since this process contributes to lowering the pH and removing ammonia [51,52]
(See Section 4). Despite the large volume of sludge produced by the IOSLM process, when
compared to coagulation processes using ferric chloride or alum chloride as coagulants,
the sludges possess superior thickening and dewatering characteristics and are suitable
for filter pressing at a lower cost [54,60]. Furthermore, the sludge does not need the
addition of polymers or more lime to dewater it, which results in savings in chemical
reagents, unlike the iron and alum sludge obtained by the coagulation process, which
still needs to be conditioned [60]. The sludge is chemically stabilized due to the high
pH applied, does not decompose quickly, causes few odor problems, and has recycling
potential [60,74]. Finding economically viable and ecological solutions is important to
minimize the impact of increased sludge production. The reuse of lime sludge from
landfill leachate treatment by the IOSLM process to cover landfills has been considered
an eco-innovative solution [85]. Some sludge resulting from the treatment of cheese whey
wastewater by the IOSLM process has potential application in agriculture as a fertilizer
since it contains many nutrients such as calcium, phosphorus, potassium, magnesium, and
others, although with some limitations due to its saline nature (i.e., high NaCl content) [54].
On the other hand, the reuse of lime sludge from the IOSLM process/lime precipitation
to treat industrial wastewater has been rarely reported. Ayeche [75] used hydrated lime
sludge (with a purity of 67.03%) produced in the manufacture of acetylene to treat dairy
wastewater, and the author observed substantial removals of suspended solids, organic
matter, nitrogen, and phosphorus. The use of thermal treatment (calcination process)
can also be a solution to recover the hydrated lime from the sludge and use it again as
a reagent. Bal Krishna et al. [86] investigate the effectiveness of pre-treated lime sludge
from a groundwater treatment plant through heat treatment in removing phosphorus
from an aqueous solution. The authors observed that calcination of the sludge at 700 ◦C
greatly improved the phosphorus removal from the aqueous solution compared to if it
were applied to dry lime sludge at 105 ◦C. Recently, Madeira et al. [87] evaluated the reuse
of sludge from the IOSLM process in wet or calcined form and as a coagulant or adjuvant
coagulant to treat slaughterhouse effluents with different characteristics. These authors
observed that the use of lime sludge as a coagulant aid and with heat treatment contributed
to greater removals of COD from 3 to 91%, TP 98%, turbidity from 99 to 100%, E. coli
100%, and TKN from 3 to 62%, depending on the characteristics of the wastewater of the
slaughterhouse treated. Subsequently, the authors carried out successive reuses of sludge,
using lime sludge as a coagulant aid and with heat treatment. The results showed that
the quality of the effluent did not change after each reuse (except for phosphorus, which
increased). In addition, after each reuse, there were savings in terms of the dose of hydrated
lime applied in the IOSLM process, and the sludge was more compacted and stabilized
with a high pH value after three sludge reuses. The sludge obtained is rich in nutrients and
may have a potential application in nutrient-poor and acidic soils.

4. Atmospheric Carbonation
4.1. Theory and Applications

Atmospheric carbonation (or atmospheric CO2 sequestration) is a process that aims
to reduce the pH of an alkaline effluent using atmospheric CO2. Basically, this process
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consists of leaving the alkaline effluent exposed to the atmosphere over time at rest and at
room temperature (Figure 2).
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The atmospheric carbonation process has recently been used to neutralize industrial wastew-
ater (e.g., vinasse from the sugarcane ethanol industry [70], winery wastewater [46], explosive
wastewaters [51], slaughterhouse wastewater [52], and cheese whey wastewater [54]), urban
wastewater [48], and landfill leachate [47], resulting from the lime precipitation process.

4.2. Operating Variables and Removal Mechanisms

Reductions in pH, conductivity, calcium concentration, magnesium concentration,
ammonia concentration, phenolphthalein alkalinity, and total alkalinity have been ob-
served over the carbonation time for most wastewater treated by the IOSLM process/lime
precipitation (Table 3).

Time, the absence/presence of precipitates from the IOSLM process/lime precipita-
tion, and the injection of atmospheric air have been the factors analyzed in the carbonation
process. Time has been the main factor analyzed by the authors, as it is the factor that
regulates the continuity of carbonation reactions between the supernatant and the atmo-
sphere. This factor is dependent on the operational variables applied (e.g., air injection
or absence/presence of sludge) [48,70] and on the initial characteristics of the alkaline
wastewater (e.g., pH, temperature, and others) [88]. Correia et al. [48] observed that the
injection of atmospheric air contributes to a shorter carbonation time. On the other hand,
Prazeres et al. [70] found that the presence of sludge from lime precipitation contributes to
an increase in the carbonation time to reach a pH around neutrality. Madeira et al. [51] also
observed that the presence of IOSLM sludge contributes to an increase in the carbonation
time since the sludge slows down the effluent pH drop. This brings advantages that include
the use of one less sludge/effluent separation step, since during atmospheric carbonation,
precipitates of calcium carbonate are formed, as well as the great removal of ammonia
since high pH values will remain longer for ammonia volatilization. On the other hand,
Madeira et al. [52] observed that the application of higher reactor area/volume (A/V)
ratios contributes to greater contact of the effluent with the atmospheric air, thus allowing a
greater transfer of atmospheric CO2 to the effluent and consequently a rapid pH reduction
of the effluent. Despite the rapid decrease in pH, ammonia removal is not diminished by
increasing the A/V ratio. Increasing the A/V ratio of the reactor contributes to the need for
larger areas of the site, which may be a disadvantage for sites limited in area. The authors
also observed that regardless of the reaction pH chosen from the range of 9.5 to 12, the same
carbonation time would be necessary to reach pH 8. However, this does not happen when
a pH of 9.5 is desired, where higher reaction pHs require longer carbonation times [52].
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Table 3. Summary of a literature review about the neutralization of alkaline wastewater treated by lime precipitation through the carbonation of atmospheric CO2.

