Modelling Flash Floods Driven by Rain-on-Snow Events Using Rain-on-Grid Technique in the Hydrodynamic Model TELEMAC-2D
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Input Data
2.2. Methods and the Combination of Snow Routine with Integrated Hydrologic–Hydraulic Model
- (a)
- Continuity equation:
- (b)
- Momentum equation along x:
- (c)
- Momentum equation along y:
3. Results
3.1. HBV
3.2. TELEMAC-2D
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sweeney, T.L. Modernized Areal Flash Flood Guidance. NOAA Technical Memorandum NWS HYDRO. 1992. Available online: https://repository.library.noaa.gov/view/noaa/13498 (accessed on 20 October 2023).
- Zhang, Y.; Wang, Y.; Chen, Y.; Xu, Y.; Zhang, G.; Lin, Q.; Luo, R. Projection of changes in flash flood occurrence under climate change at tourist attractions. J. Hydrol. 2021, 595, 126039. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Chen, Y.; Liang, F.; Liu, H. Assessment of future flash flood inundations in coastal regions under climate change scenarios—A case study of Hadahe River basin in northeastern China. Sci. Total Environ. 2019, 693, 133550. [Google Scholar] [CrossRef] [PubMed]
- Modrick, T.M.; Georgakakos, K.P. The character and causes of flash flood occurrence changes in mountainous small basins of Southern California under projected climatic change. J. Hydrol. Reg. Stud. 2015, 3, 312–336. [Google Scholar] [CrossRef]
- Swanston, D.N. Slope Stability Problems Associated with Timber Harvesting in Mountainous Regions of the Western United States; Pacific Northwest Research Station, US Department of Agriculture, Forest Service: Washington, DC, USA, 1974. [Google Scholar]
- Johnson, J.P.L.; Whipple, K.X.; Sklar, L.S. Contrasting bedrock incision rates from snowmelt and flash floods in the Henry Mountains, Utah. Geol. Soc. Am. Bull. 2010, 122, 1600–1615. [Google Scholar] [CrossRef]
- Sandersen, F.; Bakkehøi, S.; Hestnes, E.; Lied, K. The influence of meteorological factors on the initiation of debris flows, rockfalls, rockslides and rockmass stability. Publ.-Nor. Geotek. Inst. 1997, 201, 97–114. [Google Scholar]
- Heyerdahl, H.; Høydal, Ø.A. Geomorphology and Susceptibility to Rainfall Triggered Landslides in Gudbrandsdalen Valley, Norway. Adv. Cult. Living Landslides 2017, 4, 267–279. [Google Scholar] [CrossRef]
- Pall, P.; Tallaksen, L.M.; Stordal, F. A climatology of rain-on-snow events for Norway. J. Clim. 2019, 32, 6995–7016. [Google Scholar] [CrossRef]
- Hansen, B.B.; Isaksen, K.; Benestad, R.E.; Kohler, J.; Pedersen, Å.Ø.; Loe, L.E.; Coulson, S.J.; Larsen, J.O.; Varpe, Ø. Warmer and wetter winters: Characteristics and implications of an extreme weather event in the High Arctic. Environ. Res. Lett. 2014, 9, 114021. [Google Scholar] [CrossRef]
- Krug, A.; Primo, C.; Fischer, S.; Schumann, A.; Ahrens, B. On the temporal variability of widespread rain-on-snow floods. Meteorol. Z. 2020, 29, 147–163. [Google Scholar] [CrossRef]
- Schmocker-Fackel, P.; Naef, F. Changes in flood frequencies in Switzerland since 1500. Hydrol. Earth Syst. Sci. 2010, 14, 1581–1594. [Google Scholar] [CrossRef]
- Sui, J.; Koehler, G. Rain-on-snow induced flood events in southern Germany. J. Hydrol. 2001, 252, 205–220. [Google Scholar] [CrossRef]
- Uhlemann, S.; Thieken, A.H.; Merz, B. A consistent set of trans-basin floods in Germany between 1952–2002. Hydrol. Earth Syst. Sci. 2010, 14, 1277–1295. [Google Scholar] [CrossRef]
- Gvoždíková, B.; Müller, M. Evaluation of extensive floods in western/central Europe. Hydrol. Earth Syst. Sci. 2017, 21, 3715–3725. [Google Scholar] [CrossRef]
- Musselman, K.N.; Lehner, F.; Ikeda, K.; Clark, M.P.; Prein, A.F.; Liu, C.; Barlage, M.; Rasmussen, R. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Chang. 2018, 8, 808–812. [Google Scholar] [CrossRef]
