Computational Analysis of the Kinetic Processes of Microbial Electrolysis Cell-Assisted Anaerobic Digestion Using the ADM1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Operation
2.2. Model Description
2.3. Model Setup and Equations
3. Results and Discussion
3.1. Model Results and Validation
3.1.1. ADM1 Fit to the Experimental Data
3.1.2. Estimation of Kinetic Parameters
3.1.3. Sensitivity Analysis of Kinetic Parameters
3.2. Optimization of Raw-WAS-Fed MEC-AD by the ADM1
3.2.1. Organic Loading Rate
3.2.2. Solids Retention Time
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stamatelatou, K.; Antonopoulou, G.; Lyberatos, G. Production of Biogas via Anaerobic Digestion; Woodhead Publishing Limited: Sawston, UK, 2011; Volume 1895. [Google Scholar]
- Ferrentino, R.; Langone, M.; Fiori, L.; Andreottola, G. Full-Scale Sewage Sludge Reduction Technologies: A Review with a Focus on Energy Consumption. Water 2023, 15, 615. [Google Scholar] [CrossRef]
- Domini, M.; Bertanza, G.; Vahidzadeh, R.; Pedrazzani, R. Sewage Sludge Quality and Management for Circular Economy Opportunities in Lombardy. Appl. Sci. 2022, 12, 10391. [Google Scholar] [CrossRef]
- Joicy, A.; Seo, H.; Lee, M.E.; Kim, D.H.; Cho, S.K.; Ahn, Y. Enhanced methane production using pretreated sludge in MEC-AD system: Performance, microbial activity, and implications at different applied voltages. Int. J. Hydrogen Energy 2022, 47, 40731–40741. [Google Scholar] [CrossRef]
- Wang, X.T.; Zhang, Y.F.; Wang, B.; Wang, S.; Xing, X.; Xu, X.J.; Liu, W.Z.; Ren, N.Q.; Lee, D.J.; Chen, C. Enhancement of methane production from waste activated sludge using hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) process—A review. Bioresour. Technol. 2022, 346, 126641. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Kato, H.; Zhao, Y.; Li, Y.Y. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. [Google Scholar] [CrossRef]
- Gonzalez, A.; Hendriks, A.T.W.M.; van Lier, J.B.; de Kreuk, M. Pre-treatments to enhance the biodegradability of waste activated sludge: Elucidating the rate limiting step. Biotechnol. Adv. 2018, 36, 1434–1469. [Google Scholar] [CrossRef]
- Huang, X.; Yun, S.; Zhu, J.; Du, T.; Zhang, C.; Li, X. Mesophilic anaerobic co-digestion of aloe peel waste with dairy manure in the batch digester: Focusing on mixing ratios and digestate stability. Bioresour. Technol. 2016, 218, 62–68. [Google Scholar] [CrossRef]
- Wang, Z.; Yun, S.; Xu, H.; Wang, C.; Zhang, Y.; Chen, J.; Jia, B. Mesophilic anaerobic co-digestion of acorn slag waste with dairy manure in a batch digester: Focusing on mixing ratios and bio-based carbon accelerants. Bioresour. Technol. 2019, 286, 121394. [Google Scholar] [CrossRef]
- Xu, H.; Yun, S.; Wang, C.; Wang, Z.; Han, F.; Jia, B.; Chen, J.; Li, B. Improving performance and phosphorus content of anaerobic co-digestion of dairy manure with aloe peel waste using vermiculite. Bioresour. Technol. 2020, 301, 122753. [Google Scholar] [CrossRef]
- Jia, B.; Yun, S.; Shi, J.; Han, F.; Wang, Z.; Chen, J.; Abbas, Y.; Xu, H.; Wang, K.; Xing, T. Enhanced anaerobic mono- and co-digestion under mesophilic condition: Focusing on the magnetic field and Ti-sphere core–shell structured additives. Bioresour. Technol. 2020, 310, 123450. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Yu, H.; Zhang, J.; Li, F.; Song, H. Microbial electro-fermentation for synthesis of chemicals and biofuels driven by bi-directional extracellular electron transfer. Synth. Syst. Biotechnol. 2020, 5, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Liu, Y.; Dhar, B.R. A critical review of microbial electrolysis cells coupled with anaerobic digester for enhanced biomethane recovery from high-strength feedstocks. Crit. Rev. Environ. Sci. Technol. 2022, 52, 50–89. [Google Scholar] [CrossRef]