Type of Effluent Operating Conditions Initial Physicochemical Characteristics Final Physicochemical Characteristics References

Vinasse from the
sugarcane

ethanol industry

V = 2.6 L
A = 162 cm2

Room temperature = 16.8 ± 2.3 ◦C
Without agitation, air injection, and

reagent addition
With or without precipitate

Without precipitate:
pH = 10.6

Conductivity ≈ 10 mS cm−1

Ca ≈ 2400 mg L−1

After 15 days:
pH ≈ 8

Conductivity ≈ 10.8 mS cm−1

Ca ≈ 2400 mg L−1

[70]
With precipitate:

pH = 12.34
After 20 days:

pH ≈ 8

Without precipitate:
pH = 12.05

After 9.2 days:
pH ≈ 8

Winery wastewater

V = 1 L
Without agitation, air injection, and

reagent addition
Without precipitate

pH =12.4
Conductivity = 6.5 mS cm−1

Ca = 499.8 mg L−1

Mg = 179.9 mg L−1

After 15 days:
pH = 7.46

Conductivity = 1.805 mS cm−1

Ca = 426.5 mg L−1

Mg = 6.6 mg L−1

[46]

Cheese whey wastewater

V = 3.5 L
A = 162 cm2

Without agitation, air injection, and
reagent addition

Without precipitate

pH ≈ 12
Conductivity ≈ 4.75 mS cm−1

Ca ≈ 300 mg L−1

Mg ≈ 13 mg L−1

After 7.3 days:
pH ≈ 8

Conductivity ≈ 4 mS cm−1

Ca ≈ 200 mg L−1

Mg ≈ 2 mg L−1

[54]

Landfill leachate

V = 3 to 4 L
A = 200 cm2

Without agitation, air injection, and
reagent addition

Without precipitate

pH = 12.5
NH4

+ = 889 mg N L−1

Conductivity = 23.1 mS cm−1

Calcium Hardness = 490 mg CaCO3 L−1

P. alkalinity = 6600 mg CaCO3 L−1

Total alkalinity = 7530 mg CaCO3 L−1

COD = 460 mg O2 L−1

After 32 days:
pH = 10.10

NH4
+ < 0.1 mg N L−1

Conductivity = 15.0 mS cm−1

Calcium Hardness < 0.1 mg CaCO3 L−1

P. alkalinity = 2350 mg CaCO3 L−1

Total alkalinity = 4480 mg CaCO3 L−1

COD = 474 mg O2 L−1

[47]

Urban wastewater

V = 4 L
A = 200 cm2

Without agitation and reagent addition
With precipitate

With or without air injection

Without air injection:
pH ≈ 11.5

Conductivity = 1.144 mS cm−1

After 9.2 days:
pH = 8.4

Conductivity ≈ 1.050 mS cm−1
[48]

With air injection (85 L h−1):
pH ≈ 11.5

Conductivity ≈ 1.300 mS cm−1

After 4.2 days:
pH ≈ 8

Conductivity ≈ 1.170 mS cm−1
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Table 3. Cont.

Type of Effluent Operating Conditions Initial Physicochemical Characteristics Final Physicochemical Characteristics References

Explosives wastewater

V = 5 L
A = 189 cm2

Room temperature = 24.5 ± 2.0 ◦C
Without agitation, air injection, and

reagent addition
With precipitate

pH = 10.3
NH4

+ = 1505 mg N L−1

Conductivity = 9 mS cm−1

Ca = 1500 mg L−1

Mg = 52.5 mg L−1

P. alkalinity = 3674 mg CaCO3 L−1

Total alkalinity = 3923 mg CaCO3 L−1

After 10 days:
pH = 8

NH4
+ = 578 mg N L−1

Conductivity = 10.3 mS cm−1

Ca = 1626 mg L−1

Mg = 36.2 mg L−1

P. Alkalinity = 62 mg CaCO3 L−1

Total alkalinity = 125 mg CaCO3 L−1

[51]

Slaughterhouse
wastewater

A/V ratio = 5 and 155.4 m2/m3

Without agitation, air injection, and
reagent addition

Without precipitate

With A/V = 5 m2/m3:
pH = 11.9

Conductivity = 3.12 mS cm−1

Ca = 297.6 mg L−1

Mg = 43.3 mg L−1

NH4
+ = 69 mg N L−1

After 13 days:
pH = 7.9

Conductivity = 2.46 mS cm−1

Ca = 130.9 mg L−1

Mg = 20.2 mg L−1

NH4
+ = 22 mg N L−1

[52]
With A/V = 155.4 m2/m3:

pH = 11.9
Conductivity = 3.12 mS cm−1

Ca = 297.6 mg L−1

Mg = 43.3 mg L−1

NH4
+ = 69 mg N L−1

After 1 day:
pH = 8.2

Conductivity = 2.40 mS cm−1

Ca = 60.2 mg L−1

Mg = 31.4 mg L−1

NH4
+ = 12 mg N L−
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The minimum and maximum atmospheric carbonation times reported in the literature
were 1 [52] to 20 days [70] to reach pH ≈ 8. On the other hand, a non-completion of the
carbonation process at pH 8 has been observed by some authors, such as Ramalho et al. [47]
who observed that the effluent still had a pH of 10.10 after 32 days of carbonation (Table 3).
Prazeres et al. [54] also found that the time required for natural carbonation depends on
effluent characteristics.

The decrease in pH of the effluent during the atmospheric carbonation process follows
the same reaction mechanisms (Equations (13) to (16)) that lead to ocean acidification
caused by increased CO2 emissions into the atmosphere from anthropogenic sources [89].

CO2 (g) � CO2 (aq) (13)

CO2 (aq) + H2O (l) � H2CO3 (aq) (14)

H2CO3 � H+ + HCO3
− (15)

HCO3
−� H+ + CO3

2− (16)

In fact, the effluents from the IOSLM process/lime precipitation are quite alkaline,
and consequently, the free CO2 in the effluent is unavailable, which causes a chemical im-
balance of CO2 between the effluent and the atmosphere with considerable concentrations
of CO2. As a way of counteracting this imbalance, the CO2 present in the atmosphere
tends to dissolve in the water through the water-air interface until it reaches equilibrium
(Equation (13)). After dissolution in the water, the dissolved CO2 is subjected to a hydration
reaction through a reaction with water to form H2CO3 (Equation (14)). As H2CO3 is a weak
acid, it dissociates in two steps: the first step (Equation (15)) is the formation of HCO3

−

and H+ ions, and the second step (Equation (16)) is the formation of CO3
2− and H+ ions

from HCO3
−. The production of H+ ions leads to a decrease in the pH of the effluent.