- Marks, D.; Kimball, J.; Tingey, D.; Link, T. The sensitivity of snowmelt processes to climate conditions and forest cover during rain-on-snow: A case study of the 1996 Pacific Northwest flood. Hydrol. Process. 1998, 12, 1569–1587. [Google Scholar] [CrossRef]
- McCabe, G.J.; Clark, M.P.; Hay, L.E. Rain-on-snow events in the western United States. Bull. Am. Meteorol. Soc. 2007, 88, 319–328. [Google Scholar] [CrossRef]
- Pomeroy, J.W.; Fang, X.; Marks, D.G. The cold rain-on-snow event of June 2013 in the Canadian Rockies—Characteristics and diagnosis. Hydrol. Process. 2016, 30, 2899–2914. [Google Scholar] [CrossRef]
- Kattelmann, R. Flooding from rain-on-snow events in the Sierra Nevada. IAHS-AISH Publ. 1997, 239, 59–65. [Google Scholar]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Ewitson, B.; et al. IPCC—Climate Change 2021: The Physical Science Basis; Chapter 11: Weather and Climate Extreme Events in a Changing Climate; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 1610. [Google Scholar] [CrossRef]
- Førland, E.J.; Skaugen, T.E.; Benestad, R.E.; Hanssen-Bauer, I.; Tveito, O.E. Variations in thermal growing, heating, and freezing indices in the Nordic Arctic, 1900–2050. Arct. Antarct. Alp. Res. 2004, 36, 347–356. [Google Scholar] [CrossRef]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- Singh, P.; Spitzbart, G.; Hübl, H.; Weinmeister, H. Hydrological response of snowpack under rain-on-snow events: A field study. J. Hydrol. 1997, 202, 1–20. [Google Scholar] [CrossRef]
- Sati, V.P. Glacier bursts-triggered debris flow and flash flood in Rishi and Dhauli Ganga valleys: A study on its causes and consequences. Nat. Hazards Res. 2022, 2, 33–40. [Google Scholar] [CrossRef]
- Roald, L.A. Floods in Norway. In Changes in Flood Risk in Europe; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Yang, Z.; Yuan, X.; Liu, C.; Nie, R.; Liu, T.; Dai, X.; Ma, L.; Tang, M.; Xu, Y.; Lu, H. Meta-Analysis and Visualization of the Literature on Early Identification of Flash Floods. Remote Sens. 2022, 14, 3313. [Google Scholar] [CrossRef]
- Merz, R.; Blöschl, G. A process typology of regional floods. Water Resour. Res. 2003, 39, 1340. [Google Scholar] [CrossRef]
- Surfleet, C.G.; Tullos, D. Variability in effect of climate change on rain-on-snow peak flow events in a temperate climate. J. Hydrol. 2013, 479, 24–34. [Google Scholar] [CrossRef]
- Blöschl, G.; Bierkens, M.F.P.; Chambel, A.; Cudennec, C.; Destouni, G.; Fiori, A.; Kirchner, J.W.; McDonnell, J.J.; Savenije, H.H.G.; Sivapalan, M.; et al. Twenty-three unsolved problems in hydrology (UPH)–a community perspective. Hydrol. Sci. J. 2019, 64, 1141–1158. [Google Scholar] [CrossRef]
- Li, D.; Lettenmaier, D.P.; Margulis, S.A.; Andreadis, K. The Role of Rain-on-Snow in Flooding Over the Conterminous United States. Water Resour. Res. 2019, 55, 8492–8513. [Google Scholar] [CrossRef]
- Costabile, P.; Costanzo, C.; Ferraro, D.; Barca, P. Is HEC-RAS 2D accurate enough for storm-event hazard assessment? Lessons learnt from a benchmarking study based on rain-on-grid modelling. J. Hydrol. 2021, 603, 126962. [Google Scholar] [CrossRef]
- David, A.; Schmalz, B. A systematic analysis of the interaction between rain-on-grid-simulations and spatial resolution in 2d hydrodynamic modeling. Water 2021, 13, 2346. [Google Scholar] [CrossRef]
- Norwegian Directorate for Civil Protection (DSB). Analyses of Crisis Scenarios 2019; DSB Skien: Porsgrunn, Norway, 2019; pp. 1–228. Available online: https://www.dsb.no/rapporter-og-evalueringer/analyses-of-crisis-scenarios-2019/ (accessed on 20 October 2023).