- Sun, R.; Zhou, A.; Jia, J.; Liang, Q.; Liu, Q.; Xing, D.; Ren, N. Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells. Bioresour. Technol. 2015, 175, 68–74. [Google Scholar] [CrossRef]
- Ding, A.; Yang, Y.; Sun, G.; Wu, D. Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC). Chem. Eng. J. 2015, 283, 260–265. [Google Scholar] [CrossRef]
- Xing, T.; Yun, S.; Li, B.; Wang, K.; Chen, J.; Jia, B.; Ke, T.; An, J. Coconut-shell-derived bio-based carbon enhanced microbial electrolysis cells for upgrading anaerobic co-digestion of cow manure and aloe peel waste. Bioresour. Technol. 2021, 338, 125520. [Google Scholar] [CrossRef]
- Liu, J.; Yun, S.; Wang, K.; Liu, L.; An, J.; Ke, T.; Gao, Y.; Zhang, X. Enhanced methane production in microbial electrolysis cell coupled anaerobic digestion system with MXene accelerants. Bioresour. Technol. 2023, 380, 129089. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, B.; Yin, C.; Zhang, C.; Dai, X.; Yuan, H.; Zhu, N. Biostimulation by direct voltage to enhance anaerobic digestion of waste activated sludge. RSC Adv. 2016, 6, 1581–1588. [Google Scholar] [CrossRef]
- Ge, Y.; Tao, J.; Wang, Z.; Chen, C.; Mu, L.; Ruan, H.; Yon, Y.R.; Su, H.; Yan, B.; Chen, G. Modification of anaerobic digestion model No.1 with Machine learning models towards applicable and accurate simulation of biomass anaerobic digestion. Chem. Eng. J. 2023, 454, 140369. [Google Scholar] [CrossRef]
- Ozgun, H. Anaerobic Digestion Model No. 1 (ADM1) for mathematical modeling of full-scale sludge digester performance in a municipal wastewater treatment plant. Biodegradation 2019, 30, 27–36. [Google Scholar] [CrossRef]
- Weinrich, S.; Nelles, M. Systematic simplification of the Anaerobic Digestion Model No. 1 (ADM1)—Model development and stoichiometric analysis. Bioresour. Technol. 2021, 333, 125124. [Google Scholar] [CrossRef] [PubMed]
- Parker, W.J. Application of the ADM1 model to advanced anaerobic digestion. Bioresour. Technol. 2005, 96, 1832–1842. [Google Scholar] [CrossRef] [PubMed]
- Batstone, D.J.; Keller, J. Industrial applications of the IWA anaerobic digestion model No. 1 (ADM1). Water Sci. Technol. 2003, 47, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Emebu, S.; Pecha, J.; Janáčová, D. Review on anaerobic digestion models: Model classification & elaboration of process phenomena. Renew. Sustain. Energy Rev. 2022, 160, 112288. [Google Scholar] [CrossRef]
- Mo, R.; Guo, W.; Batstone, D.; Makinia, J.; Li, Y. Modifications to the anaerobic digestion model no. 1 (ADM1) for enhanced understanding and application of the anaerobic treatment processes—A comprehensive review. Water Res. 2023, 244, 120504. [Google Scholar] [CrossRef]
- Wu, D.; Li, L.; Zhao, X.; Peng, Y.; Yang, P.; Peng, X. Anaerobic digestion: A review on process monitoring. Renew. Sustain. Energy Rev. 2019, 103, 1–12. [Google Scholar] [CrossRef]
- Zou, L.; Wang, C.; Zhao, X.; Wu, K.; Liang, C.; Yin, F.; Yang, B.; Liu, J.; Yang, H.; Zhang, W. Enhanced anaerobic digestion of swine manure via a coupled microbial electrolysis cell. Bioresour. Technol. 2021, 340, 125619. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Ta, Q.T.H.; Nguyen, P.K.T. Artificial intelligence-based modeling and optimization of microbial electrolysis cell-assisted anaerobic digestion fed with alkaline-pretreated waste-activated sludge. Biochem. Eng. J. 2022, 187, 108670. [Google Scholar] [CrossRef]
- Kanellos, G.; Tremouli, A.; Arvanitakis, G.; Lyberatos, G. Boosting methane production and raw waste activated sludge treatment in a microbial electrolysis cell-anaerobic digestion (MEC-AD) system: The effect of organic loading rate. Bioelectrochemistry 2024, 155, 108555. [Google Scholar] [CrossRef]