During atmospheric CO2 sequestration, H+ ions are attracted by opposite charges, namely
by hydroxide ions forming water molecules. CO3

2− ions are attracted by positive charges,
namely calcium or magnesium ions, to form precipitated calcium carbonate and magne-
sium carbonate. In addition to the decrease in pH, water stabilization also occurs during
atmospheric CO2 sequestration, since carbonates tend to be converted into bicarbonates
(HCO3

−), reaching a maximum in the pH range of 8.4 to 8.6. At this pH range, precipitation
of carbonates (CO3

2−) does not occur since the fraction of carbonates in this pH range is
practically zero [90].

During atmospheric carbonation, ammonia can be released into the atmosphere [47].
However, as the pH decreases, ammonia removal becomes more difficult as ammonia is
converted to ammonium ions (Equation (17)), reaching 50% ammonia and 50% ammonium
ions at pH 9.25 [91,92]. Since air stripping of wastewater with a low ammonia concentration
(less than 2 g L−1) is not economically sustainable [93], the atmospheric carbonation process
could be an alternative solution.

NH3 + H2O � NH4
+ + OH− (17)

COD removal is not expected during the atmospheric carbonation process [47].

4.3. Main Challenges and Recent Advances

The use of atmospheric CO2 as a neutralizing agent in wastewater treatment is an
innovative, low-cost, and environmentally friendly technology. It is easy to apply, does
not require reagents or energy (if not using atmospheric air injection), and produces stable
wastewater concerning CaCO3, preventing precipitation of CaCO3 in distribution systems.
Furthermore, this process contributes to the mitigation of greenhouse gases, is an alternative
to the use of acids (e.g., H2SO4 or HCl) or CO2 injection, and consequently reduces costs
of reagents, corrosion of equipment by acids, and costs of transport/storage of CO2 to
the treatment site. However, the main challenges of the AC process are its contribution
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to the release of ammonia into the atmosphere if it is present in the effluent and its high
carbonation time [54]. Although increasing the A/V ratio contributes to a significant
reduction in carbonation time, such a solution requires a large disposal area that industries
often do not have available. So, new approaches to atmospheric carbonation will need
to be investigated to minimize the current disadvantages. Recently, Madeira et al. [94]
developed a closed-system carbonation process that consists of moving (by gravity) the
alkaline effluent treated by the IOSLM process under a capillary (in a staggered manner)
that is in contact with injected atmospheric air. The injected air is then collected in an acidic
solution to remove the volatilized ammonia. The authors observed that the atmospheric
carbonation process developed contributed to a very significant reduction in carbonation
time and an effective capture of volatilized ammonia with potential for reuse.

5. Constructed Wetlands
5.1. Theory and Applications

In recent years, constructed wetlands have gained popularity, as an emerging green
technology for the treatment of industrial wastewaters [95,96]. Constructed wetlands are
artificial wetlands that mimic a set of biological, physicochemical, and chemical processes
that occur in natural wetlands to treat industrial wastewater, urban wastewater, and landfill
leachate. These processes result from the interaction between the different elements that
make up the system (Figure 3), namely: water, plants, microorganisms, and substrate [97].
Plant roots and the substrate act as a barrier to intercept coarse particles that the effluent
may contain, while the microorganisms and plants break down and absorb pollutants from
the effluent, which makes the constructed wetlands a filtration and purification system for
effluents [98]. Generally, the resulting effluents can be discharged into surface waterways
or reused for different purposes.
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Constructed wetlands have been used as a secondary treatment (on a small scale, in
isolated areas) for BOD removal or as a tertiary treatment (on a large scale, in developed
countries) for wastewater refinement (BOD, solids, and nutrients) [99].

5.2. Operating Variables and Removal Mechanisms

Different types and combinations of plants, substrates, and constructed wetlands con-
figurations have been reported in the literature for various types of industrial wastewater
to determine the higher efficiency of the removal of pollutants from wastewater.

Biological media (e.g., bagasse, biochar, coal, and oyster shell), construction materials
media (e.g., recycled brick, mortar, gravel, and sand), artificial media (e.g., activated carbon,
compost, and lightweight aggregates), and industrial by-products (e.g., slag and fly ash)
have been used as adhesion materials for biofilms or external sources of organic matter (in
the case of biological media) [100,101]. Light-expanded clay aggregates (LECA) have also
been widely used as a substrate as they can remove phosphates, have good mechanical
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strength and hydraulic conductivity, and are a good support structure for the growth of
biofilms and plant roots [102].

In terms of wastewater flow regime, different designs have been used, namely, tra-
ditionally constructed wetlands (e.g., free water flow constructed wetlands (FWSCWs)
and subsurface flow constructed wetlands (SFCWs) (i.e., horizontal flow constructed wet-
lands (HFCWs) and vertical flow constructed wetlands (VFCWs)), hybrid constructed
wetlands (e.g., two-stage constructed wetlands and multi-stage constructed wetlands),
and innovative constructed wetlands (e.g., aerated CW, circular flow corridor CW, baffled
flow CW, and others) [103]. Each of these systems has its advantages, disadvantages, and
applications. FWSCWs have lower construction and operating costs than SFCWs; however,
odor issues may occur and it features lower contaminant removal ratios per unit area
(which requires a larger area of land) than SFCWs [104]. Compared to FWSCWs, SFCWs
tolerate cold weather, have fewer odor problems, and have greater sorption and exchange
sites; however, they have higher costs, are subject to clogging of the media, and use small
flows [105]. VFCWs have been applied to promote greater aerobic degradation of pollutants
since they have a good oxygen supply and require a smaller land area compared to HFCWs;
however, the flow distances are short, and they present poor denitrification [106]. HFCWs
have long flow distances that allow for more complete degradation of pollutants and enable
nitrification and denitrification; however, they require larger land areas and therefore a
higher capital cost [107]. To overcome the disadvantages in removing pollutants by each
wetland alone, hybrid constructed wetlands (e.g., VFCW-HFCW, VFCW-HFCW-VFCW, and
other combinations) have also been applied to reach higher treatment efficiency [36,108].
The denitrification capacity of VFCWs have also been studied with the application of flood
levels [109]. Different types of constructed wetlands have been applied to treat different
types of industrial wastewater; however, most of the cases reviewed by Vymazal [110] used
FWSCWs or HFCWs to treat industrial wastewater.