- Bergström, S.; Forsman, A. Development of a conceptual deterministic rainfall-runoff model. Nord. Hydrol. 1973, 4, 240–253. [Google Scholar] [CrossRef]
- Ligier, P. Implementation of a rainfall-runoff model in TELEMAC-2D. In Proceedings of the XXIIIrd TELEMAC-MASCARET User Conference 2016, Paris, France, 11–13 October 2016. [Google Scholar]
- Engeland, K.; Abdella, S.Y.; Azad, R.; Arrturi Elo, C.; Lussana, C.; Tadege Mengistu, Z.; Nipen, T.; Randriamampianina, R. Use of precipitation radar for improving estimates and forecasts of precipitation estimates and streamflow. In Proceedings of the 20th EGU General Assembly, EGU2018, Vienna, Austria, 4–13 April 2018; 2018; p. 12207. [Google Scholar]
- Killingtveit, A.; Sælthun, N.R. Hydropower Development: Hydrology; NTNU: Trondheim, Norge, 1995. [Google Scholar]
- Bruland, O. Snow processes, modeling, and impact. In Precipitation; Elsevier Inc.: Amsterdam, The Netherlands, 2021; pp. 107–143. [Google Scholar] [CrossRef]
- Godara, N.; Bruland, O.; Alfredsen, K. Simulation of flash flood peaks in a small and steep catchment using rain-on-grid technique. J. Flood Risk Manag. 2023, 16, e12898. [Google Scholar] [CrossRef]
- Broich, K.; Pflugbeil, T.; Disse, M.; Nguyen, H. Using TELEMAC-2D for Hydrodynamic Modeling of Rainfall-Runoff. In Proceedings of the 26th TELEMAC-MASCARET User Conference, Toulouse, France, 15–17 October 2019. [Google Scholar]
- The ASCE/EWRI Curve Number Hydrology Task Committee. Curve Number Hydrology; Hawkins, R.H., Ward, T.J., Woodward, D.E., Van Mullem, J.A., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2008; ISBN 9780784410042. [Google Scholar]
- Barton, A.J. Blue Kenue Enhancements from 2014 to 2019. In Proceedings of the 26th TELEMAC-MASCARET User Conference, Toulouse, France, 15–17 October 2019. [Google Scholar] [CrossRef]
- Shand, T.; Smith, G.; Cox, R.; Blacka, M. Development of Appropriate Criteria for the Safety and Stability of Persons and Vehicles in Floods. In Proceedings of the 34th World Congress of the International Association for Hydro—Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Brisbane, Australia, 26 June–1 July 2011; p. 9. [Google Scholar]
- Direktoratet for Byggkvalitet. Veiledning om Tekniske Krav Til Byggverk; TEK17. 2017. Available online: http://www.jurpc.de/jurpc/show?id=20140073 (accessed on 20 September 2023).