- Feng, Q.; Song, Y.C.; Bae, B.U. Influence of applied voltage on the performance of bioelectrochemical anaerobic digestion of sewage sludge and planktonic microbial communities at ambient temperature. Bioresour. Technol. 2016, 220, 500–508. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Q.; Sun, D.; Wang, Y.; Dong, H.; Dang, Y.; Holmes, D.E. Applying potentials to conductive materials impairs High-loading anaerobic digestion performance by affecting direct interspecies electron transfer. Bioresour. Technol. 2019, 297, 122422. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.S.; Kondaveeti, S.; Min, B. Bioelectrochemical methane (CH4) production in anaerobic digestion at different supplemental voltages. Bioresour. Technol. 2017, 245, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xiao, B.; Tang, X.; Bian, C.; Liu, J.; Li, L. Microbial electrolysis cell simultaneously enhancing methanization and reducing hydrogen sulfide production in anaerobic digestion of sewage sludge. Chemosphere 2023, 337, 139445. [Google Scholar] [CrossRef] [PubMed]
- Manjusha, C.; Beevi, B.S. Mathematical Modeling and Simulation of Anaerobic Digestion of Solid Waste. Procedia Technol. 2016, 24, 654–660. [Google Scholar] [CrossRef]
- Henze, M.; Grady, C.P.L.; Gujer, W.; Marais, G.V.R.; Matsuo, T. A general model for single-sludge wastewater treatment systems. Water Res. 1987, 21, 505–515. [Google Scholar] [CrossRef]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhny, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.; Vavilin, V.A. Anaerobic digestion model No. 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef]
- Tutorial, A.; Reichert, P. Computer Program for the Identication and Simulation of Aquatic Systems; Swiss Federal Institute for Environmental Science and Technology (EAWAG): Dubendorf, Switzerland, 1998. [Google Scholar]
- Lee, S.H.; Kang, H.J.; Kim, Y.; Kim, N.K.; Park, H.D. Different contribution of exoelectrogens in methanogenesis via direct interspecies electron transfer (DIET) by the different substrate in continuous anaerobic bioreactor. Bioresour. Technol. 2022, 364, 128115. [Google Scholar] [CrossRef]
- Yun, S.; Fang, W.; Du, T.; Hu, X.; Huang, X.; Li, X.; Zhang, C.; Lund, P.D. Use of bio-based carbon materials for improving biogas yield and digestate stability. Energy 2018, 164, 898–909. [Google Scholar] [CrossRef]
- Gharbi, R.; Vidales, A.G.; Omanovic, S.; Tartakovsky, B. Mathematical model of a microbial electrosynthesis cell for the conversion of carbon dioxide into methane and acetate. J. CO2 Util. 2022, 59, 101956. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, Y.; Dhar, B.R. Boosting resilience of microbial electrolysis cell-assisted anaerobic digestion of blackwater with granular activated carbon amendment. Bioresour. Technol. 2023, 381, 129136. [Google Scholar] [CrossRef]
- Sasaki, D.; Sasaki, K.; Watanabe, A.; Morita, M.; Matsumoto, N.; Igarashi, Y.; Ohmura, N. Operation of a cylindrical bioelectrochemical reactor containing carbon fiber fabric for efficient methane fermentation from thickened sewage sludge. Bioresour. Technol. 2013, 129, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; He, S.; Kang, X.; Sun, Y.; Yuan, Z.; Xing, T.; Guo, Y.; Li, L. Effect of Organic Loading Rate and Temperature on the Anaerobic Digestion of Municipal Solid Waste: Process Performance and Energy Recovery. Front. Energy Res. 2020, 8, 1–10. [Google Scholar] [CrossRef]
- Yu, J.; Kim, S.; Kwon, O.S. Effect of applied voltage and temperature on methane production and microbial community in microbial electrochemical anaerobic digestion systems treating swine manure. J. Ind. Microbiol. Biotechnol. 2019, 46, 911–923. [Google Scholar] [CrossRef] [PubMed]