Many studies have indicated that pollutant removal efficiencies depend on the type
of plant species used in the constructed wetland [111]. Therefore, the choice of the ap-
propriate plant is an important factor in phytoremediation processes [112]. Plants have
been classified as emergent, submerged, or floating, and their use depends on the type
of constructed wetlands [113]. Plants that have been applied in constructed wetlands for
industrial wastewater treatment, include: Typha latifólia e.g., for distillery wastewater [114],
slaughterhouse wastewater [115], petroleum refinery wastewater [116] and floriculture
wastewater [117]; Phragmites karka e.g., for distillery wastewater [114]; Juncus effusus e.g., for
winery wastewater [118]; Cyperus immensus e.g., for paper and pulp wastewater [119];
Phragmites australis e.g., for slaughterhouse wastewater [115], dye wastewater [120], textile
wastewater [121], cork boiling wastewater [122], fish farm wastewater [123] and olive
mil wastewater [124]; Brachiaria mútica e.g., for textile wastewater [120]; Typha domingensis
e.g., for paper and pulp wastewater [119]; Canna indica e.g., for mixed wastewater from steel
mill, paper and dyeing factory [125]; Pampas grass e.g., for glass industry wastewater [126];
Eichhornia crassipes e.g., for petrochemical wastewater [127]; Typha augustifolia e.g., for
seafood processing wastewater [128]; Canna lilies e.g., for floriculture wastewater [117];
Pennisetum purpureum e.g., for swine wastewater [129]; Cyperus papyrus e.g., for sugar mill
wastewater [130]; Phalaris arundinácea e.g., for tile drainage [131] and among others.

Several environmental factors and operational conditions can affect nitrogen and or-
ganics removal, such as pH, temperature, availability of oxygen, availability of organic car-
bon sources, hydraulic load and retention time, the mode of influent feed (i.e., continuous,
intermittent, batch, tidal, and step feed modes), nitrogen and organics loading, recirculation,
bed depth, and plant harvesting [132,133]. In addition, the removal of nutrients and organic
matter in constructed wetlands can be inhibited by the harmful effects of the presence of
heavy metals on plants and microorganisms. Removal of metals in constructed wetlands
can occur by precipitation, plant uptake, and microbial metabolism, but it depends on
substrate type, plant species, and wastewater composition [134]. Removal of heavy metals
(e.g., Pb, Cd, Cu, and Zn) (>85%) present in mixed domestic-industrial wastewater has been
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observed using recirculating standing hybrid-constructed wetlands planted by Canna indica
L. and filled with lava rock and gravel [135]. According to Zhang et al. [135], these systems
require a smaller area, allow a rapid co-precipitation of heavy metals, and consequently
a decrease in toxicity in plants and microorganisms, as well as a consistent and effective
removal of total nitrogen, total phosphorus, and organic matter.

Substantial removals of pollutants have been observed in the treatment of different
industrial wastewaters by constructed wetlands (Table 4). The removal of pollutants from
constructed wetlands is quite complex and involves a set of removal mechanisms, including
physical (sedimentation and filtration), chemical (e.g., sorption, complexation, and precip-
itation), and biological (biodegradation, microbial transformation, and microbial/plant
assimilation) processes that can occur simultaneously [136]. According to Vymazal [137],
the nitrogen transformation mechanisms involved in constructed wetlands are ammonia
volatilization, ammonification, nitrification, denitrification, fixation, absorption, and assim-
ilation by plants, ammonium ion adsorption, and anammox. Removal of organic matter
in constructed wetlands is associated with both aerobic and anaerobic degradation [138].
The plant also plays an important role in the phytoremediation of industrial effluents, and
many mechanisms may occur, namely: degradation (rhizodegradation, phytodegrada-
tion), accumulation (phytoextraction, rhizofiltration), dissipation (phytovolatilization), and
immobilization (phytostabilization) to degrade, remove, or immobilize contaminants [139].

Table 4. Pollutant removal efficiencies obtained in constructed wetlands for different industrial
wastewaters.

Wastewater Types Removals Reference

Seafood wastewater BOD (91–99%), TSS (52–90%), TN (72–92%), and TP (72–77%) [140]

Winery wastewater BOD (70%), COD (71%), TSS (87%), TKN (52%), and PO4
3− (17%) [118]

Tannery wastewater BOD (98%), COD (98%), TSS (55%), TP (87%), and NH4
+ (86%) [141]

Steel industry wastewater COD (77%), NH4
+ (77%), Fe (94%), and Mn (81%) [142]

Refinery wastewater COD (80%), oil (93%), BOD (88%), and TKN (86%) [143]

Aquaculture wastewater COD (27%), TSS (66%), TN (67%), TP (24%), and NO3
− (59%) [144]

Textile wastewater Cr (40–50%) [145]

Abattoir wastewater BOD (97%), COD (97%), TSS (94%), TN (74%), and NH4
+ (99%) [146]

Distillery wastewater BOD (85%), COD (80%), TKN (75%), NO3
− (57%), NH4

+ (2–10%), and SO4
2− (69%) [147]

Brewery wastewater TSS (89%), COD (92%), TN (83.6%), NH4
+ (92.9%), TP (74.4%), and PO4

3− (79.5%) [148]

Cheese wastewater BOD (55%), COD (72%), TSS (60%), TP (30%), and TN (50%) [149]

Olive mill wastewater COD (85%), TSS (90%), TP (83%), TKN (83%), Phenol (80%), NH4
+ (54%), and NO3

− (46%) [124]

Pulp and paper wastewater COD (88%), color (96%), BOD (93%), and chlorophenols (90%) [150]

Mixed industrial wastewater BOD (66%), COD (67%), NH4
+ (24%), organic-N (83%), and PO4

3− (62%) [151]