- Skrede, T.I.; Muthanna, T.M.; Alfredesen, K. Applicability of urban streets as temporary open floodways. Hydrol. Res. 2020, 51, 621–634. [Google Scholar] [CrossRef]
- Li, L.; Pontoppidan, M.; Sobolowski, S.; Senatore, A. The impact of initial conditions on convection-permitting simulations of a flood event over complex mountainous terrain. Hydrol. Earth Syst. Sci. 2020, 24, 771–791. [Google Scholar] [CrossRef]
- McMillan, H.K.; Westerberg, I.K.; Krueger, T. Hydrological data uncertainty and its implications. WIREs Water 2018, 5, e1319. [Google Scholar] [CrossRef]
- Annis, A.; Nardi, F.; Volpi, E.; Fiori, A. Quantifying the relative impact of hydrological and hydraulic modelling parameterizations on uncertainty of inundation maps. Hydrol. Sci. J. 2020, 65, 507–523. [Google Scholar] [CrossRef]
- Hjelmfelt, A.T. Investigation of Curve Number Procedure. J. Hydraul. Eng. 1991, 117, 725–737. [Google Scholar] [CrossRef]
- Krvavica, N.; Rubinić, J. Evaluation of design storms and critical rainfall durations for flood prediction in partially urbanized catchments. Water 2020, 12, 2044. [Google Scholar] [CrossRef]
- USDA-SCS. Part 630 Hydrology National Engineering Handbook. Chapter 10 Estimation of Direct Runoff from Storm Rainfall. 2004. Available online: https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=17752.wba (accessed on 20 October 2023).
Description | Area (%) | Event A [20 January 2020 (10:00)-44 hours] | Event B [13 October 2021 (16:00)-45 hours] | Event C [28 March 2019 (17:00)-33 hours] | Event D [31 December 2018 (04:00)-44 hours] | Event E [24 January 2020 (23:00)-25 hours] | Event F [2 January 2020 (12.00)-23 hours] | Event G [7 January 2020 (14:00)-24 hours] |
---|---|---|---|---|---|---|---|---|
Bare rock and scarce vegetation | 46.57 | 50 | 84 | 64 | 72 | 80 | 72 | 74 |
Forest | 25.05 | 45 | 73 | 61 | 68 | 74 | 68 | 71 |
Open land | 20.00 | 43 | 70 | 59 | 65 | 72 | 65 | 69 |
Swamp | 3.62 | 90 | ||||||
Fully cultivated soil | 3.24 | 90 | ||||||
Inland pasture | 0.86 | 89 | ||||||
River water | 0.38 | 100 | ||||||
Urban Area | 0.19 | 89 | ||||||
Roads | 0.10 | 91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godara, N.; Bruland, O.; Alfredsen, K. Modelling Flash Floods Driven by Rain-on-Snow Events Using Rain-on-Grid Technique in the Hydrodynamic Model TELEMAC-2D. Water 2023, 15, 3945. https://doi.org/10.3390/w15223945
Godara N, Bruland O, Alfredsen K. Modelling Flash Floods Driven by Rain-on-Snow Events Using Rain-on-Grid Technique in the Hydrodynamic Model TELEMAC-2D. Water. 2023; 15(22):3945. https://doi.org/10.3390/w15223945
Chicago/Turabian StyleGodara, Nitesh, Oddbjørn Bruland, and Knut Alfredsen. 2023. "Modelling Flash Floods Driven by Rain-on-Snow Events Using Rain-on-Grid Technique in the Hydrodynamic Model TELEMAC-2D" Water 15, no. 22: 3945. https://doi.org/10.3390/w15223945
APA StyleGodara, N., Bruland, O., & Alfredsen, K. (2023). Modelling Flash Floods Driven by Rain-on-Snow Events Using Rain-on-Grid Technique in the Hydrodynamic Model TELEMAC-2D. Water, 15(22), 3945. https://doi.org/10.3390/w15223945