- De La Rubia, M.A.; Perez, M.; Romero, L.I.; Sales, D. Effect of solids retention time (SRT) on pilot scale anaerobic thermophilic sludge digestion. Process Biochem. 2006, 41, 79–86. [Google Scholar] [CrossRef]
- Gerardi, M.H. (Ed.) Retention times. In The Microbiology of Anaerobic Digesters; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; pp. 87–88. [Google Scholar]
- Zhang, C.; Yun, S.; Li, X.; Wang, Z.; Xu, H.; Du, T. Low-cost composited accelerants for anaerobic digestion of dairy manure: Focusing on methane yield, digestate utilization and energy evaluation. Bioresour. Technol. 2018, 263, 517–524. [Google Scholar] [CrossRef]
- Yun, S.; Zhang, C.; Wang, Y.; Zhu, J.; Huang, X.; Du, T.; Li, X.; Wei, Y. Synergistic effects of Fe salts and composite additives on anaerobic digestion of dairy manure. Int. Biodeterior. Biodegrad. 2019, 136, 82–90. [Google Scholar] [CrossRef]
Parameter | Units | Value |
---|---|---|
pH | - | 6.8 |
Total alkalinity | gCaCO3/L | 4 |
Conductivity | mS/cm | 1.5 |
Total solids | g/L | 22 |
Volatile solids | g/L | 16 |
Total suspended solids | g/L | 21 |
Volatile suspended solids | g/L | 15 |
Soluble COD | gO2/L | 0.5–1 |
Total COD | gO2/L | 25 |
Acetic acid | mg/L | 110 |
Propionic acid | mg/L | 75 |
Iso-butyric acid | mg/L | 21 |
Butyric acid | mg/L | 15 |
Iso-valeric acid | mg/L | 10 |
Valeric acid | mg/L | 2 |
Ethanol | mg/L | 180 |
Total Kjeldahl nitrogen | gN/L | 1.25 |
Particulate organic carbon | gC/L | 8.5 |
Substrate Uptake Monod Kinetic Constants | Disintegration First-Order Kinetic Constants | ||||||
---|---|---|---|---|---|---|---|
AD | MEC-AD | AD | MEC-AD | ||||
km (kgCODS kgCODX d−1) | Ks (kgCODS m−3) | km (kgCODS kgCODX d−1) | Ks (kgCODS m−3) | (d−1) | (d−1) | ||
Amino acids | 83.3 | 0.4 | 86.3 | 0.4 | Carbohydrates | 19.9 | 19.9 |
Sugars | 57.1 | 1.1 × 10−3 | 31.7 | 3.3 × 10−7 | Lipids | 0.1 | 0.1 |
LCFAs | 21.6 | 1.6 | 23.7 | 1.5 | Proteins | 39.9 | 39.5 |
H2 | 69.3 | 6.7 × 10−8 | 10.1 | 1.4 × 10−5 | Particulates | 0.1 | 0.4 |
Acetate | 6.4 | 1.1 × 10−4 | 12.6 | 1.1 × 10−2 | |||
Propionate | 24.3 | 1.5 × 10−5 | 12.8 | 5.5 × 10−9 | |||
Butyrate/Valerate | 29.9 | 7.9 × 10−1 | 29.7 | 2.9 × 10−2 |
Substrate Uptake Monod Kinetic Constants | Disintegration First-Order Kinetic Constants | |||
---|---|---|---|---|
MEC-AD | MEC-AD | |||
km (kgCODS kgCODX d−1) | Ks (kgCODS m−3) | (d−1) | (d−1) | |
Amino acids | 95.2 | 0.4 | Carbohydrates | 19.8 |
Sugars | 51.2 | 4.7 × 10−3 | Lipids | 0.1 |
LCFAs | 23.7 | 1.5 | Proteins | 31.7 |
H2 | 8.7 | 1.1 × 10−5 | Particulates | 0.7 |
Acetate | 13.6 | 4.6 × 10−4 | ||
Propionate | 23.3 | 9.1 × 10−4 | ||
Butyrate/Valerate | 37.6 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanellos, G.; Tremouli, A.; Arvanitakis, G.; Lyberatos, G. Computational Analysis of the Kinetic Processes of Microbial Electrolysis Cell-Assisted Anaerobic Digestion Using the ADM1. Water 2023, 15, 3939. https://doi.org/10.3390/w15223939
Kanellos G, Tremouli A, Arvanitakis G, Lyberatos G. Computational Analysis of the Kinetic Processes of Microbial Electrolysis Cell-Assisted Anaerobic Digestion Using the ADM1. Water. 2023; 15(22):3939. https://doi.org/10.3390/w15223939
Chicago/Turabian StyleKanellos, Gerasimos, Asimina Tremouli, Georgios Arvanitakis, and Gerasimos Lyberatos. 2023. "Computational Analysis of the Kinetic Processes of Microbial Electrolysis Cell-Assisted Anaerobic Digestion Using the ADM1" Water 15, no. 22: 3939. https://doi.org/10.3390/w15223939
APA StyleKanellos, G., Tremouli, A., Arvanitakis, G., & Lyberatos, G. (2023). Computational Analysis of the Kinetic Processes of Microbial Electrolysis Cell-Assisted Anaerobic Digestion Using the ADM1. Water, 15(22), 3939. https://doi.org/10.3390/w15223939