5.3. Main Challenges and Recent Advances

Although CWs are recognized for easy operation and maintenance, a low carbon foot-
print, lower maintenance (with little external energy input), and lower capital construction
costs [113,152–154], these systems have higher land area requirements and retention times
than conventional systems [106,113,155,156]. The search for new plants to consistently
comply with the permit requirements for removing pollutants has been a real challenge. In
recent years, Chrysopogon zizanioides (L.) Roberty (formerly known as Vetiveria zizanioides
(Linn.) Nash) has instigated the interest of several researchers in the phytoremediation
process due to its characteristics, namely its strong resistance and survival to extreme
climatic and edaphic conditions (e.g., drought and flooding, high concentration of pollu-
tants (i.e., nutrients, heavy metals, and persistent organic matter), pH 3 to 10.5, salinity
until 47.5 dS m−1, temperatures ranging from −9 to 55 ◦C), as well as its roots quite long
that allow greater absorption of pollutants and a greater supply of oxygen for aerobic
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bacteria to develop [157–161]. In addition, this plant also has economic value since it
serves as a raw material to produce perfumes and cosmetics [162]. This plant has shown
similar potential and sometimes more effectiveness in removing contaminants from in-
dustrial wastewater than some commonly used plant species, such as Cyperus species,
Phragmites species, and Typha species [163]. Vetiveria zizanioides has been applied to re-
move organic matter from contaminated surface water [111,164], treat landfill leachate [47]
and urban wastewater [165–167], rehabilitation and soil stabilization of sites contaminated
with high levels of heavy metals [168–170], and treat industrial wastewater, e.g., aquacul-
ture wastewater [171], piggery effluent [172,173], pinora effluent, palm oil mill effluent,
biogas effluent [174], textile wastewater [175], olive mill wastewater [160], milk factory
wastewater [176], tofu wastewater [161], paperboard mill wastewater [177], high explo-
sives from munition industry wastewater [178] and others. High COD, BOD, and TSS
removal efficiencies have been observed in some poorly biodegradable water from indus-
trial wastewater (e.g., biogas wastewater [174] and tofu wastewater [161]) when Vetiveria
zizanioides is used (Table 5); however, the same did not occur for some wastewater that was
not very biodegradable, such as palm oil mill wastewater [174] and textile wastewater [175].
The use of constructed wetlands to treat poorly biodegradable industrial wastewater is
a challenge since the effluent can influence the growth of microorganisms as well as the
associated removal mechanisms [125]. Most investigations have been carried out with
FWSCWs, requiring a long hydraulic retention time (1 to 120 days) when using Vetiveria
zizanioides (Table 5). These systems require mosquito control [156].

Although several investigations have been registered on the potential of vetiver in
wastewater treatment, studies on its efficacy in treating industrial effluents with high
nitrate content are limited. Panja et al. [178] evaluate the phytoremediation potential
of Vetiveria zizanioides in removing explosive compounds and nitrates from wastewater
effluents generated in an industrial munition facility. The authors observed high removal
efficiencies of nitroguanidine (79%), nitrates (95%), dinitroanisole (96%), RDX (100%), and
HMX (100%); however, this was only possible with the use of four successive batches
(except for RDX and HMX, which was one batch) once the vetiver plants started to show
visible symptoms of stress, such as chlorosis and fallen leaves, and died within the first few
days, returning to be replaced by a new batch of vetiver plants. These results show that
further research is needed. Almeida et al. [109] evaluate the potential of phytoremediation
of Vetiveria zizanioides for nitrate and organic matter removal from synthetic wastewater in
subsurface vertical flow-constructed wetland systems. The authors observed that the ratio
of COD/NO3

−-N in wastewater affected the efficiency of NO3
−-N removal and that a low

hydraulic load and a high COD/NO3
−-N ratio ensure good effects of nitrate and organic

matter removal. The authors did not observe obvious symptoms of toxicity signals during
the experimental tests. Thus, Vetiveria zizanioides has good phytoremediation potential
in the fields of nitrate nitrogen and organic substance removal. For the heterotrophic
denitrification process to occur, highly concentrated nitrate wastewaters require a certain
amount of organic matter, which sometimes they do not have [179].
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Table 5. Application cases of phytoremediation of industrial wastewater using Vetiveria zizanioides.

Wastewater Types CW Type Media HRT (d) HL
(m3 d−1) Initial Concentrations Removal

Performance (%) Country References

Aquaculture
Wastewater

FWSCW
(2 m × 1 m × 0.5 m)

Coarse sand
and corals 1 0.576 NH3 (0.1–0.2 mg L−1),

PO4
3− (6–10 mg L−1)

NH3 (2–67%),
PO4

3− (0–75%) Indonesia [171]

Piggery Wastewater FWSCW
(1 m × 3 m × 1 m) Soil 5 0.18

BOD (767.90 mg L−1),
COD (1330.25 mg L−1),
TKN (158.67 mg L−1),

TP (69.90 mg L−1)

BOD (74%),
COD (70%),
TKN (88%),

TP (83%)

Thailand [173]

Pinora Wastewater FWSCW - 120 -

TSS (385 mg L−1),
BOD (4836 mg L−1),
COD (6296 mg L−1),

NO3
− (0.721 mg L−1),

NH3 (9.69 mg L−1)

TSS (82%),
BOD (94%),
COD (86%),
NO3

− (10%),
NH3 (41%)

Ghana [174]

Palm Oil
Mill Wastewater FWSCW - 120 -

TSS (278,600 mg L−1),
BOD (44,520 mg L−1),

COD (128,911 mg L−1),
NO3

− (0.80 mg L−1),
NH3 (20.40 mg L−1)

TSS (71%),
BOD (51%),
COD (10%),
NO3

− (6%),
NH3 (40%)

Ghana [174]

Biogas Wastewater FWSCW - 120 -

TSS (330 mg L−1),
BOD (492 mg L−1),

COD (1952 mg L−1),
NO3

− (0.122 mg L−1),
NH3 (17.3 mg L−1)

TSS (95%),
BOD (91%),
COD (82%),
NO3

− (99%),
NH3 (42%)

Ghana [174]

Pig farm Wastewater FWSCW
(50 cm× 38.5 cm× 23 cm) - 4 -

COD (825 mg L−1),
BOD5 (500 mg L−1),

NH3 (130 mg N L−1),
TP (23 mg L−1)

COD (64%),
BOD (69%),
NH3 (20%),
TP (27%)

China [172]

Olive mill wastewater FWSCW - 67 -

TOC (1132 mg L−1),
TN (26.6 mg L−1)

TOC (85%),
TN (93%),
TP (39%)

Turkey [160]
TOC (3168 mg L−1),
TN (72.6 mg L−1)

TOC (89%),
TN (24%),
TP (92%)

Milk factory wastewater FWSCW - 120 -

Mn (0.49 mg L−1),
Fe (16.15 mg L−1),
Zn (4.09 mg L−1)
Pb (0.05 mg L−1)

Mn (34%),
Fe (28%),
Zn (53%),
Pb (9%)

Thailand [176]
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Table 5. Cont.

Wastewater Types CW Type Media HRT (d) HL
(m3 d−1) Initial Concentrations Removal

Performance (%) Country References

Tofu wastewater FWSCW Zeliac 15 -
COD (5759 mg L−1),
BOD (580 mg L−1),
TSS (552 mg L−1)

COD (76%),
BOD (72%),
TSS (75%)

Indonesia [161]

Paperboard mill
wastewater

(raw and treated)
FWSCW - 40 -

TSS (1000 mg L−1),
BOD (156 mg L−1),
COD (512 mg L−1),

TN (39 mg L−1),
TP (9.25 mg L−1),

Lead (2.01 mg L−1),
cadmium (1.90 mg L−1)

TSS (60%),
BOD (96%),
COD (50%),
TN (64%),
TP (65%),

Lead (51%),
cadmium (27%)

India [177]
TSS (200 mg L−1),
BOD (44 mg L−1),

COD (256 mg L−1),
TN (25 mg L−1)

TP (8.50 mg L−1),
Lead (0.96 mg L−1),

cadmium (0.42 mg L−1)

TSS (75%),
BOD (72%),
COD (56%),
TN (70%),
TP (43%),

Lead (91%),
cadmium (81%)

Explosives wastewater
VFCW

(40 cm × 60 cm × 70 cm)
with flooding level at 25%

LECA - 0.02
COD (361 mg L−1),

NO3
− (145 mg N L−1),

NH4
+ (4.8 mg N L−1)

COD (>90%),
NO3

− (55%),
NH4

+ (75%)
Portugal [50]

Slaughterhouse
wastewater

VFCW
(40 cm × 60 cm × 70 cm) LECA 0.29 0.02 COD (2648 mg L−1),

NH4
+ (48.8 mg N L−1)

COD (59–83%),
NH4

+ (52–65%) Portugal [49]

Textile wastewater HFCW
(1 m × 0.6 m × 0.3 m) Limestone soil 25 -

TSS (100–120 mg L−1),
COD (820–1200 mg L−1),
BOD (226–282 mg L−1)

TSS (81%),
COD (46.2%),
Cu (73.6%),

color (78.2%)

Tanzania [175]

Munition
industry wastewater FWSCW -

100

-

Nitroguanidine (3996 mg L−1) Nitroguanidine (79%)

United States
of America

[178]
100 NO3

− (352,734 mg N L−1) NO3
− (95%)

100 Dinitroanisole (120 mg L−1) Dinitroanisole (96%)

20 RDX (7.8 mg L−1),
HMX (12 mg L−1)

RDX (100%),
HMX (100%)

Note: HRT—Hydraulic Residence Time; HL—Hydraulic Load.
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Studies related to the effect of the C/N ratio on the denitrification of effluents with
highly concentrated nitrate are still limited. Low nitrogen removals (28 to 58%) in constructed
wetlands have been reported when effluents with low biodegradability (i.e., 0.16 to 0.36) are
used [100]. When poor biodegradability is due to a lack of biodegradable carbon in the efflu-
ent, some authors have added an external carbon source (e.g., methanol) [180] or used organic
substrates [181] to supply carbon to the system and thus increase the biodegradability of
the effluent and consequently improve heterotrophic denitrification in constructed wetlands.
Saeed and Sun [133] evaluated the constructed wetlands with sugarcane bagasse and sand
media for the treatment of textile wastewater. The authors observed that the organic carbon
content of sugarcane bagasse facilitated denitrification in the vertical flow-constructed wet-
lands. Saeed and Khan [100] evaluated the removal of pollutants from a low biodegradable
mixed industrial wastewater using two parallel hybrid constructed wetlands composed of
two VFCWs (with different combinations of biological (i.e., bagasse, biochar, coal, and oyster
shell) and construction (recycled brick, mortar, gravel, and sand) media materials) followed by
surface flow constructed wetland, planted by Phragmites australis. The authors concluded that
higher organics and nitrogen removal percentages were obtained with biological materials
than with construction materials, due to carbon leaching. However, high removal percentages
of NH4-N (≥90%), TN (≥86%), P (≥91%), BOD (≥92%), COD (≥85%), and color (≥87%)
across both systems were obtained, which reveals that the combination of VFCWs (packed
with biological and construction materials) and FWSCWs, can be a solution for the treatment
of hardly degradable industrial wastewater.

6. Adsorption
6.1. Theory and Applications

Adsorption is a process that has been widely used to remove organic matter from
industrial wastewater. In the adsorption process, there is an accumulation of adsorbates
(e.g., organic or inorganic pollutants) on the surface of the adsorbent using intermolecular
forces of attraction. This happens when an adsorbent with a highly porous surface structure
comes into contact with a solution containing absorbates [182]. Then, the adsorbent is
removed from the solution by sedimentation or filtration. Different conventional and
nonconventional adsorbents have been used for the removal of pollutants from wastewater.
Conventional adsorbents include commercial activated carbons, inorganic materials, and
ion-exchange resins. On the other hand, nonconventional adsorbents include natural
materials, agricultural wastes, industrial by-products, activated carbons from solid wastes,
biosorbents, and miscellaneous adsorbents [183–185].

Commercial activated carbons are the most prevalent and extensively used adsorbents
for wastewater treatment [186]. These are produced from the carbonization process of
carbon-rich organic materials such as wood, peat, coconut shells, and coals (anthracite,
bituminous, lignite, and others). This process occurs under slow heating in the absence of air
below 600 ◦C to remove volatile impurities such as oxygen, hydrogen, nitrogen, and sulfur.
Then, a physical activation (using agents such as O2, CO2, or steam at high temperatures)
or chemical activation (using agents such as H2SO4, H3PO4, KOH, K2S, and ZnCl2) is
carried out [187,188]. As a result, the activated carbon produced has a porous structure, a
large specific surface area, and high surface reactivity [189]. These properties are important
in the removal of various types of contaminants such as heavy metals [190], organic
matter [191–193], phosphorus [194], and nitrogen [195]. Activated carbon is usually used
as a tertiary treatment for persistent pollutant removal after biological treatment [196]. The
pore structure is composed of micropores (pore diameter < 2 nm), mesopores (2 nm < pore
diameter < 50 nm), and macropores (pore diameter > 50 nm) [197]. Powdered activated
carbon (PAC) and granular activated carbon (GAC) are the two forms of activated carbon
applied in wastewater treatment (Figure 4), being able to remove pesticides, aromatic
and phenolic derivatives, pharmaceutics, volatile organic compounds, hydrocarbons and
surfactants, metals, dyes, and others [185].
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PAC and GAC differ essentially in terms of the origin of production, grain size, type
of equipment used, mode of use, the possibility of regeneration, and production costs [198].
PAC is mainly made from wood, while GAC is made from coconut shells or coal. GAC has
a larger particle size than PAC [199]. PAC is used in rapid mix units by batch treatment
processes, while the adsorption for GAC is usually continuous on a packed bed [191].
Granular active carbon can be used several times before going through the regeneration
process, while PAC is not regenerated, but rather, usually disposed of [200]. The production
of powdered activated carbon is less costly than the GAC; however, when used frequently,
it has higher operating costs than the GAC [201]. So, GAC is a cost-friendly option for large
treatment plants. Contrary to the PAC, which is soon discarded, there is the possibility of
bacteria growing in the GAC [202].

6.2. Operating Variables and Removal Mechanisms

The adsorption process is complex and is influenced by several factors, namely the
dosage and characteristics of the adsorbent (i.e., specific area, porosity, pore diameter and
structure, and granulometry), the characteristics of the solution (i.e., pH, the concentration
of the adsorbate, the presence of other species, and temperature), the characteristics of
the adsorbate (i.e., polarity, ionic nature, functional groups, solubility, and diameter), and
the contact time [13,203]. For example, the pH of the solution plays a very important role
in the adsorption process since it can influence the degree of ionization of the substances
present in it as well as the surface charge of the adsorbent, which affects the reaction
kinetics [204]. Lee et al. [205] observed that an accumulation of calcium (in the form of
calcium carbonate) over time on activated carbon deteriorates synthetic organic chemicals’
adsorption. It is not expected that the removal of ammonia by adsorption occurs in very
alkaline effluents since the ammonia molecule is in neutral form (unlike the NH4

+ ion) to
be adsorbed to carbon [206].

The adsorption capacity of adsorbent materials has been evaluated through adsorption
isotherms, which are the ratios between the amount of adsorbate adsorbed per unit mass
of adsorbent and the concentration of adsorbate in solution at equilibrium at a constant
temperature [207]. From the equilibrium models, it is possible to obtain useful information
about the surface properties of the adsorbent, the mechanism of adsorption, and the
interaction between the adsorbent and the adsorbate [208]. Thus, different isothermal
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models have been used to evaluate and interpret experimental adsorption data, namely
the Langmuir isotherms (which assume, for example, that the surfaces are homogeneous
and that the adsorption occurs chemically in a monolayer), Freundlich isotherms (which
assume, for example, that the surfaces are heterogeneous and that the adsorption occurs in
multilayers), and other models [209]. On the other hand, the speed with which the adsorbate
is retained on the surface of the adsorbent material has been evaluated through adsorption
kinetics studies. Kinetics is important as it controls the efficiency of the process. Different
models can be fitted to the adsorption process data concerning time; among the most
commonly used are pseudo-first-order kinetics and pseudo-second-order kinetics [210].
Other kinetic models, such as the Weber and Morris model, the Bangham model, and
the pseudo-n order model, have also been used [211]. The adsorption mechanism can
involve four steps: (i) the transport of the adsorbate from the bulk of the solution to the
boundary layer surrounding the adsorbent particles; (ii) the transport of the adsorbate by
diffusion along the boundary layer to the entrance of the adsorbent pores; (iii) the transport
of the adsorbate inside the pores of the particle to the adsorption sites by a combination of
molecular diffusion through the liquid contained inside the pores and diffusion along the
surface of the adsorbent; and (iv) the attachment of the adsorbate to an available site of the
adsorbent involves several mechanisms, such as physical adsorption, chemical adsorption,
ion exchange, precipitation, and complexation [212,213].

A small particle size means faster adsorption kinetics. A large volume of microp-
ores generally corresponds to a high surface area and good adsorption capacity for small
molecules, while a large volume of mesopores or macropores may indicate a good adsorp-
tion capacity for larger molecules [214].

6.3. Main Challenges and Recent Advances

Adsorption is a low-cost, easy-to-operate process with application in a wide pH
range, and it has high performance in removing organic and inorganic pollutants [215].
However, this process has low selectivity and produces waste products whose regeneration
is expensive [216]. One of the challenges of using conventional adsorbents is separating
the adsorbent from the treated wastewater. The use of GAC in a packed bed does not
require an additional step to remove the adsorbent from the water; however, the same
does not happen with PAC. In most studies, the adsorbent separation is carried out by
filtration and centrifugation methods [217]. Separation of the adsorbent by filtration and
sedimentation represents an extra cost and time for wastewater purification. Conventional
separation processes such as centrifugation, precipitation, filtration, and chromatography
are not economically viable [186]. Furthermore, as the PAC has a small particle size, the
blockage of filters or the loss of the solid particles could occur [218]. Magnetic separation of
the adsorbent is not possible since activated carbon has no magnetic properties. However,
the combination of activated carbon with iron oxide nanoparticles (e.g., Fe3O4 (magnetite)
or Fe2O3 (maghemite)) has been studied to achieve a separation of the combined using
a magnetic field [219], since magnetic iron oxide nanoparticles have superparamagnetic
properties [220]. Borghi and Fabbri [219] compared the percentage of magnetic-activated
carbon (MAC) residues obtained using magnetic separation, sedimentation, and filtration.
The authors noted that the magnetic separation of MACs would result in a lower percentage
of MAC residues in the treated water. Since iron is one of the most abundant metals on
Earth and the production of iron oxide nanoparticles (using co-precipitation) is low-cost
and easy to synthesize, its incorporation into activated carbon is popular [221–224]. On the
other hand, the synthesis of magnetic carbon nanocomposites is considerably cheap and
requires low operational energy [225,226]. Moreover, magnetic carbon nanocomposites
can be used several times after desorption, making it an environmentally friendly water
purification process.

MAC has been extensively applied to remove organic (water-soluble organic dyes, phe-
nolic compounds, humic substances, pharmaceuticals, and others) and inorganic (mercury
(II), arsenic (V), gold, phosphate, and others) compounds [227–229]. However, despite the
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advantages in terms of magnetic separation, some limitations have been observed in terms
of the efficiency of contaminant removal in the MAC adsorption process. Lompe et al. [230]
evaluated the influence of iron oxide nanoparticles (IONP) upon the adsorption of organic
matter on magnetic powdered activated carbon using three magnetic powdered activated
carbons (MPAC) with mass fractions of 10%, 38%, and 54% maghemite nanoparticles. The
authors observed that maghemite IONP does not contribute significantly to the adsorption
of natural organic matter itself and reduces the adsorption capacity of MPAC by block-
ing the mesopores of the carbon matrix when mass fractions above 38% of maghemite
nanoparticles were used. However, improvements in the adsorption capacity with the
incorporation of iron oxide nanoparticles in PAC have also been observed by other au-
thors. Park et al. [231] evaluated the simultaneous removal of bisphenol A (BPA) and
natural organic matter (NOM) by applying powdered activated carbons impregnated with
iron oxide nanoparticles (IONPACs). The authors observed that IONPAC adsorbents had
considerably greater sorption capabilities for BPA and NOM compared to native, bare
PAC particles. On the other hand, Madeira et al. [49] evaluated the effect of incorporating
iron oxide nanoparticles in PAC and GAC on the organic matter adsorption capacity of
slaughterhouse wastewater treated by IOSLM and AC. The authors observed that the
incorporation of iron oxide nanoparticles into PAC and GAC did not affect the adsorption
capacity. Additionally, the authors also observed that there were no significant differences
in COD removal after filtration and magnetic separation for both adsorbents with incorpo-
rated iron oxide nanoparticles. Vargues et al. [232] used PAC and PAC combined with iron
oxide nanoparticles (PACMAG) as adsorbents to remove common pharmaceuticals (ibupro-
fen and amoxicillin). These authors observed that the kinetic models and the isothermal
models were different between PAC and PACMAG for both drugs, which means that the
incorporation of iron oxide nanoparticles can influence the adsorption mechanism.

7. Conclusions

In this review, an alternative and integrated strategy for industrial wastewater treat-
ment consisted of immediate one-step lime precipitation and atmospheric carbonation,
followed by constructed wetland or adsorption. Each of the processes that make up the
integrated IOSLM+AC+CW/adsorption system has been widely addressed for industrial
wastewater treatment since these processes are recognized for their low cost, easy operation,
environmental advantages, effectiveness, and flexibility.

Using a single low-cost and easily available reagent (i.e., hydrated lime), the IOSLM
process is initially applied with the aim of removing a large part of the contamination
present in industrial effluents, namely, in terms of organic matter, total suspended solids,
oils and fats, and nutrients (such as organic nitrogen and phosphorus). Subsequently, the
AC process is used effectively to reduce the pH of the high alkaline wastewaters obtained in
the IOSLM process, as well as to reduce the conductivity and concentrations of calcium and
ammonia nitrogen through atmospheric carbonation reactions. Atmospheric carbonation
can be carried out in an open system or a closed system for ammonia recovery, depending
on the amount of ammonia present in the wastewater. Atmospheric carbonation does not
require chemicals or specialized maintenance, has low energy consumption, and contributes
to the mitigation of atmospheric CO2. Additionally, CWs or adsorption processes are used
as tuning processes to remove contaminants (e.g., organic matter or nitrogen) that were not
possible to remove in the previous steps.

Unlike the IOSLM process and the adsorption process, the implementation of at-
mospheric carbonation and constructed wetlands processes requires large areas of land.
However, if adsorption is an alternative process to constructed wetlands, this concern no
longer arises. On the other hand, the implementation of a staggered carbonation system
or the reuse of gases from industry could be used to reduce the pH, reducing the area to
be implemented.

The proposed IOSLM+AC+CW/adsorption integrated treatment system contributes
to forming by-products (e.g., sludge, ammonia, and treated effluent) that can be recovered,
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which contributes to a circular economy. It is important to note that the IOSLM+AC+CW/
adsorption integrated treatment system is flexible as it integrates a set of processes and
operating variables that can be modified to meet the characteristics of the industrial
wastewater to be treated, which makes it a very promising technology in the treatment of
industrial wastewater.

Despite the IOSLM+AC+CW/adsorption being a promising system, there are still
aspects to consider in future research in each of the processes used or sequence of processes,
such as: (i) testing the treatment sequence on a full-scale under different environmental
conditions (temperature, CO2, and others) and other types of industrial wastewater; and
(ii) promoting the circularity of by-products obtained in each of the processes. For example,
reuse sludge from the IOSLM process as a coagulant (aid) or as an acidity corrector in acidic
and/or calcium-deficient soils; valorize ammonia captured in atmospheric carbonation
systems (e.g., for green hydrogen production); recover the treated wastewater as nutritional
solutions for agricultural purposes; and regenerate adsorbents to be used again.
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132. Almeida, A.; Jóźwiakowski, K.; Kowalczyk-Juśko, A.; Bugajski, P.; Kurek, K.; Carvalho, F.; Durao, A.; Ribeiro, C.; Gajewska, M.
Nitrogen removal in vertical flow constructed wetlands: Influence of bed depth and high nitrogen loadings. Environ. Technol.
2020, 41, 2196–2209. [CrossRef]

133. Saeed, T.; Sun, G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency
on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [CrossRef]
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